1
|
Zaw M, Rathjen JR, Zhou Y, Ryder MH, Denton MD. Rhizobial diversity is associated with inoculation history at a two-continent scale. FEMS Microbiol Ecol 2022; 98:6567838. [PMID: 35416244 PMCID: PMC9329089 DOI: 10.1093/femsec/fiac044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/23/2022] [Accepted: 04/11/2022] [Indexed: 11/14/2022] Open
Abstract
A total of 120 Mesorhizobium strains collected from the central dry zone of Myanmar were analyzed in a pot experiment to evaluate nodulation and symbiotic effectiveness (SE%) in chickpea plants. Phylogenetic analyses revealed all strains belonged to the genus Mesorhizobium according to 16–23S rDNA IGS and the majority of chickpea nodulating rhizobia in Myanmar soils were most closely related to M. gobiense, M. muleiense, M. silamurunense, M. tamadayense and M. temperatum. Around two-thirds of the Myanmar strains (68%) were most closely related to Indian strain IC-2058 (CA-181), which is also most closely related to M. gobiense. There were no strains that were closely related to the cognate rhizobial species to nodulate chickpea: M. ciceri and M. mediterraneum. Strains with diverse 16S–23S rDNA IGS shared similar nodC and nifH gene sequences with chickpea symbionts. Detailed sequence analysis of nodC and nifH found that the strains in Myanmar were somewhat divergent from the group including M. ciceri and were more closely related to M. muleiense and IC-2058. A cross-continent analysis between strains isolated in Australia compared with Myanmar found that there was little overlap in species, where Australian soils were dominated with M. ciceri, M. temperatum and M. huakuii. The only co-occurring species found in both Myanmar and Australia were M. tamadayense and M. silumurunense. Continued inoculation with CC1192 may have reduced diversity of chickpea strains in Australian soils. Isolated strains in Australian and Myanmar had similar adaptive traits, which in some cases were also phylogenetically related. The genetic discrepancy between chickpea nodulating strains in Australia and Myanmar is not only due to inoculation history but to adaptation to soil conditions and crop management over a long period, and there has been virtually no loss of symbiotic efficiency over this time in strains isolated from soils in Myanmar.
Collapse
Affiliation(s)
- Myint Zaw
- School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, SA5064, Australia.,Yezin Agricultural University, Yezin, Naypyidaw 15013, Myanmar
| | - Judith R Rathjen
- School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, SA5064, Australia
| | - Yi Zhou
- School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, SA5064, Australia
| | - Maarten H Ryder
- School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, SA5064, Australia
| | - Matthew D Denton
- School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, SA5064, Australia
| |
Collapse
|
2
|
Han F, He X, Chen W, Gai H, Bai X, He Y, Takeshima K, Ohwada T, Wei M, Xie F. Involvement of a Novel TetR-Like Regulator (BdtR) of Bradyrhizobium diazoefficiens in the Efflux of Isoflavonoid Genistein. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:1411-1423. [PMID: 32924759 DOI: 10.1094/mpmi-08-20-0243-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A wide variety of leguminous plant-released (iso)flavonoids, such as genistein, are potential inducers of the nodulation (nod) genes of endosymbiotic rhizobia for the production of Nod factors, which are vital signaling molecules for triggering the symbiotic process. However, these (iso)flavonoids are generally thought to be toxic to the bacterial partner to varying degrees. Here, a novel TetR-like regulator gene of the soybean symbiont Bradyrhizobium diazoefficiens USDA110, bdtR (systematic designation blr7023), was characterized. It was found to be rapidly and preferentially induced by genistein, and its mutation resulted in significantly increased expression of the neighboring bll7019-bll7021 genes, encoding a multidrug resistance efflux pump system, in the absence of this isoflavonoid. Then, the transcriptional start site of BdtR was determined, and it was revealed that BdtR acted as a transcriptional repressor of the above efflux system through the binding of an AT-rich operator, which could be completely prevented by genistein. In addition, the ΔbdtR deletion mutant strain showed higher accumulation of extracellular genistein and became less susceptible to the isoflavonoid. In contrast, the inactivation of BdtR led to the significantly decreased induction of a nodulation gene (nodY) independent of the expression of nodD1 and nodW and to much weaker nodulation competitiveness. Taken together, the results show that BdtR plays an early sensing role in maintaining the intracellular homeostasis of genistein, helping to alleviate its toxic effect on this bacterium by negatively regulating neighboring genes encoding an efflux pump system while being essentially required for nodule occupancy competitiveness.[Formula: see text] Copyright © 2020 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Fang Han
- State Key Laboratory of Grassland Agro-Ecosystems, Institute of Arid Agroecology, School of Life Sciences, Lanzhou University, No. 222, South Tianshui Road, Lanzhou 730000, China
| | - Xueqian He
- State Key Laboratory of Grassland Agro-Ecosystems, Institute of Arid Agroecology, School of Life Sciences, Lanzhou University, No. 222, South Tianshui Road, Lanzhou 730000, China
| | - Wenwen Chen
- State Key Laboratory of Grassland Agro-Ecosystems, Institute of Arid Agroecology, School of Life Sciences, Lanzhou University, No. 222, South Tianshui Road, Lanzhou 730000, China
| | - Haoyu Gai
- State Key Laboratory of Grassland Agro-Ecosystems, Institute of Arid Agroecology, School of Life Sciences, Lanzhou University, No. 222, South Tianshui Road, Lanzhou 730000, China
| | - Xuemei Bai
- State Key Laboratory of Grassland Agro-Ecosystems, Institute of Arid Agroecology, School of Life Sciences, Lanzhou University, No. 222, South Tianshui Road, Lanzhou 730000, China
| | - Yongxing He
- State Key Laboratory of Grassland Agro-Ecosystems, Institute of Arid Agroecology, School of Life Sciences, Lanzhou University, No. 222, South Tianshui Road, Lanzhou 730000, China
| | - Keisuke Takeshima
- Department of Food Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Takuji Ohwada
- Department of Food Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Min Wei
- State Key Laboratory of Grassland Agro-Ecosystems, Institute of Arid Agroecology, School of Life Sciences, Lanzhou University, No. 222, South Tianshui Road, Lanzhou 730000, China
| | - Fang Xie
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
3
|
Transcriptomic Studies of the Effect of nod Gene-Inducing Molecules in Rhizobia: Different Weapons, One Purpose. Genes (Basel) 2017; 9:genes9010001. [PMID: 29267254 PMCID: PMC5793154 DOI: 10.3390/genes9010001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/07/2017] [Accepted: 12/15/2017] [Indexed: 12/16/2022] Open
Abstract
Simultaneous quantification of transcripts of the whole bacterial genome allows the analysis of the global transcriptional response under changing conditions. RNA-seq and microarrays are the most used techniques to measure these transcriptomic changes, and both complement each other in transcriptome profiling. In this review, we exhaustively compiled the symbiosis-related transcriptomic reports (microarrays and RNA sequencing) carried out hitherto in rhizobia. This review is specially focused on transcriptomic changes that takes place when five rhizobial species, Bradyrhizobium japonicum (=diazoefficiens) USDA 110, Rhizobium leguminosarum biovar viciae 3841, Rhizobium tropici CIAT 899, Sinorhizobium (=Ensifer) meliloti 1021 and S. fredii HH103, recognize inducing flavonoids, plant-exuded phenolic compounds that activate the biosynthesis and export of Nod factors (NF) in all analysed rhizobia. Interestingly, our global transcriptomic comparison also indicates that each rhizobial species possesses its own arsenal of molecular weapons accompanying the set of NF in order to establish a successful interaction with host legumes.
