1
|
Urban JM, Bateman JR, Garza KR, Borden J, Jain J, Brown A, Thach BJ, Bliss JE, Gerbi SA. Bradysia (Sciara) coprophila larvae up-regulate DNA repair pathways and down-regulate developmental regulators in response to ionizing radiation. Genetics 2024; 226:iyad208. [PMID: 38066617 PMCID: PMC10917502 DOI: 10.1093/genetics/iyad208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/21/2023] Open
Abstract
The level of resistance to radiation and the developmental and molecular responses can vary between species, and even between developmental stages of one species. For flies (order: Diptera), prior studies concluded that the fungus gnat Bradysia (Sciara) coprophila (sub-order: Nematocera) is more resistant to irradiation-induced mutations that cause visible phenotypes than the fruit fly Drosophila melanogaster (sub-order: Brachycera). Therefore, we characterized the effects of and level of resistance to ionizing radiation on B. coprophila throughout its life cycle. Our data show that B. coprophila embryos are highly sensitive to even low doses of gamma-irradiation, whereas late-stage larvae can tolerate up to 80 Gy (compared to 40 Gy for D. melanogaster) and still retain their ability to develop to adulthood, though with a developmental delay. To survey the genes involved in the early transcriptional response to irradiation of B. coprophila larvae, we compared larval RNA-seq profiles with and without radiation treatment. The up-regulated genes were enriched for DNA damage response genes, including those involved in DNA repair, cell cycle arrest, and apoptosis, whereas the down-regulated genes were enriched for developmental regulators, consistent with the developmental delay of irradiated larvae. Interestingly, members of the PARP and AGO families were highly up-regulated in the B. coprophila radiation response. We compared the transcriptome responses in B. coprophila to the transcriptome responses in D. melanogaster from 3 previous studies: whereas pathway responses are highly conserved, specific gene responses are less so. Our study lays the groundwork for future work on the radiation responses in Diptera.
Collapse
Affiliation(s)
- John M Urban
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University Division of Biology and Medicine, Providence, RI 02912, USA
- Department of Embryology, Carnegie Institution for Science, Howard Hughes Medical Institute Research Laboratories, 3520 San Martin Drive, Baltimore, MD 21218, USA
| | - Jack R Bateman
- Biology Department, Bowdoin College, Brunswick, ME 04011, USA
| | - Kodie R Garza
- Biology Department, Bowdoin College, Brunswick, ME 04011, USA
| | - Julia Borden
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University Division of Biology and Medicine, Providence, RI 02912, USA
| | - Jaison Jain
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University Division of Biology and Medicine, Providence, RI 02912, USA
| | - Alexia Brown
- Biology Department, Bowdoin College, Brunswick, ME 04011, USA
| | - Bethany J Thach
- Biology Department, Bowdoin College, Brunswick, ME 04011, USA
| | - Jacob E Bliss
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University Division of Biology and Medicine, Providence, RI 02912, USA
| | - Susan A Gerbi
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University Division of Biology and Medicine, Providence, RI 02912, USA
| |
Collapse
|
2
|
Wei Y, Bettedi L, Ting CY, Kim K, Zhang Y, Cai J, Lilly MA. The GATOR complex regulates an essential response to meiotic double-stranded breaks in Drosophila. eLife 2019; 8:e42149. [PMID: 31650955 PMCID: PMC6834368 DOI: 10.7554/elife.42149] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 10/13/2019] [Indexed: 01/18/2023] Open
Abstract
The TORC1 regulator GATOR1/SEACIT controls meiotic entry and early meiotic events in yeast. However, how metabolic pathways influence meiotic progression in metazoans remains poorly understood. Here we examine the role of the TORC1 regulators GATOR1 and GATOR2 in the response to meiotic double-stranded breaks (DSB) during Drosophila oogenesis. We find that in mutants of the GATOR2 component mio, meiotic DSBs trigger the constitutive downregulation of TORC1 activity and a permanent arrest in oocyte growth. Conversely, in GATOR1 mutants, high TORC1 activity results in the delayed repair of meiotic DSBs and the hyperactivation of p53. Unexpectedly, we found that GATOR1 inhibits retrotransposon expression in the presence of meiotic DSBs in a pathway that functions in parallel to p53. Thus, our studies have revealed a link between oocyte metabolism, the repair of meiotic DSBs and retrotransposon expression.
