1
|
Protocells and LUCA: Transport of substances from first physicochemical principles. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 145:85-104. [PMID: 30612704 DOI: 10.1016/j.pbiomolbio.2018.12.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/25/2018] [Accepted: 12/24/2018] [Indexed: 11/22/2022]
Abstract
Models of the transport of substances in protocells are considered from first physicochemical principles. Functional similarities and differences in the transport systems of archaea, cyanobacteria, E. coli, and diatoms have been analyzed. Based on the selection of the most important transport systems, a model of transport of substances through the membrane of the last universal common ancestor, LUCA, was constructed. Models of isotope separation in protocells were considered. Based on the proposed models, the difference in isotope concentrations in rocks can be predicted, which can serve as an indicator of the presence of life in the early stages of evolution. Mechanisms of energy conversion for the simplest forms of directed motion in protocells are considered. A special stage in the evolution of protocells is proposed - the minimal mobile cell.
Collapse
|
2
|
Tibiletti T, Rehman AU, Vass I, Funk C. The stress-induced SCP/HLIP family of small light-harvesting-like proteins (ScpABCDE) protects Photosystem II from photoinhibitory damages in the cyanobacterium Synechocystis sp. PCC 6803. PHOTOSYNTHESIS RESEARCH 2018; 135:103-114. [PMID: 28795265 PMCID: PMC5783992 DOI: 10.1007/s11120-017-0426-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 07/22/2017] [Indexed: 05/07/2023]
Abstract
Small CAB-like proteins (SCPs) are single-helix light-harvesting-like proteins found in all organisms performing oxygenic photosynthesis. We investigated the effect of growth in moderate salt stress on these stress-induced proteins in the cyanobacterium Synechocystis sp. PCC 6803 depleted of Photosystem I (PSI), which expresses SCPs constitutively, and compared these cells with a PSI-less/ScpABCDE- mutant. SCPs, by stabilizing chlorophyll-binding proteins and Photosystem II (PSII) assembly, protect PSII from photoinhibitory damages, and in their absence electrons accumulate and will lead to ROS formation. The presence of 0.2 M NaCl in the growth medium increased the respiratory activity and other PSII electron sinks in the PSI-less/ScpABCDE- strain. We postulate that this salt-induced effect consumes the excess of PSII-generated electrons, reduces the pressure of the electron transport chain, and thereby prevents 1O2 production.
Collapse
Affiliation(s)
- Tania Tibiletti
- Department of Chemistry, Umeå University, 90187, Umeå, Sweden
- SC Synchrotron SOLEIL, AILES beamline, L'Orme des Merisiers Saint-Aubin- BP 48, 91192, Gif-sur-Yvette, France
| | - Ateeq Ur Rehman
- Institute of Plant Biology, Biological Research Center, Szeged, Hungary
| | - Imre Vass
- Institute of Plant Biology, Biological Research Center, Szeged, Hungary
| | - Christiane Funk
- Department of Chemistry, Umeå University, 90187, Umeå, Sweden.
| |
Collapse
|
3
|
Qin H, Peng C, Liu Y, Li D. DIFFERENTIAL RESPONSES OF ANABAENA SP. PCC 7120 (CYANOPHYCEAE) CULTURED IN NITROGEN-DEFICIENT AND NITROGEN-ENRICHED MEDIA TO ULTRAVIOLET-B RADIATION(1). JOURNAL OF PHYCOLOGY 2012; 48:615-625. [PMID: 27011077 DOI: 10.1111/j.1529-8817.2012.01162.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Stratospheric ozone depletion increases the amount of ultraviolet-B radiation (UVBR) (280-320 nm) reaching the surface of the earth, potentially affecting phytoplankton. In this work, Anabaena sp. PCC 7120, a typically nitrogen (N)-fixing filamentous bloom-forming cyanobacterium in freshwater, was individually cultured in N-deficient and N-enriched media for long-term acclimation before being subjected to ultraviolet-B (UVB) exposure experiments. Results suggested that the extent of breakage in the filaments induced by UVBR increases with increasing intensity of UVB stress. In general, except for the 0.1 W · m(-2) treatment, which showed a mild increase, UVB exposure inhibits photosynthesis as evidenced by the decrease in the chl fluorescence parameters maximum photochemical efficiency of PSII (Fv /Fm ) and maximum relative electron transport rate. Complementary chromatic acclimation was also observed in Anabaena under different intensities of UVB stress. Increased total carbohydrate and soluble protein may provide some protection for the culture against damaging UVB exposure. In addition, N-deficient cultures with higher recovery capacity showed overcompensatory growth under low UVB (0.1 W · m(-2) ) exposure during the recovery period. Significantly increased (∼830%) ATPase activity may provide enough energy to repair the damage caused by exposure to UVB.
Collapse
Affiliation(s)
- Hongjie Qin
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China Graduate University of Chinese Academy of Sciences, Beijing 100049, ChinaInstitute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Chengrong Peng
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China Graduate University of Chinese Academy of Sciences, Beijing 100049, ChinaInstitute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yongding Liu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China Graduate University of Chinese Academy of Sciences, Beijing 100049, ChinaInstitute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Dunhai Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China Graduate University of Chinese Academy of Sciences, Beijing 100049, ChinaInstitute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
4
|
Winder B, Matthijs HCP, Mur LR. The effect of dehydration and ion stress on carbon dioxide fixation in drought-tolerant phototrophic micro-organisms. FEMS Microbiol Ecol 2011. [DOI: 10.1111/j.1574-6941.1990.tb01669.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
5
|
Hershkovitz N, Oren A, Cohen Y. Accumulation of trehalose and sucrose in cyanobacteria exposed to matric water stress. Appl Environ Microbiol 2010; 57:645-8. [PMID: 16348431 PMCID: PMC182773 DOI: 10.1128/aem.57.3.645-648.1991] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The drought-resistant cyanobacteria Phormidium autumnale, strain LPP(4), and a Chroococcidiopsis sp. accumulated trehalose, sucrose, and both trehalose and sucrose, respectively, in response to matric water stress. Accumulated sugar concentrations reached values of up to 6.2 mug of trehalose per mug of chlorophyll in P. autumnale, 6.9 mug of sucrose per mug of chlorophyll in LPP(4), and 4.1 mug of sucrose and 3.2 mug of trehalose per mug of chlorophyll in the Chroococcidiopsis sp. The same sugars were accumulated by these cyanobacteria in similar concentrations under osmotic water stress. Cyanobacteria that did not show drought resistance (Plectonema boryanum and Synechococcus strain PCC 7942) did not accumulate significant amounts of sugars when matric water stress was applied.