Collapse
|
4
|
Passaglia LMP. Bradyrhizobium elkanii nod regulon: insights through genomic analysis. Genet Mol Biol 2017; 40:703-716. [PMID: 28767122 PMCID: PMC5596368 DOI: 10.1590/1678-4685-gmb-2016-0228] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 02/16/2017] [Indexed: 12/26/2022] Open
Abstract
A successful symbiotic relationship between soybean [Glycinemax (L.) Merr.] and Bradyrhizobium species requires expression of the bacterial structural nod genes that encode for the synthesis of lipochitooligosaccharide nodulation signal molecules, known as Nod factors (NFs). Bradyrhizobium diazoefficiens USDA 110 possesses a wide nodulation gene repertoire that allows NF assembly and modification, with transcription of the nodYABCSUIJnolMNOnodZ operon depending upon specific activators, i.e., products of regulatory nod genes that are responsive to signaling molecules such as flavonoid compounds exuded by host plant roots. Central to this regulatory circuit of nod gene expression are NodD proteins, members of the LysR-type regulator family. In this study, publicly available Bradyrhizobium elkanii sequenced genomes were compared with the closely related B. diazoefficiens USDA 110 reference genome to determine the similarities between those genomes, especially with regards to the nod operon and nod regulon. Bioinformatics analyses revealed a correlation between functional mechanisms and key elements that play an essential role in the regulation of nod gene expression. These analyses also revealed new genomic features that had not been clearly explored before, some of which were unique for some B. elkanii genomes.
Collapse
Affiliation(s)
- Luciane M P Passaglia
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| |
Collapse
|
5
|
Faruque OM, Miwa H, Yasuda M, Fujii Y, Kaneko T, Sato S, Okazaki S. Identification of Bradyrhizobium elkanii Genes Involved in Incompatibility with Soybean Plants Carrying the Rj4 Allele. Appl Environ Microbiol 2015; 81:6710-7. [PMID: 26187957 PMCID: PMC4561682 DOI: 10.1128/aem.01942-15] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 07/13/2015] [Indexed: 11/20/2022] Open
Abstract
Symbioses between leguminous plants and soil bacteria known as rhizobia are of great importance to agricultural production and nitrogen cycling. While these mutualistic symbioses can involve a wide range of rhizobia, some legumes exhibit incompatibility with specific strains, resulting in ineffective nodulation. The formation of nodules in soybean plants (Glycine max) is controlled by several host genes, which are referred to as Rj genes. The soybean cultivar BARC2 carries the Rj4 gene, which restricts nodulation by specific strains, including Bradyrhizobium elkanii USDA61. Here we employed transposon mutagenesis to identify the genetic locus in USDA61 that determines incompatibility with soybean varieties carrying the Rj4 allele. Introduction of the Tn5 transposon into USDA61 resulted in the formation of nitrogen fixation nodules on the roots of soybean cultivar BARC2 (Rj4 Rj4). Sequencing analysis of the sequence flanking the Tn5 insertion revealed that six genes encoding a putative histidine kinase, transcriptional regulator, DNA-binding transcriptional activator, helix-turn-helix-type transcriptional regulator, phage shock protein, and cysteine protease were disrupted. The cysteine protease mutant had a high degree of similarity with the type 3 effector protein XopD of Xanthomonas campestris. Our findings shed light on the diverse and complicated mechanisms that underlie these highly host-specific interactions and indicate the involvement of a type 3 effector in Rj4 nodulation restriction, suggesting that Rj4 incompatibility is partly mediated by effector-triggered immunity.
