1
|
Boynton PJ. The ecology of killer yeasts: Interference competition in natural habitats. Yeast 2019; 36:473-485. [PMID: 31050852 DOI: 10.1002/yea.3398] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 04/22/2019] [Accepted: 04/23/2019] [Indexed: 12/31/2022] Open
Abstract
Killer yeasts are ubiquitous in the environment: They have been found in diverse habitats ranging from ocean sediment to decaying cacti to insect bodies and on all continents including Antarctica. However, environmental killer yeasts are poorly studied compared with laboratory and domesticated killer yeasts. Killer yeasts secrete so-called killer toxins that inhibit nearby sensitive yeasts, and the toxins are frequently assumed to be tools for interference competition in diverse yeast communities. The diversity and ubiquity of killer yeasts imply that interference competition is crucial for shaping yeast communities. Additionally, these toxins may have ecological functions beyond use in interference competition. This review introduces readers to killer yeasts in environmental systems, with a focus on what is and is not known about their ecology and evolution. It also explores how results from experimental killer systems in laboratories can be extended to understand how competitive strategies shape yeast communities in nature. Overall, killer yeasts are likely to occur everywhere yeasts are found, and the killer phenotype has the potential to radically shape yeast diversity in nature.
Collapse
Affiliation(s)
- Primrose J Boynton
- Max-Planck Institute for Evolutionary Biology, Environmental Genomics Group, Plön, Germany
| |
Collapse
|
2
|
Identification and characterization of yeasts isolated from the South Shetland Islands and the Antarctic Peninsula. Polar Biol 2016. [DOI: 10.1007/s00300-016-1988-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
3
|
Barahona S, Yuivar Y, Socias G, Alcaíno J, Cifuentes V, Baeza M. Identification and characterization of yeasts isolated from sedimentary rocks of Union Glacier at the Antarctica. Extremophiles 2016; 20:479-91. [PMID: 27215207 DOI: 10.1007/s00792-016-0838-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 05/15/2016] [Indexed: 10/21/2022]
Abstract
The study of the yeasts that inhabit cold environments, such as Antarctica, is an active field of investigation oriented toward understanding their ecological roles in these ecosystems. In a great part, the interest in cold-adapted yeasts is due to several industrial and biotechnological applications that have been described for them. The aim of this work was to isolate and identify yeasts from sedimentary rock samples collected at the Union Glacier, Antarctica. Furthermore, the yeasts were physiologically characterized, including the production of metabolites of biotechnological interest. The yeasts isolated that were identified at the molecular level belonged to genera Collophora (1 isolate), Cryptococcus (2 isolates), Sporidiobolus (4 isolates), Sporobolomyces (1 isolate) and Torrubiella (2 isolates). The majority of yeasts were basidiomycetous and psychrotolerant. By cross-test assays for anti-yeast activity, it was determined that Collophora sp., Sporidiobolus salmonicolor, and Sporobolomyces roseus secreted a protein factor that kills Sporidiobolus metaroseus. The colored yeasts Sp. salmonicolor, Sp. metaroseus and Collophora sp. produced several carotenoid pigments that were identified as 2,3 dihydroxy-γ-carotene, -carotene, 4-ketotorulene, torulene β-cryptoxanthin and spirilloxanthin. Concerning analysis of mycosporines, these metabolites were only found in the yeasts Torrubiella sp. and Cryptococcus sp. T11-10-1. Furthermore, the yeasts were evaluated for the production of extracellular hydrolytic activities. Of the twelve activities analyzed, alkaline phosphatase, invertase, gelatinase, cellulase, amylase, and protease enzyme activities were detected. The yeasts Cryptococcus sp. T11-10-1 and Sporidiobolus metaroseus showed the highest number of different enzyme activities.
