1
|
Govers SK, Campos M, Tyagi B, Laloux G, Jacobs-Wagner C. Apparent simplicity and emergent robustness in the control of the Escherichia coli cell cycle. Cell Syst 2024; 15:19-36.e5. [PMID: 38157847 DOI: 10.1016/j.cels.2023.12.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 06/15/2023] [Accepted: 12/01/2023] [Indexed: 01/03/2024]
Abstract
To examine how bacteria achieve robust cell proliferation across diverse conditions, we developed a method that quantifies 77 cell morphological, cell cycle, and growth phenotypes of a fluorescently labeled Escherichia coli strain and >800 gene deletion derivatives under multiple nutrient conditions. This approach revealed extensive phenotypic plasticity and deviating mutant phenotypes were often nutrient dependent. From this broad phenotypic landscape emerged simple and robust unifying rules (laws) that connect DNA replication initiation, nucleoid segregation, FtsZ ring formation, and cell constriction to specific aspects of cell size (volume, length, or added length) at the population level. Furthermore, completion of cell division followed the initiation of cell constriction after a constant time delay across strains and nutrient conditions, identifying cell constriction as a key control point for cell size determination. Our work provides a population-level description of the governing principles by which E. coli integrates cell cycle processes and growth rate with cell size to achieve its robust proliferative capability. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Sander K Govers
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; de Duve Institute, UCLouvain, Brussels, Belgium; Department of Biology, KU Leuven, Leuven, Belgium
| | - Manuel Campos
- Centre de Biologie Intégrative de Toulouse, Laboratoire de Microbiologie et Génétique Moléculaires, Université de Toulouse, Toulouse, France
| | - Bhavyaa Tyagi
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; Department of Biology, Stanford University, Stanford, CA 94305, USA
| | | | - Christine Jacobs-Wagner
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; Department of Biology, Stanford University, Stanford, CA 94305, USA; Sarafan Chemistry, Engineering Medicine for Human Health Institute, Stanford University, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
2
|
Cao Q, Huang W, Zhang Z, Chu P, Wei T, Zheng H, Liu C. The Quantification of Bacterial Cell Size: Discrepancies Arise from Varied Quantification Methods. Life (Basel) 2023; 13:1246. [PMID: 37374027 PMCID: PMC10302572 DOI: 10.3390/life13061246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/21/2023] [Accepted: 05/21/2023] [Indexed: 06/29/2023] Open
Abstract
The robust regulation of the cell cycle is critical for the survival and proliferation of bacteria. To gain a comprehensive understanding of the mechanisms regulating the bacterial cell cycle, it is essential to accurately quantify cell-cycle-related parameters and to uncover quantitative relationships. In this paper, we demonstrate that the quantification of cell size parameters using microscopic images can be influenced by software and by the parameter settings used. Remarkably, even if the consistent use of a particular software and specific parameter settings is maintained throughout a study, the type of software and the parameter settings can significantly impact the validation of quantitative relationships, such as the constant-initiation-mass hypothesis. Given these inherent characteristics of microscopic image-based quantification methods, it is recommended that conclusions be cross-validated using independent methods, especially when the conclusions are associated with cell size parameters that were obtained under different conditions. To this end, we presented a flexible workflow for simultaneously quantifying multiple bacterial cell-cycle-related parameters using microscope-independent methods.
Collapse
Affiliation(s)
- Qian’andong Cao
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenqi Huang
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zheng Zhang
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pan Chu
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ting Wei
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hai Zheng
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenli Liu
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
General quantitative relations linking cell growth and the cell cycle in Escherichia coli. Nat Microbiol 2020; 5:995-1001. [PMID: 32424336 DOI: 10.1038/s41564-020-0717-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 04/01/2020] [Indexed: 01/15/2023]
Abstract
Growth laws emerging from studies of cell populations provide essential constraints on the global mechanisms that coordinate cell growth1-3. The foundation of bacterial cell cycle studies relies on two interconnected dogmas that were proposed more than 50 years ago-the Schaechter-Maaloe-Kjeldgaard growth law that relates cell mass to growth rate1 and Donachie's hypothesis of a growth-rate-independent initiation mass4. These dogmas spurred many efforts to understand their molecular bases and physiological consequences5-14. Although they are generally accepted in the fast-growth regime, that is, for doubling times below 1 h, extension of these dogmas to the slow-growth regime has not been consistently achieved. Here, through a quantitative physiological study of Escherichia coli cell cycles over an extensive range of growth rates, we report that neither dogma holds in either the slow- or fast-growth regime. In their stead, linear relations between the cell mass and the rate of chromosome replication-segregation were found across the range of growth rates. These relations led us to propose an integral-threshold model in which the cell cycle is controlled by a licensing process, the rate of which is related in a simple way to chromosomal dynamics. These results provide a quantitative basis for predictive understanding of cell growth-cell cycle relationships.