Collapse
Affiliation(s)
- Omar M Faruque
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Hiroki Miwa
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Michiko Yasuda
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Yoshiharu Fujii
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Takakazu Kaneko
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | - Shusei Sato
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Shin Okazaki
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| |
Collapse
|
6
|
Zhang XX, Guo HJ, Wang R, Sui XH, Zhang YM, Wang ET, Tian CF, Chen WX. Genetic divergence of bradyrhizobium strains nodulating soybeans as revealed by multilocus sequence analysis of genes inside and outside the symbiosis island. Appl Environ Microbiol 2014; 80:3181-90. [PMID: 24632260 PMCID: PMC4018923 DOI: 10.1128/aem.00044-14] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 03/07/2014] [Indexed: 01/26/2023] Open
Abstract
The genus Bradyrhizobium has been considered to be a taxonomically difficult group. In this study, phylogenetics and evolutionary genetics analyses were used to investigate divergence levels among Bradyrhizobium strains nodulating soybeans in China. Eleven genospecies were identified by sequence analysis of three phylogenetic and taxonomic markers (SMc00019, thrA, and truA). This was also supported by analyses of eight genes outside the symbiosis island ("off-island" genes; SMc00019, thrA, truA, fabB, glyA, phyR, exoN, and hsfA). However, seven genes inside the symbiosis island ("island" genes; nifA, nifH, nodC, nodV, fixA, trpD, and rhcC2) showed contrasting lower levels of nucleotide diversity and recombination rates than did off-island genes. Island genes had significantly incongruent gene phylogenies compared to the species tree. Four phylogenetic clusters were observed in island genes, and the epidemic cluster IV (harbored by Bradyrhizobium japonicum, Bradyrhizobium diazoefficiens, Bradyrhizobium huanghuaihaiense, Bradyrhizobium liaoningense, Bradyrhizobium daqingense, Bradyrhizobium sp. I, Bradyrhizobium sp. III, and Bradyrhizobium sp. IV) was not found in Bradyrhizobium yuanmingense, Bradyrhizobium sp. II, or Bradyrhizobium elkanii. The gene flow level of island genes among genospecies is discussed in the context of the divergence level of off-island genes.
Collapse
Affiliation(s)
- Xing Xing Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
- Key Laboratory of Soil Microbiology, Ministry of Agriculture, China Agricultural University, Beijing, China
- Rhizobium Research Center, China Agricultural University, Beijing, China
| | - Hui Juan Guo
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
- Key Laboratory of Soil Microbiology, Ministry of Agriculture, China Agricultural University, Beijing, China
- Rhizobium Research Center, China Agricultural University, Beijing, China
| | - Rui Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
- Key Laboratory of Soil Microbiology, Ministry of Agriculture, China Agricultural University, Beijing, China
- Rhizobium Research Center, China Agricultural University, Beijing, China
| | - Xin Hua Sui
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
- Key Laboratory of Soil Microbiology, Ministry of Agriculture, China Agricultural University, Beijing, China
- Rhizobium Research Center, China Agricultural University, Beijing, China
| | - Yan Ming Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
- Key Laboratory of Soil Microbiology, Ministry of Agriculture, China Agricultural University, Beijing, China
- Rhizobium Research Center, China Agricultural University, Beijing, China
| | - En Tao Wang
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Chang Fu Tian
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
- Key Laboratory of Soil Microbiology, Ministry of Agriculture, China Agricultural University, Beijing, China
- Rhizobium Research Center, China Agricultural University, Beijing, China
| | - Wen Xin Chen
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
- Key Laboratory of Soil Microbiology, Ministry of Agriculture, China Agricultural University, Beijing, China
- Rhizobium Research Center, China Agricultural University, Beijing, China
| |
Collapse
|
7
|
Giraud E, Xu L, Chaintreuil C, Gargani D, Gully D, Sadowsky MJ. Photosynthetic Bradyrhizobium sp. strain ORS285 is capable of forming nitrogen-fixing root nodules on soybeans (Glycine max). Appl Environ Microbiol 2013; 79:2459-62. [PMID: 23354704 PMCID: PMC3623219 DOI: 10.1128/aem.03735-12] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 01/22/2013] [Indexed: 11/20/2022] Open
Abstract
The ability of photosynthetic Bradyrhizobium strains ORS285 and ORS278 to nodulate soybeans was investigated. While the nod gene-deficient ORS278 strain induced bumps only on soybean roots, the nod gene-containing ORS285 strain formed nitrogen-fixing nodules. However, symbiotic efficiencies differed drastically depending on both the soybean genotype used and the culture conditions tested.
Collapse
Affiliation(s)
- Eric Giraud
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR IRD/ SupAgro/INRA/UM2/CIRAD, Montpellier, France
| | - Lei Xu
- BioTechnology Institute and Department of Soil, Water, and Climate, University of Minnesota, St. Paul, Minnesota, USA
| | - Clémence Chaintreuil
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR IRD/ SupAgro/INRA/UM2/CIRAD, Montpellier, France
| | - Daniel Gargani
- CIRAD, UMR BGPI INRA/CIRAD/SUP AGRO, Campus International de Baillarguet, Montpellier, France
| | - Djamel Gully
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR IRD/ SupAgro/INRA/UM2/CIRAD, Montpellier, France
| | - Michael J. Sadowsky
- BioTechnology Institute and Department of Soil, Water, and Climate, University of Minnesota, St. Paul, Minnesota, USA
| |
Collapse
|
8
|
Sadowsky MJ, Cregan PB, Keyser HH. DNA Hybridization Probe for Use in Determining Restricted Nodulation among Bradyrhizobium japonicum Serocluster 123 Field Isolates. Appl Environ Microbiol 2010; 56:1768-74. [PMID: 16348217 PMCID: PMC184507 DOI: 10.1128/aem.56.6.1768-1774.1990] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Several soybean plant introduction (PI) genotypes have recently been described which restrict nodulation of Bradyrhizobium japonicum serocluster 123 in an apparently serogroup-specific manner. While PI 371607 restricts nodulation of strains in serogroup 123 and some in serogroup 127, those in serogroup 129 are not restricted. When DNA regions within and around the B. japonicum I-110 common nodulation genes were used as probes to genomic DNA from the serogroup strains USDA 123, USDA 127, and USDA 129, several of the probes differentially hybridized to the nodulation-restricted and -unrestricted strains. One of the gene regions, cloned in plasmid pMJS12, was subsequently shown to hybridize to 4.6-kilobase EcoRI fragments from DNAs from nodulation-restricted strains and to larger fragments in nodulation-unrestricted strains. To determine if the different hybridization patterns could be used to predict nodulation restriction, we hybridized pMJS12 to EcoRI-digested genomic DNAs from uncharacterized serocluster 123 field isolates. Of the 36 strains examined, 15 were found to have single, major, 4.6-kilobase hybridizing EcoRI fragments. When tested for nodulation, 80% (12 of 15) of the strains were correctly predicted to be restricted for nodulation of the PI genotypes. In addition, hybridization patterns obtained with pMJS12 and nodulation phenotypes on PI 371607 indicated that there are at least three types of serogroup 127 strains. Our results suggest that the pMJS12 gene probe may be useful in selecting compatible host-strain combinations and in determining the suitability of field sites for the placement of soybean genotypes containing restrictive nodulation alleles.