Collapse
Affiliation(s)
- Youheng Wei
- Cell Biology and Neurobiology BranchNational Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
- College of Bioscience and BiotechnologyYangzhou UniversityYangzhouChina
| | - Lucia Bettedi
- Cell Biology and Neurobiology BranchNational Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| | - Chun-Yuan Ting
- Cell Biology and Neurobiology BranchNational Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| | - Kuikwon Kim
- Cell Biology and Neurobiology BranchNational Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| | - Yingbiao Zhang
- Cell Biology and Neurobiology BranchNational Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| | - Jiadong Cai
- College of Bioscience and BiotechnologyYangzhou UniversityYangzhouChina
| | - Mary A Lilly
- Cell Biology and Neurobiology BranchNational Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| |
Collapse
|
3
|
Wang Z, Schwacke R, Kunze R. DNA Damage-Induced Transcription of Transposable Elements and Long Non-coding RNAs in Arabidopsis Is Rare and ATM-Dependent. MOLECULAR PLANT 2016; 9:1142-1155. [PMID: 27150037 DOI: 10.1016/j.molp.2016.04.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 04/15/2016] [Accepted: 04/19/2016] [Indexed: 05/20/2023]
Abstract
Induction and mobilization of transposable elements (TEs) following DNA damage or other stresses has been reported in prokaryotes and eukaryotes. Recently it was discovered that eukaryotic TEs are frequently associated with long non-coding RNAs (lncRNAs), many of which are also upregulated by stress. Yet, it is unknown whether DNA damage-induced transcriptional activation of TEs and lncRNAs occurs sporadically or is a synchronized, genome-wide response. Here we investigated the transcriptome of Arabidopsis wild-type (WT) and ataxia telangiectasia mutated (atm) mutant plants 3 h after induction of DNA damage. In WT, expression of 5.2% of the protein-coding genes is ≥2-fold changed, whereas in atm plants, only 2.6% of these genes are regulated, and the response of genes associated with DNA repair, replication, and cell cycle is largely lost. In contrast, only less than 0.6% of TEs and lncRNAs respond to DNA damage in WT plants, and the regulation of ≥95% of them is ATM-dependent. The ATM-downstream factors BRCA1, DRM1, JMJ30, AGO2, and the ATM-independent AGO4 participate in the regulation of individual TEs and lncRNAs. Remarkably, protein-coding genes located adjacent to DNA damage-responsive TEs and lncRNAs are frequently coexpressed, which is consistent with the hypothesis that TEs and lncRNAs located close to genes commonly function as controlling elements.
Collapse
Affiliation(s)
- Zhenxing Wang
- Institute of Biology - Applied Genetics, Dahlem Centre of Plant Sciences - DCPS, Freie Universität Berlin, Albrecht-Thaler-Weg 6, 14195 Berlin, Germany
| | - Rainer Schwacke
- Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences, Plant Sciences (IBG-2), 52425 Jülich, Germany
| | - Reinhard Kunze
- Institute of Biology - Applied Genetics, Dahlem Centre of Plant Sciences - DCPS, Freie Universität Berlin, Albrecht-Thaler-Weg 6, 14195 Berlin, Germany.
| |
Collapse
|
4
|
Müller-Xing R, Xing Q, Goodrich J. Footprints of the sun: memory of UV and light stress in plants. FRONTIERS IN PLANT SCIENCE 2014; 5:474. [PMID: 25278950 PMCID: PMC4165212 DOI: 10.3389/fpls.2014.00474] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 08/28/2014] [Indexed: 05/18/2023]
Abstract
Sunlight provides the necessary energy for plant growth via photosynthesis but high light and particular its integral ultraviolet (UV) part causes stress potentially leading to serious damage to DNA, proteins, and other cellular components. Plants show adaptation to environmental stresses, sometimes referred to as "plant memory." There is growing evidence that plants memorize exposure to biotic or abiotic stresses through epigenetic mechanisms at the cellular level. UV target genes such as CHALCONE SYNTHASE (CHS) respond immediately to UV treatment and studies of the recently identified UV-B receptor UV RESISTANCE LOCUS 8 (UVR8) confirm the expedite nature of UV signaling. Considering these findings, an UV memory seems redundant. However, several lines of evidence suggest that plants may develop an epigenetic memory of UV and light stress, but in comparison to other abiotic stresses there has been relatively little investigation. Here we summarize the state of knowledge about acclimation and adaptation of plants to UV light and discuss the possibility of chromatin based epigenetic memory.
Collapse
Affiliation(s)
- Ralf Müller-Xing
- Institute of Genetics, Heinrich-Heine-UniversityDüsseldorf, Germany
| | - Qian Xing
- Institute of Genetics, Heinrich-Heine-UniversityDüsseldorf, Germany
| | - Justin Goodrich
- Institute for Molecular Plant Sciences, The University of EdinburghEdinburgh, UK
| |
Collapse
|
5
|
Müller-Xing R, Xing Q, Goodrich J. Footprints of the sun: memory of UV and light stress in plants. FRONTIERS IN PLANT SCIENCE 2014. [PMID: 25278950 DOI: 10.3389/fpls.2014.00474/abstract] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Sunlight provides the necessary energy for plant growth via photosynthesis but high light and particular its integral ultraviolet (UV) part causes stress potentially leading to serious damage to DNA, proteins, and other cellular components. Plants show adaptation to environmental stresses, sometimes referred to as "plant memory." There is growing evidence that plants memorize exposure to biotic or abiotic stresses through epigenetic mechanisms at the cellular level. UV target genes such as CHALCONE SYNTHASE (CHS) respond immediately to UV treatment and studies of the recently identified UV-B receptor UV RESISTANCE LOCUS 8 (UVR8) confirm the expedite nature of UV signaling. Considering these findings, an UV memory seems redundant. However, several lines of evidence suggest that plants may develop an epigenetic memory of UV and light stress, but in comparison to other abiotic stresses there has been relatively little investigation. Here we summarize the state of knowledge about acclimation and adaptation of plants to UV light and discuss the possibility of chromatin based epigenetic memory.