Collapse
Affiliation(s)
- Salvador Barahona
- Laboratorio de Genética, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago, Chile
| | - Yassef Yuivar
- Laboratorio de Genética, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago, Chile
| | - Gabriel Socias
- Laboratorio de Genética, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago, Chile
| | - Jennifer Alcaíno
- Laboratorio de Genética, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago, Chile
| | - Víctor Cifuentes
- Laboratorio de Genética, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago, Chile
| | - Marcelo Baeza
- Laboratorio de Genética, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago, Chile.
| |
Collapse
|
4
|
Polonelli L, Beninati C, Teti G, Felici F, Ciociola T, Giovati L, Sperindè M, Passo CL, Pernice I, Domina M, Arigò M, Papasergi S, Mancuso G, Conti S, Magliani W. Yeast killer toxin-like candidacidal Ab6 antibodies elicited through the manipulation of the idiotypic cascade. PLoS One 2014; 9:e105727. [PMID: 25162681 PMCID: PMC4146504 DOI: 10.1371/journal.pone.0105727] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 07/23/2014] [Indexed: 12/11/2022] Open
Abstract
A mouse anti-anti-anti-idiotypic (Id) IgM monoclonal antibody (mAb K20, Ab4), functionally mimicking a Wyckerhamomyces anomalus (Pichia anomala) killer toxin (KT) characterized by fungicidal activity against yeasts presenting specific cell wall receptors (KTR) mainly constituted by β-1,3-glucan, was produced from animals presenting anti-KT Abs (Ab3) following immunization with a rat IgM anti-Id KT-like mAb (mAb K10, Ab2). MAb K10 was produced by immunization with a KT-neutralizing mAb (mAb KT4, Ab1) bearing the internal image of KTR. MAb K20, likewise mAb K10, proved to be fungicidal in vitro against KT-sensitive Candida albicans cells, an activity neutralized by mAb KT4, and was capable of binding to β-1,3-glucan. MAb K20 and mAb K10 competed with each other and with KT for binding to C. albicans KTR. MAb K20 was used to identify peptide mimics of KTR by the selection of phage clones from random peptide phage display libraries. Using this strategy, four peptides (TK 1-4) were selected and used as immunogen in mice in the form of either keyhole limpet hemocyanin (KLH) conjugates or peptide-encoding minigenes. Peptide and DNA immunization could induce serum Abs characterized by candidacidal activity, which was inhibited by laminarin, a soluble β-1,3-glucan, but not by pustulan, a β-1,6-glucan. These findings show that the idiotypic cascade can not only overcome the barrier of animal species but also the nature of immunogens and the type of technology adopted.
Collapse
Affiliation(s)
- Luciano Polonelli
- Dipartimento di Scienze Biomediche, Biotecnologiche e Traslazionali, Unità di Microbiologia e Virologia, Università degli Studi di Parma, Parma, Italy
| | - Concetta Beninati
- Metchnikoff Laboratory, Dipartimento di Scienze Pediatriche, Ginecologiche, Microbiologiche e Biomediche, Università degli Studi di Messina, Messina, Italy
| | - Giuseppe Teti
- Metchnikoff Laboratory, Dipartimento di Scienze Pediatriche, Ginecologiche, Microbiologiche e Biomediche, Università degli Studi di Messina, Messina, Italy
| | - Franco Felici
- Dipartimento di Bioscienze e Territorio (DiBT), Università degli Studi del Molise, Contrada Fonte Lappone, Pesche (IS), Italy
| | - Tecla Ciociola
- Dipartimento di Scienze Biomediche, Biotecnologiche e Traslazionali, Unità di Microbiologia e Virologia, Università degli Studi di Parma, Parma, Italy
| | - Laura Giovati
- Dipartimento di Scienze Biomediche, Biotecnologiche e Traslazionali, Unità di Microbiologia e Virologia, Università degli Studi di Parma, Parma, Italy
| | - Martina Sperindè
- Dipartimento di Scienze Biomediche, Biotecnologiche e Traslazionali, Unità di Microbiologia e Virologia, Università degli Studi di Parma, Parma, Italy
| | - Carla Lo Passo
- Dipartimento di Scienze Biologiche ed Ambientali, Università degli Studi di Messina, Messina, Italy
| | - Ida Pernice
- Dipartimento di Scienze Biologiche ed Ambientali, Università degli Studi di Messina, Messina, Italy
| | - Maria Domina