Collapse
Affiliation(s)
- N Hershkovitz
- Division of Microbial and Molecular Ecology, Institute of Life Sciences, Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | | | | |
Collapse
|
6
|
Singh NK, Dhar DW. Cyanobacterial Reclamation of Salt-Affected Soil. GENETIC ENGINEERING, BIOFERTILISATION, SOIL QUALITY AND ORGANIC FARMING 2010. [DOI: 10.1007/978-90-481-8741-6_9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
7
|
Rai AK, Abraham G. Relationship of combined nitrogen sources to salt tolerance in freshwater cyanobacteriumAnabaena doliolum. ACTA ACUST UNITED AC 2008. [DOI: 10.1111/j.1365-2672.1995.tb03092.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Increased levels of cytochrome oxidase and sodium-proton antiporter in the plasma membrane ofAnacystis nidulansafter growth in sodium-enriched media. FEBS Lett 2001. [DOI: 10.1016/0014-5793(86)80822-5] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
|
10
|
Pils D, Schmetterer G. Characterization of three bioenergetically active respiratory terminal oxidases in the cyanobacterium Synechocystis sp. strain PCC 6803. FEMS Microbiol Lett 2001; 203:217-22. [PMID: 11583851 DOI: 10.1111/j.1574-6968.2001.tb10844.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Synechocystis sp. PCC 6803 contains three respiratory terminal oxidases (RTOs): cytochrome c oxidase (Cox), quinol oxidase (Cyd), and alternate RTO (ARTO). Mutants lacking combinations of the RTOs were used to characterize these key enzymes of respiration. Pentachlorophenol and 2-heptyl-4-hydroxy-quinoline-N-oxide inhibited Cyd completely, but had little effect on electron transport to the other RTOs. KCN inhibited all three RTOs but the in vivo K(I) for Cox and Cyd was quite different (7 vs. 27 microM), as was their affinity for oxygen (K(M) 1.0 vs. 0.35 microM). ARTO has a very low respiratory activity. However, when uptake of 3-O-methylglucose, an active H+ co-transport, was used to monitor energization of the cytoplasmic membrane, ARTO was similarly effective as the other RTOs. As removal of the gene for cytochrome c(553) had the same effects as removal of ARTO genes, we propose that the ARTO might be a second Cox. The possible functions, localization and regulation of the RTOs are discussed.
Collapse
Affiliation(s)
- D Pils
- Membrane Protein Group, Institute of Physical Chemistry, University of Vienna, Vienna, Austria
| | | |
Collapse
|
11
|
Teuber M, Rögner M, Berry S. Fluorescent probes for non-invasive bioenergetic studies of whole cyanobacterial cells. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1506:31-46. [PMID: 11418095 DOI: 10.1016/s0005-2728(01)00178-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Fluorescent DeltapH and DeltaPsi indicators have been screened for the non-invasive monitoring of bioenergetic processes in whole cells of the cyanobacterium Synechocystis sp. PCC 6803. Acridine yellow and Acridine orange proved to be the best DeltapH indicators for the investigation of thylakoid and cytoplasmic membrane energization: While Acridine yellow indicated only cytosolic energization, Acridine orange showed signals from both the thylakoid lumen and the cytosol that could be separated kinetically. Both indicators were applied successfully to monitor cellular energetics, such as the interplay of linear and cyclic photosynthetic electron transport, osmotic adaptation and solute transport across the cytoplasmic membrane. In contrast, useful membrane potential indicators were more difficult to find, with Di-4-ANEPPS and Brilliant cresyl blue being the only promising candidates for further studies. Finally, Acridine yellow and Acridine orange could also be applied successfully for the thermophilic cyanobacterium Synechococcus elongatus. Different from Synechocystis sp. PCC 6803, where both respiration and ATP hydrolysis could be utilized for cytoplasmic membrane energization, proton extrusion at the cytoplasmic membrane in Synechococcus elongatus was preferentially driven by ATP hydrolysis.
Collapse
Affiliation(s)
- M Teuber
- Lehrstuhl Biochemie der Pflanzen, Ruhr-Universität Bochum, D-44780, Bochum, Germany
| | | | | |
Collapse
|
12
|
Maestri O, Joset F. Regulation by external pH and stationary growth phase of the acetolactate synthase from Synechocystis PCC6803. Mol Microbiol 2000; 37:828-38. [PMID: 10972805 DOI: 10.1046/j.1365-2958.2000.02048.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Several characteristics identify the protein encoded by the alsS gene [sll1981 in Cyanobase (http://www.kazusa.or.jp/cyano/cyano. html)] of Synechocystis PCC6803 as an acetolactate synthase. The AlsS protein is about 60% homologous to the AlsS from Bacillus subtilis or other bacteria. These enzymes condense two pyruvates to form acetolactate, implicated in pH homeostasis via the acetoin-2, 3-butanediol pathway or in valine biosynthesis. Transcriptional fusions revealed that alsS was induced at the onset of stationary phase, as in B. subtilis, a situation leading to an increase in the pHout to above 11 in Synechocystis. This is the first cyanobacterial gene showing a dependence on pH for its expression. Induction was also obtained by the presence of > 100 mM Na+, the effect being prevented by amiloride, in agreement with Na+/H+ exchange in the pH homeostasis process. Homology of the Synechocystis AlsS protein to the close family of acetohydroxy acid synthases (including one in Synechocystis) is around 30%. These enzymes are involved in the parallel routes for valine/leucine and isoleucine biosynthesis. No phenotype of auxotrophy for any of these amino acids was associated with a null mutation in the Synechocystis alsS gene. The AlsS enzyme did not complement the isoleucine deficiency of an acetohydroxy acid synthase-deficient Escherichia coli mutant.