Collapse
Affiliation(s)
- Ralf Müller-Xing
- Institute of Genetics, Heinrich-Heine-University Düsseldorf, Germany
| | - Qian Xing
- Institute of Genetics, Heinrich-Heine-University Düsseldorf, Germany
| | - Justin Goodrich
- Institute for Molecular Plant Sciences, The University of Edinburgh Edinburgh, UK
| |
Collapse
|
6
|
Migicovsky Z, Kovalchuk I. Transgenerational changes in plant physiology and in transposon expression in response to UV-C stress in Arabidopsis thaliana. PLANT SIGNALING & BEHAVIOR 2014; 9:e976490. [PMID: 25482751 PMCID: PMC4622705 DOI: 10.4161/15592324.2014.976490] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 08/27/2014] [Accepted: 08/28/2014] [Indexed: 05/26/2023]
Abstract
Stress has a negative impact on crop yield by altering a gain in biomass and affecting seed set. Recent reports suggest that exposure to stress also influences the response of the progeny. In this paper, we analyzed seed size, leaf size, bolting time and transposon expression in 2 consecutive generations of Arabidopsis thaliana plants exposed to moderate UV-C stress. Since previous reports suggested a potential role of Dicer-like (DCL) proteins in the establishment of transgenerational response, we used dcl2, dcl3 and dcl4 mutants in parallel with wild-type plants. These studies revealed that leaf number decreased in the progeny of UV-C stressed plants, and bolting occurred later. Transposons were also re-activated in the progeny of stressed plants. Changes in the dcl mutants were less prominent than in wild-type plants. DCL2 and DCL3 appeared to be more important in the transgenerational stress memory than DCL4 because transgenerational changes were less profound in the dcl2 and dcl3 mutants.
Collapse
Affiliation(s)
- Zoe Migicovsky
- Department of Biological Sciences; University of Lethbridge; Lethbridge, AB, Canada
- Department of Biology; Dalhousie University; Halifax, Nova Scotia
| | - Igor Kovalchuk
- Department of Biological Sciences; University of Lethbridge; Lethbridge, AB, Canada
| |
Collapse
|
7
|
|
8
|
Grafi G, Florentin A, Ransbotyn V, Morgenstern Y. The stem cell state in plant development and in response to stress. FRONTIERS IN PLANT SCIENCE 2011; 2:53. [PMID: 22645540 PMCID: PMC3355748 DOI: 10.3389/fpls.2011.00053] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 09/03/2011] [Indexed: 05/18/2023]
Abstract
Stem cells are commonly defined by their developmental capabilities, namely, self-renewal and multitype differentiation, yet the biology of stem cells and their inherent features both in plants and animals are only beginning to be elucidated. In this review article we highlight the stem cell state in plants with reference to animals and the plastic nature of plant somatic cells often referred to as totipotency as well as the essence of cellular dedifferentiation. Based on recent published data, we illustrate the picture of stem cells with emphasis on their open chromatin conformation. We discuss the process of dedifferentiation and highlight its transient nature, its distinction from re-entry into the cell cycle and its activation following exposure to stress. We also discuss the potential hazard that can be brought about by stress-induced dedifferentiation and its major impact on the genome, which can undergo stochastic, abnormal reorganization leading to genetic variation by means of DNA transposition and/or DNA recombination.
Collapse
Affiliation(s)
- Gideon Grafi
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev Midreshet Ben-Gurion, Israel
| | | | | | | |
Collapse
|
9
|
Hua-Van A, Le Rouzic A, Boutin TS, Filée J, Capy P. The struggle for life of the genome's selfish architects. Biol Direct 2011; 6:19. [PMID: 21414203 PMCID: PMC3072357 DOI: 10.1186/1745-6150-6-19] [Citation(s) in RCA: 162] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Accepted: 03/17/2011] [Indexed: 01/28/2023] Open
Abstract
Transposable elements (TEs) were first discovered more than 50 years ago, but were totally ignored for a long time. Over the last few decades they have gradually attracted increasing interest from research scientists. Initially they were viewed as totally marginal and anecdotic, but TEs have been revealed as potentially harmful parasitic entities, ubiquitous in genomes, and finally as unavoidable actors in the diversity, structure, and evolution of the genome. Since Darwin's theory of evolution, and the progress of molecular biology, transposable elements may be the discovery that has most influenced our vision of (genome) evolution. In this review, we provide a synopsis of what is known about the complex interactions that exist between transposable elements and the host genome. Numerous examples of these interactions are provided, first from the standpoint of the genome, and then from that of the transposable elements. We also explore the evolutionary aspects of TEs in the light of post-Darwinian theories of evolution.
