1
|
Multiple sensors provide spatiotemporal oxygen regulation of gene expression in a Rhizobium-legume symbiosis. PLoS Genet 2021; 17:e1009099. [PMID: 33539353 PMCID: PMC7888657 DOI: 10.1371/journal.pgen.1009099] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 02/17/2021] [Accepted: 12/04/2020] [Indexed: 01/04/2023] Open
Abstract
Regulation by oxygen (O2) in rhizobia is essential for their symbioses with plants and involves multiple O2 sensing proteins. Three sensors exist in the pea microsymbiont Rhizobium leguminosarum Rlv3841: hFixL, FnrN and NifA. At low O2 concentrations (1%) hFixL signals via FxkR to induce expression of the FixK transcription factor, which activates transcription of downstream genes. These include fixNOQP, encoding the high-affinity cbb3-type terminal oxidase used in symbiosis. In free-living Rlv3841, the hFixL-FxkR-FixK pathway was active at 1% O2, and confocal microscopy showed hFixL-FxkR-FixK activity in the earliest stages of Rlv3841 differentiation in nodules (zones I and II). Work on Rlv3841 inside and outside nodules showed that the hFixL-FxkR-FixK pathway also induces transcription of fnrN at 1% O2 and in the earliest stages of Rlv3841 differentiation in nodules. We confirmed past findings suggesting a role for FnrN in fixNOQP expression. However, unlike hFixL-FxkR-FixK, Rlv3841 FnrN was only active in the near-anaerobic zones III and IV of pea nodules. Quantification of fixNOQP expression in nodules showed this was driven primarily by FnrN, with minimal direct hFixL-FxkR-FixK induction. Thus, FnrN is key for full symbiotic expression of fixNOQP. Without FnrN, nitrogen fixation was reduced by 85% in Rlv3841, while eliminating hFixL only reduced fixation by 25%. The hFixL-FxkR-FixK pathway effectively primes the O2 response by increasing fnrN expression in early differentiation (zones I-II). In zone III of mature nodules, near-anaerobic conditions activate FnrN, which induces fixNOQP transcription to the level required for wild-type nitrogen fixation activity. Modelling and transcriptional analysis indicates that the different O2 sensitivities of hFixL and FnrN lead to a nuanced spatiotemporal pattern of gene regulation in different nodule zones in response to changing O2 concentration. Multi-sensor O2 regulation is prevalent in rhizobia, suggesting the fine-tuned control this enables is common and maximizes the effectiveness of the symbioses. Rhizobia are soil bacteria that form a symbiosis with legume plants. In exchange for shelter from the plant, rhizobia provide nitrogen fertilizer, produced by nitrogen fixation. Fixation is catalysed by the nitrogenase enzyme, which is inactivated by oxygen. To prevent this, plants house rhizobia in root nodules, which create a low oxygen environment. However, rhizobia need oxygen, and must adapt to survive the low oxygen concentration in the nodule. Key to this is regulating their genes based on oxygen concentration. We studied one Rhizobium species which uses three different protein sensors of oxygen, each turning on at a different oxygen concentration. As the bacteria get deeper inside the plant nodule and the oxygen concentration drops, each sensor switches on in turn. Our results also show that the first sensor to turn on, hFixL, primes the second sensor, FnrN. This prepares the rhizobia for the core region of the nodule where oxygen concentration is lowest and most nitrogen fixation takes place. If both sensors are removed, the bacteria cannot fix nitrogen. Many rhizobia have several oxygen sensing proteins, so using multiple sensors is likely a common strategy enabling rhizobia to adapt to low oxygen precisely and in stages during symbiosis.