Collapse
Affiliation(s)
- M J Sadowsky
- Department of Soil Science and Department of Microbiology, University of Minnesota, St. Paul, Minnesota 55108; Nitrogen Fixation and Soybean Genetics Laboratory, Agriculture Research Service, U.S. Department of Agriculture, Beltsville, Maryland 20705 ; and The NifTAL Project, University of Hawaii, Paia, Hawaii 96779
| | | | | |
Collapse
|
9
|
Wei M, Takeshima K, Yokoyama T, Minamisawa K, Mitsui H, Itakura M, Kaneko T, Tabata S, Saeki K, Omori H, Tajima S, Uchiumi T, Abe M, Ishii S, Ohwada T. Temperature-dependent expression of type III secretion system genes and its regulation in Bradyrhizobium japonicum. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:628-637. [PMID: 20367471 DOI: 10.1094/mpmi-23-5-0628] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The genome-wide expression profiles of Bradyrhizobium japonicum in response to soybean (Glycine max (L.) Merr.) seed extract (SSE) and genistein were monitored with time at a low temperature (15 degrees C). A comparison with the expression profiles of the B. japonicum genome previously captured at the common growth temperature (30 degrees C) revealed that the expression of SSE preferentially induced genomic loci, including a large gene cluster encoding the type III secretion system (T3SS), were considerably delayed at 15 degrees C, whereas most nodulation (nod) gene loci, including nodD1 and nodW, were rapidly and strongly induced by both SSE and genistein. Induction of the T3SS genes was progressively activated upon the elevation of temperature to 30 degrees C and positively responded to culture population density. In addition, genes nolA and nodD2 were dramatically induced by SSE, concomitantly with the expression of T3SS genes. However, the deletion mutation of nodD2 but not nolA led to elimination of the T3SS genes expression. These results indicate that the expression of the T3SS gene cluster is tightly regulated with integration of environmental cues such as temperature and that NodD2 may be involved in its efficient induction in B. japonicum.
Collapse
Affiliation(s)
- Min Wei
- Department of Food Sciences, Obihiro University of Agiculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Jitacksorn S, Sadowsky MJ. Nodulation gene regulation and quorum sensing control density-dependent suppression and restriction of nodulation in the Bradyrhizobium japonicum-soybean symbiosis. Appl Environ Microbiol 2008; 74:3749-56. [PMID: 18441104 PMCID: PMC2446537 DOI: 10.1128/aem.02939-07] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2007] [Accepted: 04/21/2008] [Indexed: 11/20/2022] Open
Abstract
The nodulation of Glycine max cv. Lambert and the nodulation-restricting plant introduction (PI) genotype PI 417566 by wild-type Bradyrhizobium japonicum USDA110 is regulated in a population-density-dependent manner. Nodulation on both plant genotypes was suppressed (inhibited) when plants received a high-density inoculum (10(9) cells/ml) of strain USDA110 grown in complex medium, and more nodules were produced on plants receiving a low-cell-density inoculum (10(5) cells/ml). Since cell-free supernatants from strain USDA110 grown to high cell density in complex medium decreased the expression of an nodY-lacZ fusion, this phenomenon was attributed to bradyoxetin-induced repression of nod gene expression. Inoculation of either the permissive soybean genotype (cv. Lambert) or PI 417566 with 10(9) cells/ml of the nodD2, nolA, nodW, and nwsB mutants of USDA110 enhanced nodulation (up to 24%) relative to that seen with inoculations done with 10(5) cells/ml of the mutants or the wild-type strain, indicating that these genes are involved in population-density-dependent nodulation of soybeans. In contrast, the number of nodules produced by an nodD1 mutant on either soybean genotype was less than those seen with the wild-type strain inoculated at a low inoculum density. The nodD2 mutant outcompeted B. japonicum strain USDA123 for nodulation of G. max cv. Lambert at a high or low inoculum density, and the results of root-tip-marking and time-to-nodulate studies indicated that the nolA and nodD2 mutants nodulated this soybean genotype faster than wild-type USDA110. Taken together, the results from these studies indicate that the nodD2 mutant of B. japonicum may be useful to enhance soybean nodulation at high inoculum densities and that NodD2 is a key repressor influencing host-controlled restriction of nodulation, density-dependent suppression of nodulation, perception of bradyoxetin, and competitiveness in the soybean-B. japonicum symbiosis.
Collapse
Affiliation(s)
- Siriluck Jitacksorn
- University of Minnesota, Department of Soil, Water, and Climate, University of Minnesota, St. Paul, MN 55108, USA
| | | |
Collapse
|
11
|
Lang K, Lindemann A, Hauser F, Göttfert M. The genistein stimulon of Bradyrhizobium japonicum. Mol Genet Genomics 2008; 279:203-11. [PMID: 18214545 DOI: 10.1007/s00438-007-0280-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2007] [Accepted: 07/30/2007] [Indexed: 12/25/2022]
Abstract
An initializing step in the rhizobia-legume symbiosis is the secretion of flavonoids by plants that leads to the expression of nodulation genes in rhizobia. Here we report the genome-wide transcriptional response of Bradyrhizobium japonicum to genistein, an isoflavone secreted by soybean. About 100 genes were induced in the wild type. This included all nod box-associated genes, the flagellar cluster and several genes that are likely to be involved in transport processes. To elucidate the role of known regulators, we analysed mutant strains. This revealed that the two-component response regulator NodW is essential for induction of almost all genistein-inducible genes, with the exception of 8 genes. The phenotype of the nodW mutant could be partially suppressed by overexpression of NwsB, which is also a two-component response regulator. These data indicate that genistein has a much broader function than mere induction of nod genes.