Collapse
Affiliation(s)
- Aurélie Hua-Van
- Laboratoire Evolution, Génomes, Spéciation, CNRS UPR9034/Université Paris-Sud, Gif-sur-Yvette, France.
| | | | | | | | | |
Collapse
|
10
|
Qian Y, Cheng X, Liu Y, Jiang H, Zhu S, Cheng B. Reactivation of a silenced minimal Mutator transposable element system following low-energy nitrogen ion implantation in maize. PLANT CELL REPORTS 2010; 29:1365-1376. [PMID: 20853000 DOI: 10.1007/s00299-010-0922-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 08/25/2010] [Accepted: 09/03/2010] [Indexed: 05/29/2023]
Abstract
In maize, Mutator transposable elements are either active or silenced within the genome. In response to environmental stress, silenced Mutator elements could be reactivated, leading to changes in genome structure and gene function. However, there is no direct experimental evidence linking environmental stress and Mutator transposon reactivation. Using a maize line that contains a single inactive MuDR and a lone nonautonomous Mutator element, a Mu1 insertion in the recessive reporter allele a1-mum2 in an inactive Mutator background, we directly assessed Mutator reactivation following low-energy nitrogen ion implantation. We observed that N(+) implantation decreased cytosine methylation in MuDR terminal inverted repeats and increased expression of mudrA and mudrB. Both changes were associated with increased transpositional activity of MuDR through reactivation of the inactive minimal Mutator transposable element system. This study provides direct evidence linking environmental stress agents and Mutator transposon mobilization in maize. In addition, the observed changes to DNA methylation suggest a new mechanism for mutations by low-energy ion implantation.
Collapse
Affiliation(s)
- Yexiong Qian
- Key Laboratory of Crop Biology, Anhui Agricultural University, Hefei, Anhui, China.
| | | | | | | | | | | |
Collapse
|
11
|
Abstract
Genome sizes vary considerably across all eukaryotes and even among closely related species. The genesis and evolutionary dynamics of that variation have generated considerable interest, as have the patterns of variation themselves. Here we review recent developments in our understanding of genome size evolution in plants, drawing attention to the higher order processes that can influence the mechanisms generating changing genome size.
Collapse
|
12
|
Abstract
Spontaneous silencing of MuDR/Mu transposons occurs in approximately 10-100% of the progeny of an active plant, and once silenced reactivation is very rare. To date, only radiation treatments have reactivated silenced Mu; for example UV-B radiation reactivated Mutator activities. Here we have investigated possible mechanisms by which UV-B could reactivate Mu transposons by monitoring transcript abundance, epigenetic DNA marks, and chromatin factors associated with these elements. We demonstrate that both mudrA and B transcripts are expressed at higher levels after an 8 h-UV-B treatment, in both active Mutator and silencing plants, and that different chromatin remodeling events occur in the promoter regions of MuDR than in non-autonomous Mu1 elements. Increased transcript abundance is accompanied by an increase in histone H3 acetylation and by decreased DNA and H3K9me2 methylation. No changes in siRNA levels were detected. In contrast, the decrease in H3K9me2 present at Mu elements after UV-B is significant in silencing plants, suggesting that early changes in H3 methylation in K9, chromatin remodeling, and transcription factor binding contribute directly to transposon reactivation by UV-B in maize.
Collapse
Affiliation(s)
- Julia I. Qüesta
- Centro de Estudios Fotosintéticos y Bioquímicos, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, 2000 Rosario, Argentina
| | - Virginia Walbot
- Department of Biology, Stanford University, Stanford, California 94305, United States
| | - Paula Casati
- Centro de Estudios Fotosintéticos y Bioquímicos, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, 2000 Rosario, Argentina
| |
Collapse
|
13
|
Rensing L, Koch M, Becker A. A comparative approach to the principal mechanisms of different memory systems. Naturwissenschaften 2009; 96:1373-84. [PMID: 19680619 DOI: 10.1007/s00114-009-0591-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Revised: 07/07/2009] [Accepted: 07/12/2009] [Indexed: 02/07/2023]
Abstract
The term "memory" applies not only to the preservation of information in neuronal and immune systems but also to phenomena observed for example in plants, single cells, and RNA viruses. We here compare the different forms of information storage with respect to possible common features. The latter may be characterized by (1) selection of pre-existing information, (2) activation of memory systems often including transcriptional, and translational, as well as epigenetic and genetic mechanisms, (3) subsequent consolidation of the activated state in a latent form (standby mode), and (4) reactivation of the latent state of memory systems when the organism is exposed to the same (or conditioned) signal or to previous selective constraints. These features apparently also exist in the "evolutionary memory," i.e., in evolving populations which have highly variable mutant spectra.