Collapse
Affiliation(s)
- O Maestri
- Laboratoire de Chimie Bactérienne, CNRS, Marseilles, France
| | | |
Collapse
|
13
|
Vázquez-Bermúdez MF, Herrero A, Flores E. Uptake of 2-oxoglutarate in Synechococcus strains transformed with the Escherichia coli kgtP gene. J Bacteriol 2000; 182:211-5. [PMID: 10613883 PMCID: PMC94260 DOI: 10.1128/jb.182.1.211-215.2000] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A number of cyanobacteria from different taxonomic groups exhibited very low levels of uptake of 2-[U-(14)C]oxoglutarate. Synechococcus sp. strain PCC 7942 was transformed with DNA constructs carrying the Escherichia coli kgtP gene encoding a 2-oxoglutarate permease and a kanamycin resistance gene cassette. The Synechococcus sp. strains bearing the kgtP gene incorporated 2-oxoglutarate into the cells through an active transport process. About 75% of the radioactivity from the 2-[U-(14)C]oxoglutarate taken up that was recovered in soluble metabolites was found as glutamate and glutamine. 2-Oxoglutarate was, however, detrimental to the growth of a Synechococcus sp. strain bearing the kgtP gene.
Collapse
Affiliation(s)
- M F Vázquez-Bermúdez
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla, E-41092 Seville, Spain
| | | | | |
Collapse
|
14
|
Stamatakis K, Ladas NP, Alygizaki-Zorba A, Papageorgiou GC. Sodium chloride-induced volume changes of freshwater cyanobacterium Synechococcus sp. PCC 7942 cells can be probed by chlorophyll a fluorescence. Arch Biochem Biophys 1999; 370:240-9. [PMID: 10510283 DOI: 10.1006/abbi.1999.1366] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Freshwater species of the cyanobacterial genus Synechococcus import NaCl passively, and export Na(+) actively, by means of primary and secondary extrusion mechanisms. As a result of the ion and water fluxes, cell volumes are enlarged. We show in this paper that the NaCl-induced volume enlargement of Synechococcus sp. PCC 7942 cells is attended by a rapid (k = 0.39 s(-1)) increase in chlorophyll (Chl) a fluorescence. The cell turgor threshold (measured by osmotic titration of Chl a fluorescence) was lower in the absence of NaCl (0.195 Osm kg(-1)) than in the presence of 0.4 M NaCl (0.248 Osm kg(-1)) indicating NaCl uptake by the cells. Turgor thresholds of cells suspended in NaCl-containing medium were enlarged further by protonophoric uncouplers, P-type ATPase inhibitors, and light starvation, conditions that are known to interfere with the active extrusion of Na(+) ions. Cell swelling exerts probably a regulation on the distribution of phycobilisome (PBS) excitation between photosystem II (fluorescent Chl a) and photosystem I (nonfluorescent Chl a), since it affects PBS-sensitized Chl a fluorescence, but not directly excited Chl a fluorescence. The dependence of the Chl a fluorescence of cyanobacteria on cell volumes allows probing of bioenergetic phenomena that are related to dynamic osmotic volume changes, transmembrane solute and water fluxes, plasma membrane permeabilities, and internal osmotic conditions of cyanobacterial cells. Thus, cyanobacteria may serve as quite convenient models of aquatic microorganisms in experimental studies directed toward the elucidation of perception mechanisms and defense mechanisms of water and solute stresses.
Collapse
Affiliation(s)
- K Stamatakis
- Institute of Biology, National Research Center Demokritos, Athens, 153 10, Greece
| | | | | | | |
Collapse
|
15
|
Montesinos ML, Muro-Pastor AM, Herrero A, Flores E. Ammonium/methylammonium permeases of a Cyanobacterium. Identification and analysis of three nitrogen-regulated amt genes in synechocystis sp. PCC 6803. J Biol Chem 1998; 273:31463-70. [PMID: 9813059 DOI: 10.1074/jbc.273.47.31463] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ammonium is an important nitrogen source for many microorganisms and plants. Ammonium transporters whose activity can be probed with [14C]methylammonium have been described in several organisms including some cyanobacteria, and amt genes encoding ammonium/methylammonium permeases have been recently identified in yeast, Arabidopsis thaliana, and some bacteria. The unicellular cyanobacterium Synechocystis sp. PCC 6803 exhibited a [14C]methylammonium uptake activity that was inhibited by externally added ammonium. Three putative amt genes that are found in the recently published complete sequence of the chromosome of strain PCC 6803 were inactivated by insertion of antibiotic resistance-encoding gene-cassettes. The corresponding mutant strains were impaired in uptake of [14C]methylammonium. Open reading frame sll0108 (amt1) was responsible for a high affinity uptake activity (Ks for methylammonium, 2.7 microM), whereas open reading frames sll1017 (amt2) and sll0537 (amt3) made minor contributions to uptake at low substrate concentrations. Expression of the three amt genes was higher in nitrogen-starved cells than in cells incubated in the presence of a source of nitrogen (either ammonium or nitrate), but amt1 was expressed at higher levels than the other two amt genes. Transcription of amt1 was found to take place from a promoter bearing the structure of the cyanobacterial promoters activated by the nitrogen control transcription factor, NtcA.
Collapse
Affiliation(s)
- M L Montesinos
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla, E-41092 Sevilla, Spain
| | | | | | | |
Collapse
|
16
|
Rodríguez R, Lara C, Guerrero MG. Nitrate transport in the cyanobacterium Anacystis nidulans R2. Kinetic and energetic aspects. Biochem J 1992; 282 ( Pt 3):639-43. [PMID: 1554347 PMCID: PMC1130835 DOI: 10.1042/bj2820639] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Nitrate transport has been studied in the cyanobacterium Anacystis nidulans R2 by monitoring intracellular nitrate accumulation in intact cells of the mutant strain FM6, which lacks nitrate reductase activity and is therefore unable to reduce the transported nitrate. Kinetic analysis of nitrate transport as a function of external nitrate concentration revealed apparent substrate inhibition, with a peak velocity at 20-25 microM-nitrate. A Ks (NO3-) of 1 microM was calculated. Nitrate transport exhibited a stringent requirement for Na+. Neither Li+ nor K+ could substitute for Na+. Monensin depressed nitrate transport in a concentration-dependent manner, inhibition being more than 60% at 2 microM, indicating that the Na(+)-dependence of active nitrate transport relies on the maintenance of a Na+ electrochemical gradient. The operation of an Na+/NO3- symport system is suggested. Nitrite behaved as an effective competitive inhibitor of nitrate transport, with a Ki (NO2-) of 3 microM. The time course of nitrite inhibition of nitrate transport was consistent with competitive inhibition by mixed alternative substrates. Nitrate and nitrite might be transported by the same carrier.