Collapse
|
2
|
Abstract
Rhizobia are α- and β-proteobacteria that form a symbiotic partnership with legumes, fixing atmospheric dinitrogen to ammonia and providing it to the plant. Oxygen regulation is key in this symbiosis. Fixation is performed by an oxygen-intolerant nitrogenase enzyme but requires respiration to meet its high energy demands. To satisfy these opposing constraints the symbiotic partners cooperate intimately, employing a variety of mechanisms to regulate and respond to oxygen concentration. During symbiosis rhizobia undergo significant changes in gene expression to differentiate into nitrogen-fixing bacteroids. Legumes host these bacteroids in specialized root organs called nodules. These generate a near-anoxic environment using an oxygen diffusion barrier, oxygen-binding leghemoglobin and control of mitochondria localization. Rhizobia sense oxygen using multiple interconnected systems which enable a finely-tuned response to the wide range of oxygen concentrations they experience when transitioning from soil to nodules. The oxygen-sensing FixL-FixJ and hybrid FixL-FxkR two-component systems activate at relatively high oxygen concentration and regulate fixK transcription. FixK activates the fixNOQP and fixGHIS operons producing a high-affinity terminal oxidase required for bacterial respiration in the microaerobic nodule. Additionally or alternatively, some rhizobia regulate expression of these operons by FnrN, an FNR-like oxygen-sensing protein. The final stage of symbiotic establishment is activated by the NifA protein, regulated by oxygen at both the transcriptional and protein level. A cross-species comparison of these systems highlights differences in their roles and interconnections but reveals common regulatory patterns and themes. Future work is needed to establish the complete regulon of these systems and identify other regulatory signals.
Collapse
Affiliation(s)
- Paul J Rutten
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | - Philip S Poole
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
3
|
Aquino B, Stefanello AA, Oliveira MAS, Pedrosa FO, Souza EM, Monteiro RA, Chubatsu LS. Effect of point mutations on Herbaspirillum seropedicae NifA activity. ACTA ACUST UNITED AC 2015; 48:683-90. [PMID: 26176311 PMCID: PMC4541686 DOI: 10.1590/1414-431x20154522] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 03/26/2015] [Indexed: 11/21/2022]
Abstract
NifA is the transcriptional activator of the nif genes in
Proteobacteria. It is usually regulated by nitrogen and oxygen, allowing biological
nitrogen fixation to occur under appropriate conditions. NifA proteins have a typical
three-domain structure, including a regulatory N-terminal GAF domain, which is
involved in control by fixed nitrogen and not strictly required for activity, a
catalytic AAA+ central domain, which catalyzes open complex formation, and a
C-terminal domain involved in DNA-binding. In Herbaspirillum
seropedicae, a β-proteobacterium capable of colonizing Graminae of
agricultural importance, NifA regulation by ammonium involves its N-terminal GAF
domain and the signal transduction protein GlnK. When the GAF domain is removed, the
protein can still activate nif genes transcription; however,
ammonium regulation is lost. In this work, we generated eight constructs resulting in
point mutations in H. seropedicae NifA and analyzed their effect on
nifH transcription in Escherichia coli and
H. seropedicae. Mutations K22V, T160E, M161V, L172R, and A215D
resulted in inactive proteins. Mutations Q216I and S220I produced partially active
proteins with activity control similar to wild-type NifA. However, mutation G25E,
located in the GAF domain, resulted in an active protein that did not require GlnK
for activity and was partially sensitive to ammonium. This suggested that G25E may
affect the negative interaction between the N-terminal GAF domain and the catalytic
central domain under high ammonium concentrations, thus rendering the protein
constitutively active, or that G25E could lead to a conformational change comparable
with that when GlnK interacts with the GAF domain.