Collapse
|
4
|
Jun S, Si F, Pugatch R, Scott M. Fundamental principles in bacterial physiology-history, recent progress, and the future with focus on cell size control: a review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2018; 81:056601. [PMID: 29313526 PMCID: PMC5897229 DOI: 10.1088/1361-6633/aaa628] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Bacterial physiology is a branch of biology that aims to understand overarching principles of cellular reproduction. Many important issues in bacterial physiology are inherently quantitative, and major contributors to the field have often brought together tools and ways of thinking from multiple disciplines. This article presents a comprehensive overview of major ideas and approaches developed since the early 20th century for anyone who is interested in the fundamental problems in bacterial physiology. This article is divided into two parts. In the first part (sections 1-3), we review the first 'golden era' of bacterial physiology from the 1940s to early 1970s and provide a complete list of major references from that period. In the second part (sections 4-7), we explain how the pioneering work from the first golden era has influenced various rediscoveries of general quantitative principles and significant further development in modern bacterial physiology. Specifically, section 4 presents the history and current progress of the 'adder' principle of cell size homeostasis. Section 5 discusses the implications of coarse-graining the cellular protein composition, and how the coarse-grained proteome 'sectors' re-balance under different growth conditions. Section 6 focuses on physiological invariants, and explains how they are the key to understanding the coordination between growth and the cell cycle underlying cell size control in steady-state growth. Section 7 overviews how the temporal organization of all the internal processes enables balanced growth. In the final section 8, we conclude by discussing the remaining challenges for the future in the field.
Collapse
Affiliation(s)
- Suckjoon Jun
- Department of Physics, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, United States of America. Section of Molecular Biology, Division of Biology, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, United States of America
| | | | | | | |
Collapse
|
5
|
Step by Step, Cell by Cell: Quantification of the Bacterial Cell Cycle. Trends Microbiol 2017; 25:250-256. [DOI: 10.1016/j.tim.2016.12.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/09/2016] [Accepted: 12/12/2016] [Indexed: 11/22/2022]
|
6
|
Zaritsky A, Woldringh CL. Chromosome replication, cell growth, division and shape: a personal perspective. Front Microbiol 2015; 6:756. [PMID: 26284044 PMCID: PMC4522554 DOI: 10.3389/fmicb.2015.00756] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 07/10/2015] [Indexed: 11/13/2022] Open
Abstract
The origins of Molecular Biology and Bacterial Physiology are reviewed, from our personal standpoints, emphasizing the coupling between bacterial growth, chromosome replication and cell division, dimensions and shape. Current knowledge is discussed with historical perspective, summarizing past and present achievements and enlightening ideas for future studies. An interactive simulation program of the bacterial cell division cycle (BCD), described as "The Central Dogma in Bacteriology," is briefly represented. The coupled process of transcription/translation of genes encoding membrane proteins and insertion into the membrane (so-called transertion) is invoked as the functional relationship between the only two unique macromolecules in the cell, DNA and peptidoglycan embodying the nucleoid and the sacculus respectively. We envision that the total amount of DNA associated with the replication terminus, so called "nucleoid complexity," is directly related to cell size and shape through the transertion process. Accordingly, the primary signal for cell division transmitted by DNA dynamics (replication, transcription and segregation) to the peptidoglycan biosynthetic machinery is of a physico-chemical nature, e.g., stress in the plasma membrane, relieving nucleoid occlusion in the cell's center hence enabling the divisome to assemble and function between segregated daughter nucleoids.
Collapse
Affiliation(s)
- Arieh Zaritsky
- Faculty of Natural Sciences, Ben-Gurion University of the Negev, Be’er-Sheva, Israel
| | - Conrad L. Woldringh
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
7
|
Zaritsky A, Wang P, Vischer NOE. Instructive simulation of the bacterial cell division cycle. Microbiology (Reading) 2011; 157:1876-1885. [DOI: 10.1099/mic.0.049403-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The coupling between chromosome replication and cell division includes temporal and spatial elements. In bacteria, these have globally been resolved during the last 40 years, but their full details and action mechanisms are still under intensive study. The physiology of growth and the cell cycle are reviewed in the light of an established dogma that has formed a framework for development of new ideas, as exemplified here, using the Cell Cycle Simulation (CCSim) program. CCSim, described here in detail for the first time, employs four parameters related to time (replication, division and inter-division) and size (cell mass at replication initiation) that together are sufficient to describe bacterial cells under various conditions and states, which can be manipulated environmentally and genetically. Testing the predictions of CCSim by analysis of time-lapse micrographs of Escherichia coli during designed manipulations of the rate of DNA replication identified aspects of both coupling elements. Enhanced frequencies of cell division were observed following an interval of reduced DNA replication rate, consistent with the prediction of a minimum possible distance between successive replisomes (an eclipse). As a corollary, the notion that cell poles are not always inert was confirmed by observed placement of division planes at perpendicular planes in monstrous and cuboidal cells containing multiple, segregating nucleoids.