Collapse
Affiliation(s)
- R Rodríguez
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla-CSIC, Spain
| | | | | |
Collapse
|
17
|
|
18
|
Avery SV, Codd GA, Gadd GM. Caesium accumulation and interactions with other monovalent cations in the cyanobacterium Synechocystis PCC 6803. Microbiology (Reading) 1991. [DOI: 10.1099/00221287-137-2-405] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Summary
Growth of Synechocystis PCC 6803 in BG-11 medium supplemented with 1 mM-CsCl resulted in intracellular accumulation of Cs+ to a final level of approximately 510 nmol (109 cells)-1 after incubation for 10 d. The doubling time was increased by 64% and the final cell yield was decreased by 70% during growth in the presence of Cs+ as compared to growth in control BG-11 medium. When the total monovalent cation concentration of the medium was doubled by adding either K+ or Na+, levels of accumulated Cs+ were decreased by approximately 50% to 220 and 270 nmol (109 cells)-1, respectively, after 28 d with little inhibition of growth being apparent. Short-term experiments revealed that extracellular K+ and Na+ inhibited Cs+ accumulation to a similar extent, with 90% inhibition of Cs+ accumulation occurring at the highest concentrations used (50 mM-K+ or Na+; 1 mM-Cs+). In all experiments, Cs+ accumulation resulted in a reduction in intracellular K+, except when cells were grown in K+-depleted medium, although a stoichiometric relationship was not apparent, the amount of Cs+ accumulated generally being greater than the amount of K+ released. Cs+ accumulation had no discernible effect on intracellular Na+. When K+, Na+, Rb+, Li+ or Tl+ were supplied at equimolar (1 mM) concentrations to Cs+, only Tl+ significantly reduced Cs+ accumulation. However, an approximately 50% inhibition of Cs+ accumulation resulted when concentrations of K+, Na+, Rb+ or Li+ were increased to 10 mM, which suggests that Cs+ may have a higher affinity for the monovalent cation transport system than K+, Rb+ and TI+ also caused a decrease in intracellular K+, whereas Na+ and Li+ stimulated K+ uptake. Cs+ accumulation was dependent on the external Cs+ concentration and showed a linear relationship to external Cs+ concentrations≤2 mM over 12 h incubation. However, prolonged incubation in external Cs+ concentrations≥ 0·8 mM resulted in Cs+ release from the cells and after 48 h, similar amounts of Cs+ and K+ were present in cells incubated at these higher concentrations. Cs+ accumulation was energy- and pH-dependent. Incubation in the light at 4 °C, or in the presence of 3(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), or at 22 °C in the dark resulted in decreased Cs+ accumulation and decreased K+ release from the cells. Increased amounts of Cs+ were accumulated as the pH of the external medium was increased, with maximal accumulation [approximately 1330 nmol Cs+ (109 cells)-1 after 24 h incubation] occurring at pH 10, the highest pH value used. It is suggested that an important mechanism of Cs+ toxicity in Synechocystis PCC 6803 arises through replacement of cellular K+ by Cs+. The possible role of primary producers such as cyanobacteria in the mobilization of this radionuclide in aquatic habitats is discussed.
Collapse
Affiliation(s)
- Simon V. Avery
- Department of Biological Sciences, University of Dundee, Dundee DD1 4HN, UK
| | - Geoffrey A. Codd
- Department of Biological Sciences, University of Dundee, Dundee DD1 4HN, UK
| | - Geoffrey M. Gadd
- Department of Biological Sciences, University of Dundee, Dundee DD1 4HN, UK
| |
Collapse
|
19
|
Winder B, Matthijs HC, Mur LR. The effect of dehydration and ion stress on carbon dioxide fixation in drought-tolerant phototrophic micro-organisms. FEMS Microbiol Lett 1990. [DOI: 10.1111/j.1574-6968.1990.tb04049.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
20
|
Hagemann M, Erdmann N, Wittenburg E. Studies Concerning Enzyme Activities in Salt-loaded Cells of the Cyanobacterium Microcystis firma. ACTA ACUST UNITED AC 1989. [DOI: 10.1016/s0015-3796(89)80127-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
|
22
|
Lara C, Romero JM, Guerrero MG. Regulated nitrate transport in the cyanobacterium Anacystis nidulans. J Bacteriol 1987; 169:4376-8. [PMID: 3114240 PMCID: PMC213755 DOI: 10.1128/jb.169.9.4376-4378.1987] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Intracellular accumulation of nitrate, indicative of the operation of an active nitrate transport system, has been measured in intact cells of the cyanobacterium Anacystis nidulans. The ability of the cells to accumulate nitrate was effectively hindered by either ammonium addition or selective inhibition of CO2 fixation by DL-glyceraldehyde, with the effect of either compound being prevented by previously blocking ammonium assimilation. The results support the contention that nitrate utilization in cyanobacteria is regulated at the level of nitrate transport through the concerted action of ammonium assimilation and CO2 fixation.
Collapse
|
23
|
Apte SK, Reddy BR, Thomas J. Relationship between Sodium Influx and Salt Tolerance of Nitrogen-Fixing Cyanobacteria. Appl Environ Microbiol 1987; 53:1934-9. [PMID: 16347419 PMCID: PMC204028 DOI: 10.1128/aem.53.8.1934-1939.1987] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The relationship between sodium uptake and cyanobacterial salt (NaCl) tolerance has been examined in two filamentous, heterocystous, nitrogen-fixing species of
Anabaena.