- Metchnikoff Laboratory, Dipartimento di Scienze Pediatriche, Ginecologiche, Microbiologiche e Biomediche, Università degli Studi di Messina, Messina, Italy
| | - Milena Arigò
- Metchnikoff Laboratory, Dipartimento di Scienze Pediatriche, Ginecologiche, Microbiologiche e Biomediche, Università degli Studi di Messina, Messina, Italy
| | - Salvatore Papasergi
- Metchnikoff Laboratory, Dipartimento di Scienze Pediatriche, Ginecologiche, Microbiologiche e Biomediche, Università degli Studi di Messina, Messina, Italy
| | - Giuseppe Mancuso
- Metchnikoff Laboratory, Dipartimento di Scienze Pediatriche, Ginecologiche, Microbiologiche e Biomediche, Università degli Studi di Messina, Messina, Italy
| | - Stefania Conti
- Dipartimento di Scienze Biomediche, Biotecnologiche e Traslazionali, Unità di Microbiologia e Virologia, Università degli Studi di Parma, Parma, Italy
| | - Walter Magliani
- Dipartimento di Scienze Biomediche, Biotecnologiche e Traslazionali, Unità di Microbiologia e Virologia, Università degli Studi di Parma, Parma, Italy
| |
Collapse
|
5
|
Robledo-Leal E, Elizondo-Zertuche M, Villarreal-Treviño L, Treviño-Rangel RDJ, García-Maldonado N, Adame-Rodríguez JM, González GM. Killer behavior within the Candida parapsilosis complex. Folia Microbiol (Praha) 2014; 59:503-6. [DOI: 10.1007/s12223-014-0327-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 05/25/2014] [Indexed: 11/28/2022]
|
6
|
The inter-generic fungicidal activity of Xanthophyllomyces dendrorhous. J Microbiol 2011; 48:822-8. [PMID: 21221941 DOI: 10.1007/s12275-010-0180-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Accepted: 08/22/2010] [Indexed: 10/18/2022]
Abstract
In this study, the existence of intra-specific and inter-generic fungicidal activity in Xanthophyllomyces dendrorhous and Phaffia rhodozyma strains isolated from different regions of the earth was examined. Assays were performed under several culture conditions, showing that all the analyzed X. dendrorhous and P. rhodozyma strains have killing activity against Kloeckera apiculata, Rhodotorula sloffiae, and R. minuta. This activity was greater in rich media at a pH from 4.6 to 5.0. Extracellular protein extracts with fungicidal activity were obtained from cultures of all strains, and their characterization suggested that a protein of 33 kDa is the antifungal factor. According to peptide mass fingerprinting and an analysis of the results with the MASCOT search engine, this protein was identified as an aspartic protease. Additionally, extrachromosomal double-stranded DNA elements (dsDNAs) were observed in all X. dendrorhous and P. rhodozyma strains. Although there is a high variability, two dsDNAs of 5.4 and 6.8 kb are present in all strains.
Collapse
|
7
|
Buzzini P, Turchetti B, Vaughan-Martini AE. The use of killer sensitivity patterns for biotyping yeast strains: the state of the art, potentialities and limitations. FEMS Yeast Res 2007; 7:749-60. [PMID: 17425671 DOI: 10.1111/j.1567-1364.2007.00238.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
In recent years molecular techniques have been the most useful tools for the unequivocal identification of undetermined strains at the species level. In many instances, however, a further discrimination at the strain level (biotyping) is required, such as during epidemiological investigations, in which the distribution of pathogenic microorganisms is studied, and for patent protection purposes. Although molecular methods are routinely used also for yeast biotyping, several nonmolecular techniques have been proposed. One of these, the determination of the killer sensitivity pattern (KSP) towards a panel of selected killer toxins has proven to be a good auxiliary method. Despite the plethora of studies published, the potential and limitations of the determination of KSPs have never been critically evaluated. In this review the use of this nonmolecular technique as a biotyping tool is discussed and compared with some currently used DNA-based procedures. In addition, methodological, mechanistic and ecological implications are evaluated.
Collapse
Affiliation(s)
- Pietro Buzzini
- Dipartimento di Biologia Vegetale e Biotecnologie Agroambientali, Sezione di Microbiologia Applicata, University of Perugia, Perugia, Italy.