Collapse
Affiliation(s)
- B Aquino
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, PR, Brasil
| | - A A Stefanello
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, PR, Brasil
| | - M A S Oliveira
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, PR, Brasil
| | - F O Pedrosa
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, PR, Brasil
| | - E M Souza
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, PR, Brasil
| | - R A Monteiro
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, PR, Brasil
| | - L S Chubatsu
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, PR, Brasil
| |
Collapse
|
4
|
Nishikawa CY, Araújo LM, Kadowaki MAS, Monteiro RA, Steffens MBR, Pedrosa FO, Souza EM, Chubatsu LS. Expression and characterization of an N-truncated form of the NifA protein of Azospirillum brasilense. Braz J Med Biol Res 2012; 45:113-7. [PMID: 22267004 PMCID: PMC3854256 DOI: 10.1590/s0100-879x2012007500006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 01/09/2012] [Indexed: 12/03/2022] Open
Abstract
Azospirillum brasilense is a nitrogen-fixing bacterium associated with important agricultural crops such as rice, wheat and maize. The expression of genes responsible for nitrogen fixation (nif genes) in this bacterium is dependent on the transcriptional activator NifA. This protein contains three structural domains: the N-terminal domain is responsible for the negative control by fixed nitrogen; the central domain interacts with the RNA polymerase σ54 factor and the C-terminal domain is involved in DNA binding. The central and C-terminal domains are linked by the interdomain linker (IDL). A conserved four-cysteine motif encompassing the end of the central domain and the IDL is probably involved in the oxygen-sensitivity of NifA. In the present study, we have expressed, purified and characterized an N-truncated form of A. brasilense NifA. The protein expression was carried out in Escherichia coli and the N-truncated NifA protein was purified by chromatography using an affinity metal-chelating resin followed by a heparin-bound resin. Protein homogeneity was determined by densitometric analysis. The N-truncated protein activated in vivo nifH::lacZ transcription regardless of fixed nitrogen concentration (absence or presence of 20 mM NH4Cl) but only under low oxygen levels. On the other hand, the aerobically purified N-truncated NifA protein bound to the nifB promoter, as demonstrated by an electrophoretic mobility shift assay, implying that DNA-binding activity is not strictly controlled by oxygen levels. Our data show that, while the N-truncated NifA is inactive in vivo under aerobic conditions, it still retains DNA-binding activity, suggesting that the oxidized form of NifA bound to DNA is not competent to activate transcription.
Collapse
Affiliation(s)
- C Y Nishikawa
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, PR, Brasil
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Oliveira MA, Baura VA, Aquino B, Huergo LF, Kadowaki MA, Chubatsu LS, Souza EM, Dixon R, Pedrosa FO, Wassem R, Monteiro RA. Role of conserved cysteine residues in Herbaspirillum seropedicae NifA activity. Res Microbiol 2009; 160:389-95. [DOI: 10.1016/j.resmic.2009.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Revised: 05/29/2009] [Accepted: 06/10/2009] [Indexed: 11/24/2022]
|
6
|
Brencic A, Winans SC. Detection of and response to signals involved in host-microbe interactions by plant-associated bacteria. Microbiol Mol Biol Rev 2005; 69:155-94. [PMID: 15755957 PMCID: PMC1082791 DOI: 10.1128/mmbr.69.1.155-194.2005] [Citation(s) in RCA: 195] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Diverse interactions between hosts and microbes are initiated by the detection of host-released chemical signals. Detection of these signals leads to altered patterns of gene expression that culminate in specific and adaptive changes in bacterial physiology that are required for these associations. This concept was first demonstrated for the members of the family Rhizobiaceae and was later found to apply to many other plant-associated bacteria as well as to microbes that colonize human and animal hosts. The family Rhizobiaceae includes various genera of rhizobia as well as species of Agrobacterium. Rhizobia are symbionts of legumes, which fix nitrogen within root nodules, while Agrobacterium tumefaciens is a pathogen that causes crown gall tumors on a wide variety of plants. The plant-released signals that are recognized by these bacteria are low-molecular-weight, diffusible molecules and are detected by the bacteria through specific receptor proteins. Similar phenomena are observed with other plant pathogens, including Pseudomonas syringae, Ralstonia solanacearum, and Erwinia spp., although here the signals and signal receptors are not as well defined. In some cases, nutritional conditions such as iron limitation or the lack of nitrogen sources seem to provide a significant cue. While much has been learned about the process of host detection over the past 20 years, our knowledge is far from being complete. The complex nature of the plant-microbe interactions makes it extremely challenging to gain a comprehensive picture of host detection in natural environments, and thus many signals and signal recognition systems remain to be described.