Collapse
Affiliation(s)
- Arieh Zaritsky
- Life Sciences Department, Ben-Gurion University of the Negev, POB 653, Be'er-Sheva 84105, Israel
| | - Ping Wang
- FAS Center for Systems Biology, Harvard University, 52 Oxford St, Cambridge, MA 02138, USA
| | - Norbert O. E. Vischer
- Molecular Cytology, Faculty of Science, University of Amsterdam, NL1098 XH, The Netherlands
| |
Collapse
|
8
|
Norris V. Speculations on the initiation of chromosome replication in Escherichia coli: the dualism hypothesis. Med Hypotheses 2011; 76:706-16. [PMID: 21349650 DOI: 10.1016/j.mehy.2011.02.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2010] [Revised: 01/23/2011] [Accepted: 02/01/2011] [Indexed: 10/18/2022]
Abstract
The exact nature of the mechanism that triggers initiation of chromosome replication in the best understood of all organisms, Escherichia coli, remains mysterious. Here, I suggest that this mechanism evolved in response to the problems that arise if chromosome replication does not occur. E. coli is now known to be highly structured. This leads me to propose a mechanism for initiation of replication based on the dynamics of large assemblies of molecules and macromolecules termed hyperstructures. In this proposal, hyperstructures and their constituents are put into two classes, non-equilibrium and equilibrium, that spontaneously separate and that are appropriate for life in either good or bad conditions. Maintaining the right ratio(s) of non-equilibrium to equilibrium hyperstructures is therefore a major challenge for cells. I propose that this maintenance entails a major transfer of material from equilibrium to non-equilibrium hyperstructures once per cell and I further propose that this transfer times the cell cycle. More specifically, I speculate that the dialogue between hyperstructures involves the structuring of water and the condensation of cations and that one of the outcomes of ion condensation on ribosomal hyperstructures and decondensation from the origin hyperstructure is the separation of strands at oriC responsible for triggering initiation of replication. The dualism hypothesis that comes out of these speculations may help integrate models for initiation of replication, chromosome segregation and cell division with the 'prebiotic ecology' scenario of the origins of life.
Collapse
Affiliation(s)
- Vic Norris
- AMMIS Laboratory, EA 3829, Department of Biology, University of Rouen, 76821 Mont Saint Aignan, France.
| |
Collapse
|
9
|
Zaritsky A, Woldringh CL, Einav M, Alexeeva S. Use of thymine limitation and thymine starvation to study bacterial physiology and cytology. J Bacteriol 2006; 188:1667-79. [PMID: 16484178 PMCID: PMC1426543 DOI: 10.1128/jb.188.5.1667-1679.2006] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Arieh Zaritsky
- Department of Life Sciences, Ben-Gurion University of the Negev, POB 653, Be'er-Sheva 84105, Israel.
| | | | | | | |
Collapse
|
10
|
Abstract
The harmonious growth and cell-to-cell uniformity of steady-state bacterial populations indicate the existence of a well-regulated cell cycle, responding to a set of internal signals. In Escherichia coli, the key events of this cycle are the initiation of DNA replication, nucleoid segregation and the initiation of cell division. The replication initiator is the DnaA protein. In nucleoid segregation, the MukB protein, required for proper partitioning, may be a member of the myosin-kinesin superfamily of mechanoenzymes. In cell division, the FtsZ protein has a tubulin motif, is a GTPase and polymerizes in a ring around midcell during septation; the FtsA protein has an actin-like structure. The nature of the internal signals triggering these events is not known but candidates include cell mass, the superhelical density of the chromosome and the concentration of two regulatory nucleotides, cyclic AMP and ppGpp. The involvement of cytoskeletal-like proteins in key cycle events encourages the notion of a fundamental biological unity in cell cycle regulation in all organisms.
Collapse
Affiliation(s)
- D Vinella
- Institut Jacques Monod, CNRS, Université Paris 7, France
| | | |
Collapse
|
11
|
Zaritsky A, Helmstetter CE. Rate maintenance of cell division in Escherichia coli B/r: analysis of a simple nutritional shift-down. J Bacteriol 1992; 174:8152-5. [PMID: 1459964 PMCID: PMC207556 DOI: 10.1128/jb.174.24.8152-8155.1992] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A competitive (nonmetabolizable) inhibitor of glucose uptake, alpha-methylglucoside, was used to limit the growth of Escherichia coli. Cell division during such a nutritional shift-down was studied in batch cultures and with the "baby-machine" technique. Following a brief delay, the rate of division was maintained for 60 to 70 min in batch cultures and for an extended period in the baby machine. Decreases in cell size were due, in part, to a possible reduction in the mass per chromosome origin at the time of replication initiation and a shorter time interval between initiation and the subsequent division. These unusual findings suggest that this method for abrupt change in growth rate without modifying repression patterns is useful for studying the control of various aspects of the bacterial cell.