Collapse
Affiliation(s)
- Ludger Rensing
- Department of Biology, University of Bremen, 28334, Bremen, Germany.
| | | | | |
Collapse
|
14
|
Diversity of LTR-retrotransposons and Enhancer/Suppressor Mutator-like transposons in cassava (Manihot esculenta Crantz). Mol Genet Genomics 2008; 280:305-17. [DOI: 10.1007/s00438-008-0366-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Accepted: 07/02/2008] [Indexed: 11/28/2022]
|
15
|
Hollick JB. Sensing the epigenome. TRENDS IN PLANT SCIENCE 2008; 13:398-404. [PMID: 18562241 DOI: 10.1016/j.tplants.2008.05.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Revised: 05/08/2008] [Accepted: 05/09/2008] [Indexed: 05/26/2023]
Abstract
Recent studies of plant development and environmental stress responses have converged on the roles of RNA and its metabolism as primary regulators of gene action. This RNA-based system appears to represent a versatile platform both for maintaining epigenetic memory and for reprogramming gene control in response to external signals. The fast-paced research reviewed here highlights exciting new trends in plant research relating to mechanisms and roles of the RNA-dependent epigenome in both development and evolution.
Collapse
Affiliation(s)
- Jay B Hollick
- Department of Plant and Microbial Biology, 111 Koshland Hall, University of California, Berkeley, CA 94720-3102, USA.
| |
Collapse
|
16
|
Pérez-Hormaeche J, Potet F, Beauclair L, Le Masson I, Courtial B, Bouché N, Lucas H. Invasion of the Arabidopsis genome by the tobacco retrotransposon Tnt1 is controlled by reversible transcriptional gene silencing. PLANT PHYSIOLOGY 2008; 147:1264-78. [PMID: 18467467 PMCID: PMC2442547 DOI: 10.1104/pp.108.117846] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Accepted: 05/06/2008] [Indexed: 05/22/2023]
Abstract
Long terminal repeat (LTR) retrotransposons are generally silent in plant genomes. However, they often constitute a large proportion of repeated sequences in plants. This suggests that their silencing is set up after a certain copy number is reached and/or that it can be released in some circumstances. We introduced the tobacco (Nicotiana tabacum) LTR retrotransposon Tnt1 into Arabidopsis (Arabidopsis thaliana), thus mimicking the horizontal transfer of a retrotransposon into a new host species and allowing us to study the regulatory mechanisms controlling its amplification. Tnt1 is transcriptionally silenced in Arabidopsis in a copy number-dependent manner. This silencing is associated with 24-nucleotide short-interfering RNAs targeting the promoter localized in the LTR region and with the non-CG site methylation of these sequences. Consequently, the silencing of Tnt1 is not released in methyltransferase1 mutants, in contrast to decrease in DNA methylation1 or polymerase IVa mutants. Stable reversion of Tnt1 silencing is obtained when the number of Tnt1 elements is reduced to two by genetic segregation. Our results support a model in which Tnt1 silencing in Arabidopsis occurs via an RNA-directed DNA methylation process. We further show that silencing can be partially overcome by some stresses.
Collapse
Affiliation(s)
- Javier Pérez-Hormaeche
- Station de Génétique et d'Amélioration des Plantes, UR254, INRA, F-78026 Versailles, France
| | | | | | | | | | | | | |
Collapse
|
17
|
Lukens LN, Zhan S. The plant genome's methylation status and response to stress: implications for plant improvement. CURRENT OPINION IN PLANT BIOLOGY 2007; 10:317-22. [PMID: 17468039 DOI: 10.1016/j.pbi.2007.04.012] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2007] [Accepted: 04/16/2007] [Indexed: 05/15/2023]
Abstract
Plant improvement depends on generating phenotypic variation and selecting for characteristics that are heritable. Classical genetics and early molecular genetics studies on single genes showed that differences in chromatin structure, especially cytosine methylation, can contribute to heritable phenotypic variation. Recent molecular genetic and genomic studies have revealed a new importance of cytosine methylation for gene regulation and have identified RNA interference (RNAi)-related proteins that are necessary for methylation. Methylation differences among plants can be caused by cis- or trans-acting DNA polymorphisms or by epigenetic phenomena. Although regulatory proteins might be important in creating this variation, recent examples highlight the central role of transposable elements and DNA repeats in generating both genetic and epigenetic methylation polymorphisms. The plant genome's response to environmental and genetic stress generates both novel genetic and epigenetic methylation polymorphisms. Novel, stress-induced genotypes may contribute to phenotypic diversity and plant improvement.
Collapse
Affiliation(s)
- Lewis N Lukens
- Department of Plant Agriculture, University of Guelph, Guelph, Ontario, Canada, N1G2W1.