Collapse
Affiliation(s)
- Kathrin Lang
- Institute of Genetics, Dresden University of Technology, Helmholtzstrasse 10, 01069, Dresden, Germany
| | | | | | | |
Collapse
|
12
|
Abstract
Lipochitin Nod signals are produced by rhizobia and are required for the establishment of a nitrogen-fixing symbiosis with a legume host. The nodulation genes encode products required for the synthesis of this signal and are induced in response to plant-produced flavonoid compounds. The addition of chitin and lipo-chitin oligomers to Bradyrhizobium japonicum cultures resulted in a significant reduction in the expression of a nod-lacZ fusion. Intracellular expression of NodC, encoding a chitin synthase, also reduced nod gene expression. In contrast, expression of the ChiB chitinase increased nod gene expression. The chain length of the oligosaccharide was important in feedback regulation, with chitotetraose molecules the best modulators of nod gene expression. Feedback regulation is mediated by the induction of nolA by chitin, resulting in elevated levels of the repressor protein, NodD2.
Collapse
Affiliation(s)
- J T Loh
- Center for Legume Research, Department of Microbiology, The University of Tennessee, Knoxville, TN 37996, USA
| | | |
Collapse
|
13
|
Abstract
Soil bacteria of the genera Azorhizobium, Bradyrhizobium, and Rhizobium are collectively termed rhizobia. They share the ability to penetrate legume roots and elicit morphological responses that lead to the appearance of nodules. Bacteria within these symbiotic structures fix atmosphere nitrogen and thus are of immense ecological and agricultural significance. Although modern genetic analysis of rhizobia began less than 20 years ago, dozens of nodulation genes have now been identified, some in multiple species of rhizobia. These genetic advances have led to the discovery of a host surveillance system encoded by nodD and to the identification of Nod factor signals. These derivatives of oligochitin are synthesized by the protein products of nodABC, nodFE, NodPQ, and other nodulation genes; they provoke symbiotic responses on the part of the host and have generated immense interest in recent years. The symbiotic functions of other nodulation genes are nonetheless uncertain, and there remain significant gaps in our knowledge of several large groups of rhizobia with interesting biological properties. This review focuses on the nodulation genes of rhizobia, with particular emphasis on the concept of biological specificity of symbiosis with legume host plants.
Collapse
Affiliation(s)
- S G Pueppke
- Department of Plant Pathology, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
14
|
Abstract
Studies of the genetics of nodulation by Bradyrhizobium japonicum have revealed many similar features with Rhizobium and Azorhizobium species, but also apparent differences. The regulation of nod gene expression in B. japonicum is complex, involving the interplay of the positive regulator, NodD1, as well as a repressor, No1A. A unique feature of B. japonicum is the involvement of a two-component regulatory system, NodV and NodW, in the control of nod gene expression. It is not clear why B. japonicum requires this level of complexity to control nod gene transcription. The nod gene products encode the biosynthesis of substituted lipo-chitin Nod signals that induce many of the early nodulation events. B. japonicum and B. elkanii produce a large variety of such Nod signals. The basic structure of the Nod signal, an acylated oligomer of N-acetylglucosamine, is synthesized through the action of NodA, NodB, and NodC. Various substitutions of this basic structure confer host specificity to the molecule. For example, in B. japonicum, the nodZ gene product is essential for fucosylation of the terminal, reducing N-acetylglucosamine residue. These observations argue for the interaction of a substituted Nod signal with a specific plant receptor molecule. However, structure/function studies using chemically synthesized Nod signal molecules suggest a more complex interaction between chain length and specific substitution. These findings leave open the possibility that a general chitin receptor may function in a unique way to elicit nodule formation. The novel features discovered through the study of B. japonicum contribute to our general understanding of nodulation and to the larger question of plant cell signal transduction.
Collapse
Affiliation(s)
- G Stacey
- Department of Microbiology, University of Tennessee, Knoxville 37996-0845
| |
Collapse
|
15
|
Abstract
Rhizobium, Bradyrhizobium, and Azorhizobium species are able to elicit the formation of unique structures, called nodules, on the roots or stems of the leguminous host. In these nodules, the rhizobia convert atmospheric N2 into ammonia for the plant. To establish this symbiosis, signals are produced early in the interaction between plant and rhizobia and they elicit discrete responses by the two symbiotic partners. First, transcription of the bacterial nodulation (nod) genes is under control of the NodD regulatory protein, which is activated by specific plant signals, flavonoids, present in the root exudates. In return, the nod-encoded enzymes are involved in the synthesis and excretion of specific lipooligosaccharides, which are able to trigger on the host plant the organogenic program leading to the formation of nodules. An overview of the organization, regulation, and function of the nod genes and their participation in the determination of the host specificity is presented.
Collapse
Affiliation(s)
- P van Rhijn
- F.A. Janssens Laboratory of Genetics, KU Leuven, Heverlee, Belgium
| | | |
Collapse
|
16
|
Cell and Molecular Biology of Rhizobium-Plant. ACTA ACUST UNITED AC 1994. [DOI: 10.1016/s0074-7696(08)62252-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
|
17
|
Grob P, Michel P, Hennecke H, Göttfert M. A novel response-regulator is able to suppress the nodulation defect of a Bradyrhizobium japonicum nodW mutant. MOLECULAR & GENERAL GENETICS : MGG 1993; 241:531-41. [PMID: 8264528 DOI: 10.1007/bf00279895] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The two-component regulatory system Nod-VW of Bradyrhizobium japonicum is essential for the nodulation of the legume host plants Vigna radiata, V. unguiculata and Macroptilium atropurpureum. The NodV protein shares homology with the sensor-kinases, whereas the NodW protein is a member of the response-regulator class. We report here the identification of a new B. japonicum DNA region that is able to suppress the phenotypic defect of a nodW mutant, provided that this region is expressed from a foreign promoter. The minimal complementing region, which itself is not essential for nodulation in a nodW+ background, consists of one gene designated nwsB (nodW-suppressor). The deduced amino acid sequence of the nwsB gene product shows a high degree of homology to NodW. The nws B gene is preceded by a long open reading frame, nwsA, whose putative product appears to be a sensor-kinase. Downstream of nwsB, an open reading frame encoding a second putative response-regulator was identified. Interspecies hybridization revealed the presence of nwsAB-like DNA also in other Bradyrhizobium strains. Using nwsB'-'lacZ fusions, the nwsB gene was found to be expressed rather weakly in B. japonicum. This low level of expression is obviously not sufficient to compensate for a nodW- defect, whereas strong overexpression of nwsB is a condition that leads to suppression of the nodW- mutation.