During diazotrophic growth at neutral pH of the growth medium,
Anabaena
sp. strain L-31, a freshwater strain, showed threefold higher uptake of Na
+
than
Anabaena torulosa
, a brackish-water strain, and was considerably less salt tolerant (50% lethal dose of NaCl, 55 mM) than the latter (50% lethal dose of NaCl, 170 mM). Alkaline pH or excess K
+
(>25 mM) in the medium causes membrane depolarization and inhibits Na
+
influx in both cyanobacteria (S. K. Apte and J. Thomas, Eur. J. Biochem. 154:395-401, 1986). The presence of nitrate or ammonium in the medium caused inhibition of Na
+
influx accompanied by membrane depolarization. These experimental manipulations affecting Na
+
uptake demonstrated a good negative correlation between Na
+
influx and salt tolerance. All treatments which inhibited Na
+
influx (such as alkaline pH, K
+
above 25 mM, NO
3
−
, and NH
4
+
), enhanced salt tolerance of not only the brackish-water but also the freshwater cyanobacterium. The results indicate that curtailment of Na
+
influx, whether inherent or effected by certain environmental factors (e.g., combined nitrogen, alkaline pH), is a major mechanism of salt tolerance in cyanobacteria.
Collapse
Affiliation(s)
- S K Apte
- Molecular Biology and Agriculture Division, Bhabha Atomic Research Centre, Trombay, Bombay 400 085, India
| | | | | |
Collapse
|
24
|
Jha MN, Venkataraman GS, Kaushik BD. Response ofWestiellopsis prolifica andAnabaena sp. to salt stress. ACTA ACUST UNITED AC 1987. [DOI: 10.1007/bf00933584] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
|
26
|
Peschek GA, Hinterstoisser B, Riedler M, Muchl R, Nitschmann WH. Exogenous energy supply to the plasma membrane of dark anaerobic cyanobacterium Anacystis nidulans: thermodynamic and kinetic characterization of the ATP synthesis effected by an artificial proton motive force. Arch Biochem Biophys 1986; 247:40-8. [PMID: 3010879 DOI: 10.1016/0003-9861(86)90530-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The net synthesis of ATP in dark anaerobic cells of Anacystis nidulans subjected to acid jumps and/or valinomycin pulses was characterized thermodynamically and kinetically. Maximum initial rates of 75 nmol ATP/min per mg dry weight at an applied proton motive force of -350 mV were obtained, the flow-force relationship (rate of ATP synthesis vs applied proton motive force) being linear between -240 and -320 mV irrespective of the source of the proton motive force. The pulse-induced ATP synthesis was inhibited by uncouplers (H+ ionophores) and F0F1-ATPase inhibitors but not by KCN or CO. In order to obtain maximum rates of pulse-induced ATP synthesis both a favorable stationary delta psi (-100 mV at pHo 9, preceding the acid jumps) and a favorable stationary delta pH (+2 units at pHo 4.1, preceding the valinomycin pulse) of the plasma membrane were obligatory, the effects of delta psi and delta pH being strictly additive. Moreover, the pulse-induced ATP synthesis required a minimum total proton motive force of -200 to -250 mV across the plasma membrane; it also required low preexisting phosphorylation potentials corresponding to -400 mV in dark anaerobic, i.e., energy-depleted, cells. The results are discussed in terms of both a reversible H+-ATPase and a respiratory electron transport system occurring in the plasma membrane of intact Anacystis nidulans.
Collapse
|
27
|
Erber WW, Nitschmann WH, Muchl R, Peschek GA. Endogenous energy supply to the plasma membrane of dark aerobic cyanobacterium Anacystis nidulans: ATPase-independent efflux of H+ and Na+ from respiring cells. Arch Biochem Biophys 1986; 247:28-39. [PMID: 3010878 DOI: 10.1016/0003-9861(86)90529-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The ejection of protons from oxygen-pulsed cells and the gradients of Na+ concentration (Na+o/Na+i at 150 mM external NaCl) and proton electrochemical potential (delta mu H+) across the plasma membrane of Anacystis nidulans were studied in response to dark endogenous energy supply. Saturating concentrations of the F0F1-ATPase inhibitors dicyclohexylcarbodiimide (F0) and 7-chloro-4-nitrobenz-2-oxa-1,3-diazole (F1) eliminated oxidative phosphorylation and lowered the ATP level from 2.6 +/- 0.15 to 0.7 +/- 0.1 nmol/mg dry wt while overall O2 uptake and delta mu H+ were much less affected. H+ efflux was inhibited only 60 to 75%. Aerobic Na+o/Na+i ratios (5.9 +/- 0.6) under these conditions remained 50% above the anaerobic level (2.1 +/- 0.2). Increasing concentrations of the electron transport inhibitors CO and KCN depressed H+ efflux and O2 uptake in parallel, with a pronounced discontinuity of the former at inhibitor concentrations, which reduced ATP levels from 2.6 to 0.8 nmol/mg dry wt, resulting in an abrupt shift of the apparent H+/O ratios from 4.0 +/- 0.3 to 1.9 +/- 0.2. Similarly, with KCN and CO the Na+o/Na+i ratios paralleled decreasing respiration rates more closely than decreasing ATP pool sizes. Ejection of protons also was observed when intact spheroplasts were pulsed with horse heart ferrocytochrome c or ferricyanide; the former reaction was inhibited, the latter was increased, by 1 mM KCN. Measurements of the proton motive force (delta mu H+) across the plasma membrane showed a strong correlation with respiration rates rather than ATP levels. It is concluded that the plasma membrane of intact A. nidulans can be directly energized by proton-translocating respiratory electron transport in the membrane and that part of this energy may be used by a Na+/H+ antiporter for the active exclusion of Na+ from the cell interior.
Collapse
|
28
|
Fry IV, Huflejt M, Erber WW, Peschek GA, Packer L. The role of respiration during adaptation of the freshwater cyanobacterium Synechococcus 6311 to salinity. Arch Biochem Biophys 1986; 244:686-91. [PMID: 3004347 DOI: 10.1016/0003-9861(86)90637-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Growth of the freshwater cyanobacterium Synechococcus 6311 under saline conditions stimulated respiration tenfold during the first 24 h, while growth and photosynthesis were inhibited. The elevated respiration rate was seen under both light and dark conditions, was uncoupler and cyanide sensitive, and did not decrease upon salt removal. Membrane preparations from salt-grown cells exhibited a tenfold increase in cytochrome oxidase activity, while electron transfer rates from NADPH to cytochrome c only increased threefold. Cytochrome oxidase activities were correlated with levels of EPR detectable Cu2+ in the salt and control membranes. Sodium-driven proton (antiproter) gradients in salt-grown cells were sensitive to cyanide but not dicyclohexylcarbodiimide, indicating the direct role of respiratory electron transport in maintaining low intracellular sodium levels.