| | | | | |
Collapse
|
8
|
Manfredi M, McCullough MJ, Conti S, Polonelli L, Vescovi P, Al-Karaawi ZM, Porter SR. In vitro activity of a monoclonal killer anti-idiotypic antibody and a synthetic killer peptide against oral isolates of Candida spp. differently susceptible to conventional antifungals. ACTA ACUST UNITED AC 2005; 20:226-32. [PMID: 15943767 DOI: 10.1111/j.1399-302x.2005.00217.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND/AIMS A monoclonal killer anti-idiotypic antibody (mAbK10) and a synthetic killer peptide, acting as internal images of a microbicidal, wide-spectrum yeast killer toxin (KT) have been recently shown to express candidacidal in vitro and an in vivo therapeutic activity against experimental mucosal and systemic candidosis models caused by a reference strain of Candida albicans (10S). MATERIAL AND METHODS The in vitro candidacidal activity of mAbK10 and synthetic killer peptide was compared using a colony forming unit assay against a large number of isolates of different Candida spp., obtained from oral saliva of adult diabetic (type 1 and 2) and nondiabetic subjects from Parma (Italy) and London (UK). RESULTS Both the KT-mimics exerted a strong dose-dependent candidacidal activity, probably mediated by the interaction with beta-glucan KT receptors on target yeast cells, against all the tested strains, regardless of their species and pattern of resistance to conventional antifungal agents. CONCLUSIONS These observations open new perspectives in the design and production of candidacidal compounds whose mechanism reflects that exerted in nature by killer yeasts.
Collapse
Affiliation(s)
- M Manfredi
- Oral Medicine, Division of Infection and Immunity, Eastman Dental Institute, UCL, University of London, UK
| | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
The development of a useful Candida vaccine is a distinct possibility despite the fact that individuals with a lifetime of commensal sensitization do not develop sterile immunity to the organism. An effective Candida vaccine would be invaluable in preventing hematogenously disseminated candidiasis, as well as mucocutaneous disease. This review is a discussion of our current understanding of the interplay between commensal and pathogenic forms of Candida albicans and approaches toward active and passive immunoprevention against candidiasis.
Collapse
Affiliation(s)
- A Brian Mochon
- Department of Microbiology and Immunology, Tulane University Health Sciences Center, New Orleans, Louisiana, USA.
| | | |
Collapse
|
10
|
Polonelli L, Magliani W, Conti S, Bracci L, Lozzi L, Neri P, Adriani D, De Bernardis F, Cassone A. Therapeutic activity of an engineered synthetic killer antiidiotypic antibody fragment against experimental mucosal and systemic candidiasis. Infect Immun 2003; 71:6205-12. [PMID: 14573638 PMCID: PMC219587 DOI: 10.1128/iai.71.11.6205-6212.2003] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Peptides derived from the sequence of a single-chain, recombinant, antiidiotypic antibody (IdAb; KT-scFv) acting as a functional internal image of a microbicidal, wide-spectrum yeast killer toxin (KT) were synthesized and studied for their antimicrobial activity by using the KT-susceptible Candida albicans as model organism. A decapeptide containing the first three amino acids (SAS) of the light chain CDR1 was selected and optimized by alanine replacement of a single residue. This peptide exerted a strong candidacidal activity in vitro, with a 50% inhibitory concentration of 0.056 microM, and was therefore designated killer peptide (KP). Its activity was neutralized by laminarin, a beta1-3 glucan molecule, but not by pustulan, a beta1-6 glucan molecule. KP also competed with the binding of a KT-like monoclonal IdAb to germinating cells of the fungus. In a rat model of vaginal candidiasis, local, postchallenge administration of KP was efficacious in rapidly abating infections caused by fluconazole-susceptible or -resistant C. albicans strains. In systemic infection of BALB/c or SCID mice preinfected intravenously with a lethal fungal load, KP caused a highly significant prolongation of the median survival time, with >80% of the animals still surviving after >60 days, whereas >90% of control mice died within 3 to 5 days. KP is therefore the first engineered peptide derived from a recombinant IdAb retaining KT microbicidal activity, probably through the interaction with the beta-glucan KT receptor on target microbial cells.
Collapse
Affiliation(s)
- Luciano Polonelli
- Sezione di Microbiologia, Dipartimento di Patologia e Medicina di Laboratorio, Università degli Studi di Parma, Parma, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Conti S, Magliani W, Gerloni M, Salati A, Dieci E, Arseni S, Fisicaro P, Polonelli L. A transphyletic anti-infectious control strategy based on the killer phenomenon. FEMS IMMUNOLOGY AND MEDICAL MICROBIOLOGY 1998; 22:151-61. [PMID: 9792074 DOI: 10.1111/j.1574-695x.1998.tb01200.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A strategy for the prevention and control of candidiasis, pneumocystosis, and tuberculosis, based on the idiotypic network of the yeast killer effect has been envisaged. Anti-idiotypic antibodies representing the internal image of a candidacidal, pneumocysticidal, and mycobactericidal killer toxin from Pichia anomala and idiotypes of killer toxin-neutralizing monoclonal antibodies mimicking the specific cell wall receptor of sensitive microorganisms might provide a unique approach for engineering innovative antibiotics and vaccines active against taxonomically unrelated pathogenic microorganisms. The rationale of the strategy relies on a phenomenon of microbial competition which has been mutated by the immune system in the response to natural infections.