Collapse
Affiliation(s)
- P Grob
- Mikrobiologisches Institut, Eidgenössische Technische Hochschule, ETH-Zentrum, Zürich, Switzerland
| | | | | | | |
Collapse
|
18
|
Vázquez M, Santana O, Quinto C. The NodL and NodJ proteins from Rhizobium and Bradyrhizobium strains are similar to capsular polysaccharide secretion proteins from gram-negative bacteria. Mol Microbiol 1993; 8:369-77. [PMID: 8316086 DOI: 10.1111/j.1365-2958.1993.tb01580.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The NodL and NodJ nodulation proteins have been described in different Rhizobium and Bradyrhizobium species. The nodLJ genes belong to the nod regulon. Other genes from this regulon are involved in the biosynthesis and modification of lipo-oligosaccharide molecule(s) which are morphogenic signals when acting on legume roots. It has been proposed that the NodL and NodJ proteins belong to a bacterial inner membrane transport system of small molecules. Nucleotide sequencing of Mudll PR13 insertions in the nodulation region of the symbiotic plasmid from a Rhizobium leguminosarum bv. phaseoli strain CE3 has revealed the presence of nodL and nodJ-related sequences downstream of nodC. Computer nucleotide sequence analysis of the entire NodL and NodJ sequences from R. leguminosarum bv. viciae and Bradyrhizobium japonicum strains show that both proteins are similar to the KpsT and KpsM proteins from Escherichia coli K1 and K5 strains, to the BexB and BexA proteins from Haemophilis influenzae and to the CtrD and CtrC proteins from Neisseria meningitidis, respectively. Except for the NodL and NodJ proteins, all of them have been involved in the mechanism of secretion of polysaccharides in each of their harbouring species. On the basis of the similarity found, we propose that the NodL and the NodJ proteins could be involved in the export of a lipo-oligosaccharide.
Collapse
Affiliation(s)
- M Vázquez
- Instituto de Biotecnología, Universidad Nacional Autónoma de México,Cuernavaca, Morelos
| | | | | |
Collapse
|
19
|
Abstract
This review focuses on the functions of nodulation (nod) genes in the interaction between rhizobia and legumes. The nod genes are the key bacterial determinants of the signal exchange between the two symbiotic partners. The product of the nodD gene is a transcriptional activator protein that functions as receptor for a flavonoid plant compound. This signaling induces the expression of a set of nod genes that produces several related Nod factors, substituted lipooligosaccharides. The Nod factors are then excreted and serve as signals sent from the bacterium to the plant. The plant responds with the development of a root nodule. The plant-derived flavonoid, as well as the rhizobial signal, must have distinct chemical structures which guarantee that only matching partners are brought together.
Collapse
Affiliation(s)
- M Göttfert
- Mikrobiologisches Institut, Eidgenössische Technische Hochschule Zürich, Switzerland
| |
Collapse
|
20
|
Rodriguez-Quiñones F, Judd AK, Sadowsky MJ, Liu RL, Cregan PB. Hyperreiterated DNA regions are conserved among Bradyrhizobium japonicum serocluster 123 strains. Appl Environ Microbiol 1992; 58:1878-85. [PMID: 1622264 PMCID: PMC195699 DOI: 10.1128/aem.58.6.1878-1885.1992] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We have identified and cloned two DNA regions which are highly reiterated in Bradyrhizobium japonicum serocluster 123 strains. While one of the reiterated DNA regions, pFR2503, is closely linked to the B. japonicum common and genotype-specific nodulation genes in strain USDA 424, the other, pMAP9, is located next to a Tn5 insertion site in a host-range extension mutant of B. japonicum USDA 438. The DNA cloned in pFR2503 and pMAP9 are reiterated 18 to 21 times, respectively, in the genomes of B. japonicum serocluster 123 strains. Gene probes from the reiterated regions share sequence homology, failed to hybridize (or hybridized poorly) to genomic DNA from other B. japonicum and Bradyrhizobium spp. strains, and did not hybridize to DNA from Rhizobium meliloti, Rhizobium fredii, Rhizobium leguminosarum biovars trifolii, phaseoli, and viceae, or Agrobacterium tumefacians. The restriction fragment length polymorphism hybridization profiles obtained by using these gene probes are useful for discriminating among serologically related B. japonicum serocluster 123 strains.
Collapse
Affiliation(s)
- F Rodriguez-Quiñones
- Soybean and Alfalfa Research Laboratory, U.S. Department of Agriculture, BARC-West, Beltsville, Maryland 20705
| | | | | | | | | |
Collapse
|
21
|
Bhagwat AA, Keister DL. Identification and cloning of Bradyrhizobium japonicum genes expressed strain selectively in soil and rhizosphere. Appl Environ Microbiol 1992; 58:1490-5. [PMID: 1377899 PMCID: PMC195630 DOI: 10.1128/aem.58.5.1490-1495.1992] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The growth of Bradyrhizobium japonicum USDA 110 and USDA 438 in soil extract-supplemented medium led to transcription of a large amount of DNA not expressed in basal medium. Strain USDA 438 was more competitive for the nodulation of soybean than strain USDA 110. To identify and isolate DNA regions which were expressed specifically in strain USDA 438 but not in strain USDA 110 in response to soil extract or soybean root exudate, we developed a subtractive RNA hybridization procedure. Several cosmid clones which showed strain-specific gene expression were isolated from a USDA 438 gene library. Two clones enhanced competitive nodulation when mobilized to USDA 110. The method described may be useful for identifying genes expressed in response to environmental stimuli or genes expressed differently in related microbial strains.