| | | |
Collapse
|
18
|
Gbadegesin MA, Gomez-Vasq R, Reilly K, Beeching JR. Transcriptionally Active Mutator-like Transposable Elements in the Genome of Cassava (Manihot esculenta Crantz). ACTA ACUST UNITED AC 2006. [DOI: 10.3923/ajps.2007.129.136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
19
|
Arends HM, Jehle JA. Sequence analysis and quantification of transposase cDNAs of transposon TCp3.2 in Cydia pomonella larvae. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2006; 63:135-45. [PMID: 17048244 DOI: 10.1002/arch.20149] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The Tc1-like transposable element TCp3.2 was previously found to be horizontally transferred from the genome of Cydia pomonella to the C. pomonella granulovirus (CpGV). In this study, the transcription of transposase genes of endogenous TCp3.2 copies in the insect host genome was investigated. Cloning and sequencing of cDNAs prepared from TCp3.2 transposase transcripts resulted in the identification of a 199-bp-long intron. Sequence heterogeneities among different cDNA clones suggested that multiple copies of the transposase are transcribed, but that a part of these copies encode a defective transposase. The actin gene of C. pomonella was cloned and sequenced, and used to standardise quantitative real time PCR on prepared cDNA of the TCp3.2 transposase. Comparison of cDNA levels of TCp3.2 transposase prepared from mock and CpGV-infected C. pomonella larvae did not provide evidence that CpGV infection influenced the transcription level of TCp3.2 transposase.
Collapse
Affiliation(s)
- Hugo M Arends
- Department of Phytopathology, Laboratory for Biotechnological Crop Protection, Agricultural Service Center Palatinate (DLR Rheinpfalz), Breitenweg 71, 67435 Neustadt an der Weinstrasse, Germany
| | | |
Collapse
|
20
|
Molinier J, Ries G, Zipfel C, Hohn B. Transgeneration memory of stress in plants. Nature 2006; 442:1046-9. [PMID: 16892047 DOI: 10.1038/nature05022] [Citation(s) in RCA: 364] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2006] [Accepted: 06/29/2006] [Indexed: 12/14/2022]
Abstract
Owing to their sessile nature, plants are constantly exposed to a multitude of environmental stresses to which they react with a battery of responses. The result is plant tolerance to conditions such as excessive or inadequate light, water, salt and temperature, and resistance to pathogens. Not only is plant physiology known to change under abiotic or biotic stress, but changes in the genome have also been identified. However, it was not determined whether plants from successive generations of the original, stressed plants inherited the capacity for genomic change. Here we show that in Arabidopsis thaliana plants treated with short-wavelength radiation (ultraviolet-C) or flagellin (an elicitor of plant defences), somatic homologous recombination of a transgenic reporter is increased in the treated population and these increased levels of homologous recombination persist in the subsequent, untreated generations. The epigenetic trait of enhanced homologous recombination could be transmitted through both the maternal and the paternal crossing partner, and proved to be dominant. The increase of the hyper-recombination state in generations subsequent to the treated generation was independent of the presence of the transgenic allele (the recombination substrate under consideration) in the treated plant. We conclude that environmental factors lead to increased genomic flexibility even in successive, untreated generations, and may increase the potential for adaptation.
Collapse
Affiliation(s)
- Jean Molinier
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
| | | | | | | |
Collapse
|
21
|
An G, Jeong DH, Jung KH, Lee S. Reverse genetic approaches for functional genomics of rice. PLANT MOLECULAR BIOLOGY 2005; 59:111-23. [PMID: 16217606 DOI: 10.1007/s11103-004-4037-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2004] [Accepted: 09/30/2004] [Indexed: 05/04/2023]
Abstract
T-DNA and transposable elements e.g., Ds and Tos17, are used to generate a large number of insertional mutant lines in rice. Some carry the GUS or GFP reporter for gene trap or enhancer trap. These reporter systems are valuable for identifying tissue- or organ-preferential genes. Activation tagging lines have also been generated for screening mutants and isolating mutagenized genes. To utilize these resources more efficiently, tagged lines have been produced for reverse genetic approaches. DNA pools of the T-DNA tagged lines and Tos17 lines have been prepared for PCR screening of insertional mutants in a given gene. Tag end sequences (TES) of the inserts have also been produced. TES databases are beneficial for analyzing the function of a large number of rice genes.
Collapse
Affiliation(s)
- Gynheung An
- National Research Laboratory of Plant Functional Genomics, Division of Molecular and Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Korea.
| | | | | | | |
Collapse
|
22
|
Abstract
Now that sequencing of the rice genome is nearly completed, functional analysis of its large number of genes is the next challenge. Because rice is easy to transform, T-DNA has been used successfully to generate insertional mutant lines. Collectively, several laboratories throughout the world have established at least 200,000 T-DNA insertional lines. Some of those carry the GUS or GFP reporters for either gene or enhancer traps. Others are activation tagging lines for gain-of-function mutagenesis when T-DNA is inserted in the intergenic region. A forward genetic approach showed limited success because of somaclonal variations induced during tissue culture. To utilize these resources more efficiently, tagged lines have been produced for reverse genetics approaches. DNA pools of the T-DNA-tagged lines have been prepared for polymerase chain reaction (PCR) screening of insertional mutants in a given gene. Appropriate T-DNA insertion sites are determined by sequencing the region flanking the T-DNA. This information is then used to make databases that are shared with the scientific community. International efforts on seed amplification and maintenance are needed to exploit these valuable materials efficiently.