Collapse
Affiliation(s)
- S Conti
- Istituto di Microbiologia, Facoltà di Medicina e Chirugia, Università degli Studi di Parma, Italy
| | | | | | | | | | | | | | | |
Collapse
|
12
|
MATHEWS HL, CONTI S, WITEK-JANUSEK L, POLONELLI L. Effect of Pichia anomala killer toxin on Candida albicans. Med Mycol 1998. [DOI: 10.1046/j.1365-280x.1998.00138.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
13
|
Conti S, Magliani W, Fisicaro P, Dieci E, Arseni S, Salati A, Polonelli L. Killer antibodies in fungal infections. RESEARCH IN IMMUNOLOGY 1998; 149:334-43; discussion 523. [PMID: 9720951 DOI: 10.1016/s0923-2494(98)80757-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- S Conti
- Istituto di Microbiologia, Facoltà di Medicina e Chirurgia, Università degli Studi di Parma, Italy
| | | | | | | | | | | | | |
Collapse
|
14
|
Mathews H, Conti S, Witek-Janusek L, Polonelli L. Effect ofPichia anomalakiller toxin onCandida albicans. Med Mycol 1998. [DOI: 10.1080/02681219880000301] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
15
|
Inhibitory Effect of Human Natural Yeast Killer Toxin-like Candidacidal Antibodies on Pneumocystis carinii. Mol Med 1997. [DOI: 10.1007/bf03401700] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
16
|
Abstract
The killer phenomenon in yeasts has been revealed to be a multicentric model for molecular biologists, virologists, phytopathologists, epidemiologists, industrial and medical microbiologists, mycologists, and pharmacologists. The surprisingly widespread occurrence of the killer phenomenon among taxonomically unrelated microorganisms, including prokaryotic and eukaryotic pathogens, has engendered a new interest in its biological significance as well as its theoretical and practical applications. The search for therapeutic opportunities by using yeast killer systems has conceptually opened new avenues for the prevention and control of life-threatening fungal diseases through the idiotypic network that is apparently exploited by the immune system in the course of natural infections. In this review, the biology, ecology, epidemiology, therapeutics, serology, and idiotypy of yeast killer systems are discussed.
Collapse
Affiliation(s)
- W Magliani
- Istituto di Microbiologia, Facoltà di Medicina e Chirurgia, Università degli Studi di Parma, Italy
| | | | | | | | | |
Collapse
|
17
|
Polonelli L, Séguy N, Conti S, Gerloni M, Bertolotti D, Cantelli C, Magliani W, Cailliez JC. Monoclonal yeast killer toxin-like candidacidal anti-idiotypic antibodies. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 1997; 4:142-6. [PMID: 9067647 PMCID: PMC170493 DOI: 10.1128/cdli.4.2.142-146.1997] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Rat monoclonal yeast killer toxin (KT)-like immunoglobulin M (IgM) anti-idiotypic antibodies (KT-IdAbs) were produced by idiotypic vaccination with a mouse monoclonal antibody (MAb; MAb KT4) that neutralized a Pichia anomala KT characterized by a wide spectrum of antimicrobial activity. The characteristics of the KT-IdAbs were demonstrated by their capacity to compete with the KT to the idiotype of MAb KT4 and to interact with putative KT cell wall receptors (KTRs) of sensitive Candida albicans cells. The internal-image properties of KT-IdAbs were proven by their killer activity against KT-sensitive yeasts. This lethal effect was abolished by prior adsorption of KT-IdAbs with MAb KT4. These findings stressed the potential importance of antibody-mediated immunoprotection against candidiasis and suggested a feasible experimental approach for producing antimicrobial receptor antibodies without purifying the receptor. KT-IdAbs might represent the basis for producing engineered derivatives with a high potential for effective therapeutic antifungal activity.
Collapse
Affiliation(s)
- L Polonelli
- Istituto di Microbiologia, Facoltà di Medicina e Chirurgia, Università degli Studi di Parma, Italy.
| | | | | | | | | | | | | | | |
Collapse
|