Collapse
|
29
|
Apte SK, Thomas J. Membrane electrogenesis and sodium transport in filamentous nitrogen-fixing cyanobacteria. EUROPEAN JOURNAL OF BIOCHEMISTRY 1986; 154:395-401. [PMID: 3080316 DOI: 10.1111/j.1432-1033.1986.tb09411.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Transport of Na+ and its relationship with membrane potential (delta psi m) was examined in Anabaena L-31 (a fresh water cyanobacterium) and Anabaena torulosa (a brackish water cyanobacterium) which require Na+ for diazotrophic growth. The data on the effect of N,N'-dicyclohexylcarbodiimide indicated that delta psi m was generated by electrogenic proton extrusion predominantly mediated by ATPase(s). In addition, operation of a plasmalemmabound, non-ATP-requiring, H+-pumping terminal oxidase was suggested by the sensitivity of delta psi m to anaerobiosis, cyanide and azide, all of which inhibit aerobic respiration. The response of delta psi m to external pH and external Na+ or K+ concentrations indicated that a diffusion potential of Na+ or K+ may not contribute significantly to delta psi m. Kinetic studies showed that Na+ influx was unlikely to be a result of Na+/NA+ exchange but was a carrier-mediated secondary active transport insensitive to low concentrations (less than 10 mM) of external K+. There was a close correspondence between changes in delta psi m and Na+ influx; all the treatments which caused depolarisation (such as low temperature, dark, cyanide, azide, anaerobiosis, ATPase inhibitors) lowered Na+ influx whereas treatments which caused hyperpolarisation (such as 2,4-dinitrophenol, nigericin) enhanced Na+ influx. Remarkably low intracellular Na+ concentrations were maintained by these cyanobacteria by means of active efflux of the cation. The basic mechanism of Na+ transport in the fresh water and the brackish water cyanobacterium was similar but the latter demonstrated less influx, more efficient efflux, more affinity of carriers for Na+ and less accumulation of Na+, all attributes favouring salt tolerance.
Collapse
|
30
|
Drachev AL, Markin VS, Skulachev VP. delta-mu H-buffering by Na+ and K+ gradients in bacteria. Model and experimental systems. BIOCHIMICA ET BIOPHYSICA ACTA 1985; 811:197-215. [PMID: 2408665 DOI: 10.1016/0304-4173(85)90018-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
31
|
Reed RH, Richardson DL, Stewart WD. Na+ uptake and extrusion in the cyanobacterium SynechocystisPCC6714 in response to hypersaline treatment. Evidence for transient changes in plasmalemma Na+ permeability. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 1985. [DOI: 10.1016/0005-2736(85)90455-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
32
|
Reed RH, Stewart WD. Evidence for turgor-sensitive K+ influx in the cyanobacteria Anabaena variabilis ATCC29413 and Synechocystis PCC6714. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 1985. [DOI: 10.1016/0005-2736(85)90533-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
33
|
|
34
|
Blumwald E, Wolosin JM, Packer L. Na+/H+ exchange in the cyanobacterium Synechococcus 6311. Biochem Biophys Res Commun 1984; 122:452-9. [PMID: 6430295 DOI: 10.1016/0006-291x(84)90497-2] [Citation(s) in RCA: 75] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The cyanobacterium Synechococcus 6311 adapts to grow in 0.6 M NaCl by developing an efficient system for sodium extrusion. In the present investigation cells loaded with NaC1 were subjected to a large dilution. Changes in fluorescence quenching of acridine orange as a function of transmembrane Na+ gradients provide evidence that Na+/H+ exchange activity greatly enhanced in salt-adapted cells.
Collapse
|
35
|
Miller AG, Turpin DH, Canvin DT. Na+ requirement for growth, photosynthesis, and pH regulation in the alkalotolerant cyanobacterium Synechococcus leopoliensis. J Bacteriol 1984; 159:100-6. [PMID: 6429118 PMCID: PMC215598 DOI: 10.1128/jb.159.1.100-106.1984] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
We have found that Na+ is required for the alkalotolerance of the cyanobacterium Synechococcus leopoliensis. Cell division did not occur at any pH in the absence of Na+, but cells inoculated into Na+-free growth medium at pH 6.8 did continue metabolic activity, and over a period of 48 h, the cells became twice their normal size. Many of these cells remained viable for at least 59 h and formed colonies on Na+ -containing medium. Cells grown in the presence of Na+ and inoculated into Na+ -free growth medium at pH 9.6 rapidly lost viability. An Na+ concentration of ca. 0.5 milliequivalents X liter-1 was required for sustained growth above pH 9.0. The Na+ requirement could be only partially met by Li+ and not at all by K+ or Rb+. Cells incubated in darkness in growth medium at pH 6.8 had an intracellular pH near neutrality in the presence or absence of Na+. When the external pH was shifted to 9.6, only cells in the presence of Na+ were able to maintain an intracellular pH near 7.0. The membrane potential, however, remained high (-120 mV) in the absence or presence of Na+ unless collapsed by the addition of gramicidin. Thus, the inability to maintain a neutral intracellular pH at pH 9.6 in the absence of Na+ was not due to a generalized disruption of membrane integrity. Even cells containing Na+ still required added Na+ to restore photosynthetic rates to normal after the cells had been washed in Na+ -free buffer at pH 9.6. This requirement was only partially met by Li+ and was not met at all by K+, Rb+, Cs+ Mg2+, or Ca2+. The restoration of photosynthesis by added Na+ occurred within 30 s and suggests a role for extracellular Na+. Part of our results can be explained in terms of the operation of an Na+/H+ antiporter activity in the plasma membrane, but some results would seem to require other mechanisms for Na+ action.