Collapse
Affiliation(s)
- A A Bhagwat
- Soybean and Alfalfa Research Laboratory, Agricultural Research Service, Beltsville, Maryland 20705-2350
| | | |
Collapse
|
22
|
Smit G, Puvanesarajah V, Carlson RW, Barbour WM, Stacey G. Bradyrhizobium japonicum nodD1 can be specifically induced by soybean flavonoids that do not induce the nodYABCSUIJ operon. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)48495-5] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
23
|
Bhagwat AA, Tully RE, Keister DL. Isolation and Characterization of a Competition-Defective
Bradyrhizobium japonicum
Mutant. Appl Environ Microbiol 1991; 57:3496-501. [PMID: 16348601 PMCID: PMC184002 DOI: 10.1128/aem.57.12.3496-3501.1991] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tn
5
mutagenesis was coupled with a competition assay to isolate mutants of
Bradyrhizobium japonicum
defective in competitive nodulation. A double selection procedure was used, screening first for altered extracellular polysaccharide production (nonmucoid colony morphology) and then for decreased competitive ability. One mutant, which was examined in detail, was deficient in acidic polysaccharide and lipopolysaccharide production. The wild-type DNA region corresponding to the Tn
5
insertion was isolated, mapped, and cloned. A 3.6-kb region, not identified previously as functioning in symbiosis, contained the gene(s) necessary for complementation of the mutation. The mutant was motile, grew normally on minimal medium, and formed nodules on soybean plants which fixed almost as much nitrogen as the wild type during symbiosis.
Collapse
Affiliation(s)
- A A Bhagwat
- Soybean and Alfalfa Research Laboratory, Agricultural Research Service, U.S. Department of Agriculture, Bldg. 011, HH-19, BARC-W, Beltsville, Maryland 20705-2350
| | | | | |
Collapse
|
24
|
Ebeling S, Kündig C, Hennecke H. Discovery of a rhizobial RNA that is essential for symbiotic root nodule development. J Bacteriol 1991; 173:6373-82. [PMID: 1717438 PMCID: PMC208969 DOI: 10.1128/jb.173.20.6373-6382.1991] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
All of the Azorhizobium, Bradyrhizobium, and Rhizobium genes known to be involved in the development of nitrogen-fixing legume root nodules are genes that code for proteins. Here we report the first exception to this rule: the sra gene; it was discovered during the genetic analysis of a Bradyrhizobium japonicum Tn5 mutant (strain 259) which had a severe deficiency in colonizing soybean nodules. A DNA region as small as 0.56 kb cloned from the parental wild type restored a wild-type phenotype in strain 259 by genetic complementation. The sra gene was located on this fragment, sequenced, and shown to be transcribed into a 213-nucleotide RNA. Results obtained with critical point mutations in the sra gene proved that the transcript was not translated into protein; rather, it appeared to function as an RNA molecule with a certain stem-and-loop secondary structure. We also detected an sra homolog in Rhizobium meliloti which, when cloned and transferred to B. japonicum mutant 259, fully restored symbiotic effectiveness in that strain. We propose several alternative functions for the sra gene product, of which that as a regulatory RNA for gene expression may be the most probable one.
Collapse
Affiliation(s)
- S Ebeling
- Mikrobiologisches Institut, Eidgenössische Technische Hochschule, Zurich, Switzerland
| | | | | |
Collapse
|
25
|
Wang SP, Stacey G. Studies of the Bradyrhizobium japonicum nodD1 promoter: a repeated structure for the nod box. J Bacteriol 1991; 173:3356-65. [PMID: 1675210 PMCID: PMC207946 DOI: 10.1128/jb.173.11.3356-3365.1991] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Induction of nod genes in Rhizobium and Bradyrhizobium species is dependent on the presence of plant-produced flavonoids, the NodD protein, and the cis-acting nod box promoter sequence. Although the nodD (nodD1) gene in Rhizobium species is constitutively expressed, nodD1 expression in Bradyrhizobium japonicum is inducible by isoflavones in a manner similar to that of the nodYABC operon. A consensus nod box sequence is found 5' of the nodYABC operon, whereas a presumptive, nod box-like sequence is found 5' of the nodD1 gene. As an initial step toward examining the nodD1 promoter, the transcriptional start sites of the nodD1 and nodYABC operons were determined and found to be 44 and 28 bp, respectively, downstream of their respective nod box sequences. A series of deletions of the nodD1 promoter were constructed and fused to the lacZ gene. Analysis of the activity of these deletions clearly showed that the divergent nod box sequence was essential for nodD1 induction by isoflavones or soybean seed extract. The induction of nodD1 expression requires NodD1, as tested in B. japonicum and in a heterologous system, Agrobacterium tumefaciens. On the basis of these data, we analyzed the published nod box sequences and propose a new consensus sequence composed of paired 9-bp repeats. Analysis of the nodD1 nod box and synthetic constructs of the nocYABC nod box indicate that at least two 9-bp repeats are required for NodD1-mediated induction. Furthermore, insertions between the paired repeats of the nodYABC nod box suggest that orientation of the repeats on opposite faces of the DNA helix is essential for maximum nod gene expression.