Collapse
Affiliation(s)
- Gynheung An
- National Research Laboratory of Plant Functional Genomics, Division of Molecular and Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Korea.
| | | | | | | |
Collapse
|
23
|
Kovalchuk I, Kovalchuk O, Kalck V, Boyko V, Filkowski J, Heinlein M, Hohn B. Pathogen-induced systemic plant signal triggers DNA rearrangements. Nature 2003; 423:760-2. [PMID: 12802336 DOI: 10.1038/nature01683] [Citation(s) in RCA: 180] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2002] [Accepted: 04/14/2003] [Indexed: 11/08/2022]
Abstract
Plant genome stability is known to be affected by various abiotic environmental conditions, but little is known about the effect of pathogens. For example, exposure of maize plants to barley stripe mosaic virus seems to activate transposable elements and to cause mutations in the non-infected progeny of infected plants. The induction by barley stripe mosaic virus of an inherited effect may mean that the virus has a non-cell-autonomous influence on genome stability. Infection with Peronospora parasitica results in an increase in the frequency of somatic recombination in Arabidopsis thaliana; however, it is unclear whether effects on recombination require the presence of the pathogen or represent a systemic plant response. It is also not clear whether the changes in the frequency of somatic recombination can be inherited. Here we report a threefold increase in homologous recombination frequency in both infected and non-infected tissue of tobacco plants infected with either tobacco mosaic virus or oilseed rape mosaic virus. These results indicate the existence of a systemic recombination signal that also results in an increased frequency of meiotic and/or inherited late somatic recombination.
Collapse
Affiliation(s)
- Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada.
| | | | | | | | | | | | | |
Collapse
|
24
|
Adé J, Belzile FJ. Hairpin elements, the first family of foldback transposons (FTs) in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1999; 19:591-597. [PMID: 10504580 DOI: 10.1046/j.1365-313x.1999.00567.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We report here on the identification in Arabidopsis thaliana of a new family of transposable elements named Hairpin. These elements are related to foldback transposons (FTs), a large and heterogeneous group of transposable elements first described in Drosophila and recently in Solanaceae. Hairpin elements are the first family of FTs reported in Arabidopsis thaliana and the first family of FTs of type 3 to be described in the plant kingdom. In contrast to previous FTs described, Hairpin appears to be a homogeneous family in size (238 +/- 7 bp) as well as in structure. Hairpin elements are dispersed in the Arabidopsis genome and Southern hybridization revealed that they are present in relatively low copy numbers. Finally, we discuss the potential usefulness of these elements in studying the phylogenetic relationship between Arabidopsis ecotypes.
Collapse
Affiliation(s)
- J Adé
- Département de phytologie, Pavillon C.-E. Marchand, Université Laval, Ste-Foy, Canada
| | | |
Collapse
|
25
|
Abstract
A new mutagenesis assay system based on the phage 434 cI gene carried on a low-copy number plasmid was used to investigate the effect of UV light on intermolecular transposition of IS10. Inactivation of the target gene by IS10 insertion was detected by the expression of the tet gene from the phage 434 PR promoter, followed by Southern blot analysis of plasmids isolated from TetR colonies. UV irradiation of cells harboring the target plasmid and a donor plasmid carrying an IS10 element led to an increase of up to 28-fold in IS10 transposition. Each UV-induced transposition of IS10 was accompanied by fusion of the donor and acceptor plasmid into a cointegrate structure, due to coupled homologous recombination at the insertion site, similar to the situation in spontaneous IS10 transposition. UV radiation also induced transposition of IS10 from the chromosome to the target plasmid, leading almost exclusively to the integration of the target plasmid into the chromosome. UV induction of IS10 transposition did not depend on the umuC and uvrA gene product, but it was not observed in lexA3 and DeltarecA strains, indicating that the SOS stress response is involved in regulating UV-induced transposition. IS10 transposition, known to increase the fitness of Escherichia coli, may have been recruited under the SOS response to assist in increasing cell survival under hostile environmental conditions. To our knowledge, this is the first report on the induction of transposition by a DNA-damaging agent and the SOS stress response in bacteria.
Collapse
Affiliation(s)
- Z Eichenbaum
- Department of Biological Chemistry, Faculty of Biochemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|
26
|
Abstract
The biological impact of any DNA damaging agent is a combined function of the chemical nature of the induced lesions and the efficiency and accuracy of their repair. Although much has been learned from microbes and mammals about both the repair of DNA damage and the biological effects of the persistence of these lesions, much remains to be learned about the mechanism and tissue-specificity of repair in plants. This review focuses on recent work on the induction and repair of DNA damage in higher plants, with special emphasis on UV-induced DNA damage products.
Collapse
Affiliation(s)
- Anne B. Britt
- Section of Plant Biology, University of California, Davis, California 95616
| |
Collapse
|
27
|
Abstract
Homology-dependent gene silencing phenomena in plants have received considerable attention, especially when it was discovered that the presence of homologous sequences not only affected the stability of transgene expression, but that the activity of endogenous genes could be altered after insertion of homologous transgenes into the genome. Homology-mediated inactivation most likely comprises at least two different molecular mechanisms that induce gene silencing at the transcriptional or posttranscriptional level, respectively. In this review we discuss different mechanistic models for plant-specific inactivation mechanisms and their relationship with repeat-specific silencing phenomena in other species.