Collapse
|
36
|
Scherer S, Stürzl E, Böger P. Oxygen-dependent proton efflux in cyanobacteria (blue-green algae). J Bacteriol 1984; 158:609-14. [PMID: 6327614 PMCID: PMC215472 DOI: 10.1128/jb.158.2.609-614.1984] [Citation(s) in RCA: 36] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The oxygen-dependent proton efflux (in the dark) of intact cells of Anabaena variabilis and four other cyanobacteria (blue-green algae) was investigated. In contrast to bacteria and isolated mitochondria, an H+/e ratio (= protons translocated per electron transported) of only 0.23 to 0.35 and a P/e ratio of 0.8 to 1.5 were observed, indicative of respiratory electron transport being localized essentially on the thylakoids, not on the cytoplasmic membrane. Oxygen-induced acidification of the medium was sensitive to cyanide and the uncoupler carbonyl cyanide m-chlorophenylhydrazone. Inhibitors such as 2,6-dinitrophenol and vanadate exhibited a significant decrease in the H+/e ratio. After the oxygen pulse, electron transport started immediately, but proton efflux lagged 40 to 60 s behind, a period also needed before maximum ATP pool levels were attained. We suggest that proton efflux in A. variabilis is due to a proton-translocating ATP hydrolase (ATP-consuming ATPase) rather than to respiratory electron transport located on the cytoplasmic membrane.
Collapse
|
37
|
Peschek GA. Structure and function of respiratory membranes in cyanobacteria (blue-green algae). Subcell Biochem 1984; 10:85-191. [PMID: 6433519 DOI: 10.1007/978-1-4613-2709-7_2] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
38
|
|
39
|
Active sodium extrusion reduces net efficiencies of oxidative phosphorylation in the strictly photoautotrophic cyanobacterium Anacystis nidulans. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1982. [DOI: 10.1016/0005-2728(82)90111-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
40
|
Lee-Kaden J, Simonis W. Amino acid uptake and energy coupling dependent on photosynthesis in Anacystis nidulans. J Bacteriol 1982; 151:229-36. [PMID: 6806240 PMCID: PMC220231 DOI: 10.1128/jb.151.1.229-236.1982] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The photoautotrophic cyanobacterium Anacystis nidulans was used to investigate the membrane transport of branched-chain, neutral amino acids and its dependence on photosynthetic reactions. The uptake of alpha-amino [1-14C]isobutyric acid and L-[1-14C]leucine followed Michaelis, Menten kinetics and resulted in an energy-dependent accumulation. As in bacteria, different uptake systems for neutral amino acids were present: two DAG (D-alanine, aminoisobutyric acid, and glycine) systems responsible for uptake of alpha-amino [1-14C]isobutyric acid, and one LIV (leucine, isoleucine, and valine) system, responsible for uptake of leucine. The low-affinity DAG system seemed to be dependent on the presence of Na+ ions. Uptake was enhanced by white light and by monochromatic light of 630 nm. In far red light (717 nm) with and without nitrogen flushing, considerable uptake dependent on light intensity and inhibition by dibromothymoquinone and by high concentrations of KCN were observed. Therefore, the energy generated by photosystem I reactions only could perform this membrane transport. The proton translocator carbonylcyanide m-chlorophenylhydrazone and N,N-dicyclohexylcarbodiimide as an ATPase inhibitor reduced amino acid uptake to a high degree. A pH dependence of aminoisobutyric acid and leucine uptake was obvious, with a maximum at pH 6 to 7 and some at a pH as high as 9.5. At higher pH, increasing concentrations of Na+ K+ and also of triphenylmethylphosphonium ions inhibited the transport of aminoisobutyric acid. These findings are consistent with the assumption that ATP from photosynthetic reactions drives a membrane-bound proton-translocating ATPase producing a proton motive force, consisting at higher pH chiefly in a delta psi amount, which promotes a secondary active H+ or Na+/amino acid symport carrier.
Collapse
|
41
|
|
42
|
Reed RH, Rowell P, Stewart WD. Characterization of the transport of potassium ions in the cyanobacterium Anabaena variabilis Kütz. EUROPEAN JOURNAL OF BIOCHEMISTRY 1981; 116:323-30. [PMID: 6788551 DOI: 10.1111/j.1432-1033.1981.tb05337.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Interrelationships between potassium-ion transport and transplasmalemma electrical-potential difference (delta psi m) have been investigated in Anabaena variabilis (ATCC 29413) by measuring K+ translocation and membrane potential in parallel. At pH 7.0, 5 mmol . dm-3 external K+, there was a thirtyfold accumulation of K+. The K+ equilibrium potential was lower (more negative) than the measured membrane potential by up to 20 mV, (delta psi K+ = -90 mV; delta psi m = -70 mV to -75 mV, respectively). Dark pretreatment and low temperature (4 degrees C) reduced internal K+ and depolarized delta psi m. External pH affected K+ translocation and membrane potential; delta psi m was hyperpolarized at high external pH; transplasmalemma K+ fluxes and internal K+ concentration were also increased at high pH. The effects of pH upon delta psi m, coupled with the finding that the membrane potential was relatively insensitive to external K+, suggest that delta psi m is unlikely to be due primarily to a diffusion potential of K+, but that the membrane potential is maintained by an electrogenic proton-extrusion mechanism. There was no close (obligate) link between K+ transport and changes in delta psi m. Carbonylcyanide m-chlorophenylhydrazone decreased K+ fluxes, internal K+ and delta psi m when added in amounts up to 100 mumol . dm-3. However, delta psi K+ was always more negative than delta psi m. Valinomycin up to concentrations of 50 mumol . dm-3 increased transplasmalemma K+ fluxes by up to 300%, while changes in delta psi m were negligible. Internal K+ was unaffected by valinomycin. N,N'-Dicyclohexylcarbodiimide at concentrations up to 100 mumol . dm-3, reduced K+ flux rates and caused a hyperpolarization of delta psi m. These observations suggest that delta psi m is primarily due to electron transport reactions at the plasmalemma and that K+ transport is energy-dependent. In the presence of dicyclohexylcarbodiimide, internal K+ redistributed in accordance with the membrane potential, suggesting that passive uniport in response to delta psi m (i.e. secondary active transport) is not usually important but may operate when primary active mechanisms are blocked.