Collapse
Affiliation(s)
- S P Wang
- Center for Legume Research, University of Tennessee, Knoxville 37996-0845
| | | |
Collapse
|
26
|
Sadowsky MJ, Cregan PB, Gottfert M, Sharma A, Gerhold D, Rodriguez-Quinones F, Keyser HH, Hennecke H, Stacey G. The Bradyrhizobium japonicum nolA gene and its involvement in the genotype-specific nodulation of soybeans. Proc Natl Acad Sci U S A 1991; 88:637-41. [PMID: 1988958 PMCID: PMC50867 DOI: 10.1073/pnas.88.2.637] [Citation(s) in RCA: 99] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Several soybean genotypes have been identified which specifically exclude nodulation by members of Bradyrhizobium japonicum serocluster 123. We have identified and sequenced a DNA region from B. japonicum strain USDA 110 which is involved in genotype-specific nodulation of soybeans. This 2.3-kilobase region, cloned in pMJS12, allows B. japonicum serocluster 123 isolates to form nodules on plants of serogroup 123-restricting genotypes. The nodules, however, were ineffective for symbiotic nitrogen fixation. The nodulation-complementing region is located approximately 590 base pairs transcriptionally downstream from nodD2. The 5' end of pMJS12 contains a putative open reading frame (ORF) of 710 base pairs, termed nolA. Transposon Tn3-HoHo mutations only within the ORF abolished nodulation complementation. The N terminus of the predicted nolA gene product has strong similarity with the N terminus of MerR, the regulator of mercury resistance genes. Translational lacZ fusion experiments indicated that nolA was moderately induced by soybean seed extract and the isoflavone genistein. Restriction fragments that hybridize to pMJS12 were detected in genomic DNAs from both nodulation-restricted and -unrestricted strains.
Collapse
Affiliation(s)
- M J Sadowsky
- Soil Science Department, University of Minnesota, St. Paul 54108
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Vargas C, Martinez LJ, Megias M, Quinto C. Identification and cloning of nodulation genes and host specificity determinants of the broad host-range Rhizobium leguminosarum biovar phaseoli strain CIAT899. Mol Microbiol 1990; 4:1899-910. [PMID: 2082147 DOI: 10.1111/j.1365-2958.1990.tb02039.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Rhizobium leguminosarum biovar phaseoli type II strain CIAT899 nodulates a wide range of hosts: Phaseolus vulgaris (beans), Leucaena esculenta (leucaena) and Macroptilium atropurpureum (siratro). A nodulation region from the symbiotic plasmid has been isolated and characterized. This region, which is contained in the overlapping cosmid clones pCV38 and pCV117, is able to induce nodules in beans, leucaena and siratro roots when introduced in strains cured for the symbiotic plasmid, pSym. In addition, this cloned region extends the host range of Rhizobium meliloti and R. leguminosarum biovar (bv.) trifolii wild-type strains to nodulate beans. Analysis of constructed subclones indicates that a 6.4kb HindIII fragment contains the essential genes required for nodule induction on all three hosts. Rhizobium leguminosarum bv. phaseoli type I strain CE3 nodulates only beans. However, CE3 transconjugants harbouring plasmid pCV3802 (which hybridized to a nodD heterologous probe), were capable of eliciting nodules on leucaena and siratro roots. Our results suggest that the CIAT899 DNA region hybridizing with the R. meliloti nodD detector is involved in the extension of host specificity to promote nodule formation in P. vulgaris, L. esculenta and M. atropurpureum.
Collapse
Affiliation(s)
- C Vargas
- Departamento de Microbiología y Parasitologia, Universidad de Sevilla, Spain
| | | | | | | |
Collapse
|
28
|
Göttfert M, Grob P, Hennecke H. Proposed regulatory pathway encoded by the nodV and nodW genes, determinants of host specificity in Bradyrhizobium japonicum. Proc Natl Acad Sci U S A 1990; 87:2680-4. [PMID: 2320582 PMCID: PMC53754 DOI: 10.1073/pnas.87.7.2680] [Citation(s) in RCA: 94] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Bradyrhizobium japonicum is the root nodule endosymbiont of soybean (Glycine max), mung bean (Vigna radiata), cowpea (Vigna unguiculata), and Siratro (Macroptilium atropurpureum). We report the characteristics of a nodulation-gene region of B. japonicum that contributes only marginally to the bacterium's ability to nodulate soybean but is essential for the nodulation of the three alternative hosts. This DNA region consists of two open reading frames designated nodV and nodW. The predicted amino acid sequences of the NodV and NodW proteins suggest that they are members of the family of two-component regulatory systems, which supports the hypothesis that NodV responds to an environmental stimulus and, after signal transduction, NodW may be required to positively regulate the transcription of one or several unknown genes involved in the nodulation process. It seems likely that all host plants produce the necessary signal, whereas host specificity may be brought about by the product(s) of the gene(s) activated by NodW.
Collapse
Affiliation(s)
- M Göttfert
- Mikrobiologisches Institut, Eidgenössische Technische Hochschule, Zurich, Switzerland
| | | | | |
Collapse
|
29
|
Goethals K, Gao M, Tomekpe K, Van Montagu M, Holsters M. Common nodABC genes in Nod locus 1 of Azorhizobium caulinodans: nucleotide sequence and plant-inducible expression. MOLECULAR & GENERAL GENETICS : MGG 1989; 219:289-98. [PMID: 2615763 DOI: 10.1007/bf00261190] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Azorhizobium caulinodans strain ORS571 induces nitrogen-fixing nodules on roots and stem-located root primordia of Sesbania rostrata. Two essential Nod loci have been previously identified in the bacterial genome, one of which (Nod locus 1) shows weak homology with the common nodC gene of Rhizobium meliloti. Here we present the nucleotide sequence of this region and show that it contains three contiguous open reading frames (ORFA, ORFB and ORFC) that are related to the nodABC genes of Rhizobium and Bradyrhizobium species. ORFC is followed by a fourth (ORF4) and probably a fifth (ORF5) open reading frame. ORF4 may be analogous to the nodI gene of R. leguminosarum, whereas ORF5 could be similar to the rhizobial nodF genes. Coordinated expression of this set of five genes seems likely from the sequence organization. There is no typical nod promoter consensus sequence (nod box) in the region upstream of the first gene (ORFA) and there is no nodD-like gene. LacZ fusions constructed with ORFA, ORFB, ORFC, and ORF4 showed inducible beta-galactosidase expression in the presence of S. rostrata seedlings as well as around stem-located root primordia. Among a series of phenolic compounds tested, the flavanone naringenin was the most efficient inducer of the expression of this ORS571 nod gene cluster.
Collapse
Affiliation(s)
- K Goethals
- Laboratorium voor Genetica, Rijksuniversiteit Gent, Belgium
| | | | | | | | | |
Collapse
|