Collapse
Affiliation(s)
- P. Meyer
- Max-Delbruck-Laboratorium in der MPG, Carl-von-Linne Weg 10, Koln, D-50829 Germany, Centre for Plant Biochemistry & Biotechnology and Department of Genetics, University of Leeds, Leeds LS2 9JT, United Kingdom, Max-Planck-Institut fur Zuchtungsforschung, Carl-von-Line Weg 10, Koln, D-50829 Germany
| | | |
Collapse
|
28
|
Henskens YM, Veerman EC, Nieuw Amerongen AV. Cystatins in health and disease. BIOLOGICAL CHEMISTRY HOPPE-SEYLER 1996; 377:71-86. [PMID: 8868064 DOI: 10.1515/bchm3.1996.377.2.71] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Proteolytic enzymes have many physiological functions in plants, bacteria, viruses, protozoa and mammals. They play a role in processes such as food digestion, complement activation or blood coagulation. The action of proteolytic enzymes is biologically controlled by proteinase inhibitors and increasing attention is being paid to the physiological significance of these natural inhibitors in pathological processes. The reason for this growing interest is that uncontrolled proteolysis can lead to irreversible damage e.g. in chronic inflammation or tumor metastasis. This review focusses on the possible role of the cystatins, natural and specific inhibitors of the cysteine proteinases, in pathological processes.
Collapse
Affiliation(s)
- Y M Henskens
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), Netherlands
| | | | | |
Collapse
|
29
|
Affiliation(s)
- J L Bennetzen
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
30
|
ten Lohuis M, Galliano H, Heidmann I, Meyer P. Treatment with propionic and butyric acid enhances expression variegation and promoter methylation in plant transgenes. BIOLOGICAL CHEMISTRY HOPPE-SEYLER 1995; 376:311-20. [PMID: 7662173 DOI: 10.1515/bchm3.1995.376.5.311] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Two phenotypic marker genes (A1 and GUS) were employed to monitor the influence of small chain fatty acids on transgene expression in petunia and tobacco. In plants homozygous with respect to the A1 transgene, which normally carry red flowers due to A1 expression, fatty acid treatment induced a range of variegated and white pigmentation patterns which persisted for several months after terminating the treatment. The inhibitory effect was clearly less pronounced for heterozygous plants of the same transgenic line. In all cases the reduction of transgene activities correlated with an increase in transgene promoter methylation. Contrary to evidence reported for mammals and Drosophila, we do not observe an increase in gene expression, but an enhancement of DNA methylation and epigenetic variegation. The inhibition of transgene activity was also observed in several tobacco transformants cultured on fatty acid containing media. Some tobacco transformants carrying Gus-coding regions driven by either 35S or 1'2' promoters responded with a significant reduction in GUS activity. This study suggests that, rather than exerting a general response on all chromatin regions, fatty acids appear to affect genes in a labile epigenetic surrounding or all genes in a susceptible chromatin configuration. Thus, application of these agents may be useful to screen and monitor transgenes prone to epigenetic instabilities.
Collapse
Affiliation(s)
- M ten Lohuis
- Max Delbrück-Laboratorium in der Max-Planck-Gesellschaft, Köln, Germany
| | | | | | | |
Collapse
|
31
|
Ingelbrecht I, Van Houdt H, Van Montagu M, Depicker A. Posttranscriptional silencing of reporter transgenes in tobacco correlates with DNA methylation. Proc Natl Acad Sci U S A 1994; 91:10502-6. [PMID: 7937983 PMCID: PMC45049 DOI: 10.1073/pnas.91.22.10502] [Citation(s) in RCA: 158] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Endogenous plant genes or transgenes can be silenced on introduction of homologous gene sequences. Here we document a reporter gene-silencing event in Nicotiana tabacum that has a distinctive combination of features--i.e., (i) silencing occurs by a posttranscriptional process, (ii) silencing correlates with DNA methylation, and (iii) this de novo methylation is not restricted to cytosines located in the symmetrical motifs CG and CXG.
Collapse
Affiliation(s)
- I Ingelbrecht
- Laboratorium voor Genetica, Universiteit Gent, Belgium
| | | | | | | |
Collapse
|
32
|
Abstract
Recent studies on transposable elements (TEs) have shed light on the mechanisms that have shaped their evolution. In addition to accumulating nucleotide substitutions over evolutionary time, TEs appear to be especially prone to genetic rearrangements and vertical transmissions across even distantly related species. As a consequence of replicating in host genomes, TEs have a significant mutational effect on their hosts. Although most TE-insertion mutations seem to exert a negative effect on host fitness, a growing body of evidence indicates that some TE-mediated genetic changes have become established features of host species genomes indicating that TEs can contribute significantly to organismic evolution.
Collapse
Affiliation(s)
- J F McDonald
- Department of Genetics, University of Georgia, Athens 30602
| |
Collapse
|