Collapse
|
43
|
Hawkesford MJ, Reed RH, Rowell P, Stewart WD. Nitrogenase activity and membrane electrogenesis in the cyanobacterium Anabaena variabilis Kütz. EUROPEAN JOURNAL OF BIOCHEMISTRY 1981; 115:519-23. [PMID: 6786885 DOI: 10.1111/j.1432-1033.1981.tb06233.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Relationships between nitrogenase activity and individual components of the proton electrochemical potential gradient (delta microH+) in Anabaena variabilis have been investigated. The ionophore nigericin was found to collapse delta pH in favour of the membrane potential (delta psi); hyperpolarization of delta psi was correlated with an increase in nitrogenase activity. A positive relationship between nitrogenase activity and membrane potential was also observed using the ionophore valinomycin and the uncoupler carbonylcyanide m-chlorophenylhydrazone. Furthermore, using the energy transfer inhibitor N,N'-dicyclohexylcarbodiimide, nitrogenase activity appeared to be limited by the supply of reductant rather than ATP. The data suggest, for intact filaments and isolated heterocysts, that delta psi may be important in regulating nitrogenase activity in vivo.
Collapse
|
44
|
|
45
|
Miller AG, Colman B. Active transport and accumulation of bicarbonate by a unicellular cyanobacterium. J Bacteriol 1980; 143:1253-9. [PMID: 6773925 PMCID: PMC294489 DOI: 10.1128/jb.143.3.1253-1259.1980] [Citation(s) in RCA: 85] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The rates of inorganic carbon accumulation and carbon fixation in light by the unicellular cyanobacterim Coccohloris peniocystis have been determined. Cells incubated in the light in medium containing H14CO3- were rapidly separated from the medium by centrifugation through silicone oil into a strongly basic terminating solution. Samples of these inactivated cells were assayed to determine total 14C accumulation, and acid-treated samples were assayed to determine 14C fixation. The rate of transport of inorganic into illuminated cells was faster than the rate of CO2 production in the medium from HCO3- dehydration. This evidence for HCO3- transport in these cells is in agreement with our previous results based upon measurements of photosynthetic O2 evolution. A substantial pool of inorganic carbon was bulit up within the cells presumably as HCO3- before the onset of the maximum rate of photosynthesis. Large accumulation ratios were observed, greater than 1,000 times the external HCO3- concentration. Accumulation did not occur in the dark and was greatly suppressed by the photosynthesis inhibitors 3-(3,4-dichlorophenyl)-1,1-dimethyl urea and 3-chloro-carbonylcyanide phenylhydrazone. These results indicate that the accumulation of inorganic carbon in these cells involves a light-dependent active transport process.
Collapse
|
46
|
Kaplan A, Badger MR, Berry JA. Photosynthesis and the intracellular inorganic carbon pool in the bluegreen alga Anabaena variabilis: Response to external CO2 concentration. PLANTA 1980; 149:219-26. [PMID: 24306290 DOI: 10.1007/bf00384557] [Citation(s) in RCA: 82] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/1979] [Accepted: 05/09/1980] [Indexed: 05/11/2023]
Abstract
The apparent photosynthetic affinity of A. variabilis to CO2 is greatly affected by the CO2 concentration in the medium during growth. Halfmaximal rate of photosynthetic O2 evolution is achieved at 10 μM and 100 μM inorganic carbon (Cinorg) in cells grown at low-CO2 (air) and high CO2 (5% v/v CO2 in air), respectively, whilst the maximum rate of photosynthesis is similar in both cases. Both high- and low-CO2-grown Anabaena accumulate Cinorg within the cell; however, the rate of accumulation and the steady-state internal Cinorg concentration reached is much higher in low as compared with high-CO2-grown cells. It is suggested that Anabaena cells actively accumulate Cinorg. Measurements of the kinetics of Cinorg transport indicate that the affinity of the transport mechanism for Cinorg is similar (Km(Cinorg(≃150 μM) in both high- and low-CO2-grown cells. However, V max is 10-fold higher in the latter case. It is suggested that this higher V max for transport is the basis of the superior capability to accumulate Cinorg and the higher apparent photosynthetic affinity for external Cinorg in low-CO2-grown Anabaena. Carbonic anhydrase activity was not detectable in Anabaena, yet both photosynthetic affinity to Cinorg in the medium (but not V max) and the rate of accumulation of Cinorg were inhibited by the carbonic-anhydrase inhibitor ethoxyzolamide.
Collapse
Affiliation(s)
- A Kaplan
- Department of Plant Biology, Carnegie Institution of Washington, 290 Panama Street, 94305, Stanford, CA, USA
| | | | | |
Collapse
|
47
|
Lanyi JK. The role of Na+ in transport processes of bacterial membranes. BIOCHIMICA ET BIOPHYSICA ACTA 1979; 559:377-97. [PMID: 42438 DOI: 10.1016/0304-4157(79)90011-x] [Citation(s) in RCA: 117] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
48
|
Tromballa HW. Influence of permeant acids and bases on net potassium uptake by Chlorella. PLANTA 1978; 138:243-248. [PMID: 24414053 DOI: 10.1007/bf00386818] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/1977] [Accepted: 11/23/1977] [Indexed: 06/03/2023]
Abstract
Salts of membrane-permeant acids and bases strongly influence net K uptake by Chlorella fusca. Na phenylacetate, acetate, isobutyrate, propionate, and butyrate added to buffered algal suspensions containing 0.1-0.2 mM KCl increasingly stimulated net K uptake. In contrast, K release was induced by the chlorides of imidazole, ammonia and methylamine. All these effects were found in the light and, less pronounced, in the dark. The dependence of the net K movements on the concentrations of the salts added and on the pH of the medium suggests that the free acids or bases are the effective agents. Between net uptake of K and uptake of labeled propionate a molar ratio close to 1 was found. It is concluded that the internal pH of the cell is changed by the permeants. Acidification of the cytoplasm stimulates extrusion of protons coupled to uptake of K. Alcalization brings about proton uptake and K extrusion. Apparently K/H exchange serves as a pH-stat of the cell.
Collapse
Affiliation(s)
- H W Tromballa
- Institut für Physikalische Chemie der Universität Wien, Währingerstraße 42, A-1090, Wien, Austria
| |
Collapse
|