Collapse
Affiliation(s)
- A Zaritsky
- Department of Life Sciences, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
| | | |
Collapse
|
12
|
Gray KM, Ruby EG. Unbalanced growth as a normal feature of development of Bdellovibrio bacteriovorus. Arch Microbiol 1989; 152:420-4. [PMID: 2818131 DOI: 10.1007/bf00446922] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In this study we have investigated the rates and spatial patterns of chromosome replication and cell elongation during the growth phase of wild-type facultatively prey-independent mutant strains of Bdellovibrio bacteriovorus. For the facultatively prey-independent mutants, the total DNA content of synchronously growing cultures was found to increase exponentially, as the multiple chromosomes within each filamentous cell replicated simultaneously. Cell mass, measured as total cellular protein, also increased exponentially during this period, apparently by means of multiple elongation sites along the filament wall. The relative rates of DNA and protein synthesis were unbalanced during growth, however, with the cellular concentration of DNA increasing slightly faster than that of protein. The original cellular DNA: protein ratio was restored in the progeny cells by continued protein synthesis during the septation period that follows the termination of DNA replication. Because of technical problems, these experiments could not be conducted on the wild-type cells, but similar results are assumed. This unusual pattern of unbalanced growth may represent an adaptation by bdellovibrios to maximize their progeny yield from the determinate amount of substrate available within a given prey cell.
Collapse
Affiliation(s)
- K M Gray
- Department of Microbiology, University of Iowa, Iowa City 52242
| | | |
Collapse
|
13
|
Képès F, Joseleau-Petit D, Legros M, Képès A. Early increases in the frequency of DNA initiations and of phospholipid synthesis discontinuities after nutritional shift-up in Escherichia coli. EUROPEAN JOURNAL OF BIOCHEMISTRY 1987; 164:205-11. [PMID: 3549302 DOI: 10.1111/j.1432-1033.1987.tb11012.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cultures of Escherichia coli (strains ML30 and K12 AB1157), synchronized by repeated phosphate starvation, were submitted to nutritional shifts-up at various cell ages. The progression of the replication forks was assessed by DNA-DNA hybridization of pulse-labelled chromosomal DNA with plasmid DNA probes containing specific chromosomal sequences. The rate of phospholipid synthesis and its cyclic discontinuities were measured by continuous and pulse labelling with palmitate. The DNA-DNA hybridization experiments showed that a shift-up induces a burst of initiation from the oriC region. These hybridization results, taken together with older data from the literature, suggest that most DNA initiations belonging to this burst are not followed by complete replication. Following a shift-up, the rate of phospholipid synthesis is maintained for 13-20 min, depending on cell age at shift-up, then doubles. The new steady-state rate of phospholipid synthesis is reached through a series of three doublings, while the cell mass doubles approximately twice. This discrepancy brings the rate of phospholipid synthesis per mass unit to its steady-state postshift value.
Collapse
|
14
|
Margalit H, Rosenberger RF, Grover NB. Initiation of DNA replication in bacteria: analysis of an autorepressor control model. J Theor Biol 1984; 111:183-99. [PMID: 6392751 DOI: 10.1016/s0022-5193(84)80204-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The precise mechanism by which the initiation of chromosome replication in bacteria is controlled has not yet been established, and several theoretical models have been proposed in an attempt to provide a conceptual framework for the accumulated experimental evidence. The present article contains a detailed quantitative analysis, using computer simulation, of the control model first put forward schematically by Sompayrac & Maaløe in 1973, in which a single operon codes for both the initiator protein and an autorepressor. By comparing the predictions of the model with what is known about the physiology and molecular biology of Escherichia coli under different growth conditions, we are able to delineate the characteristics that such a control system would need to possess in order to be capable of regulating chromosome replication: the control operon has to lie fairly near the origin of replication and contain a moderate to strong promoter and an operator that competes for its repressor with other equally specific binding sites along the chromosome in an interaction that is somewhat weaker than usual; in addition, the messenger molecules encoded for by the repressor gene must have a relatively ineffective ribosome binding site and not too long a halflife.
Collapse
|
15
|
Madar R, Zaritsky A. Bacterial adaptation: Macromolecular biosynthesis during diauxic growth of Escherichia coli. FEMS Microbiol Lett 1983. [DOI: 10.1111/j.1574-6968.1983.tb00560.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|