Collapse
Affiliation(s)
- Anja Brencic
- Department of Microbiology, 361A Wing Hall, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
7
|
Abstract
Biological nitrogen fixation, a process found only in some prokaryotes, is catalyzed by the nitrogenase enzyme complex. Bacteria containing nitrogenase occupy an indispensable ecological niche, supplying fixed nitrogen to the global nitrogen cycle. Due to this inceptive role in the nitrogen cycle, diazotrophs are present in virtually all ecosystems, with representatives in environments as varied as aerobic soils (e.g., Azotobacter species), the ocean surface layer (Trichodesmium) and specialized nodules in legume roots (Rhizobium). In any ecosystem, diazotrophs must respond to varied environmental conditions to regulate the tremendously taxing nitrogen fixation process. All characterized diazotrophs regulate nitrogenase at the transcriptional level. A smaller set also possesses a fast-acting post-translational regulation system. Although there is little apparent variation in the sequences and structures of nitrogenases, there appear to be almost as many nitrogenase-regulating schemes as there are nitrogen-fixing species. Herein are described the paradigms of nitrogenase function, transcriptional control and post-translational regulation, as well as the variations on these schemes, described in various nitrogen-fixing bacteria. Regulation is described on a molecular basis, focusing on the functional and structural characteristics of the proteins responsible for control of nitrogen fixation.
Collapse
Affiliation(s)
- C M Halbleib
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
| | | |
Collapse
|
8
|
Abstract
This review discusses various mechanisms that regulatory proteins use to control gene expression in response to alterations in redox. The transcription factor SoxR contains stable [2Fe-2S] centers that promote transcription activation when oxidized. FNR contains [4Fe-4S] centers that disassemble under oxidizing conditions, which affects DNA-binding activity. FixL is a histidine sensor kinase that utilizes heme as a cofactor to bind oxygen, which affects its autophosphorylation activity. NifL is a flavoprotein that contains FAD as a redox responsive cofactor. Under oxidizing conditions, NifL binds and inactivates NifA, the transcriptional activator of the nitrogen fixation genes. OxyR is a transcription factor that responds to redox by breaking or forming disulfide bonds that affect its DNA-binding activity. The ability of the histidine sensor kinase ArcB to promote phosphorylation of the response regulator ArcA is affected by multiple factors such as anaerobic metabolites and the redox state of the membrane. The global regulator of anaerobic gene expression in alpha-purple proteobacteria, RegB, appears to directly monitor respiratory activity of cytochrome oxidase. The aerobic repressor of photopigment synthesis, CrtJ, seems to contain a redox responsive cysteine. Finally, oxygen-sensitive rhizobial NifA proteins presumably bind a metal cofactor that senses redox. The functional variability of these regulatory proteins demonstrates that prokaryotes apply many different mechanisms to sense and respond to alterations in redox.
Collapse
Affiliation(s)
- C E Bauer
- Department of Biology, Indiana University, Bloomington 47405, USA
| | | | | |
Collapse
|
9
|
Osuna J, Soberón X, Morett E. A proposed architecture for the central domain of the bacterial enhancer-binding proteins based on secondary structure prediction and fold recognition. Protein Sci 1997; 6:543-55. [PMID: 9070437 PMCID: PMC2143673 DOI: 10.1002/pro.5560060304] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The expression of genes transcribed by the RNA polymerase with the alternative sigma factor sigma 54 (E sigma 54) is absolutely dependent on activator proteins that bind to enhancer-like sites, located far upstream from the promoter. These unique prokaryotic proteins, known as enhancer-binding proteins (EBP), mediate open promoter complex formation in a reaction dependent on NTP hydrolysis. The best characterized proteins of this family of regulators are NtrC and NifA, which activate genes required for ammonia assimilation and nitrogen fixation, respectively. In a recent IRBM course (@ontiers of protein structure prediction," IRBM, Pomezia, Italy, 1995; see web site http://www.mrc-cpe.cam.uk/irbm-course95/), one of us (J.O.) participated in the elaboration of the proposal that the Central domain of the EBPs might adopt the classical mononucleotide-binding fold. This suggestion was based on the results of a new protein fold recognition algorithm (Map) and in the mapping of correlated mutations calculated for the sequence family on the same mononucleotide-binding fold topology. In this work, we present new data that support the previous conclusion. The results from a number of different secondary structure prediction programs suggest that the Central domain could adopt an alpha/beta topology. The fold recognition programs ProFIT 0.9, 3D PROFILE combined with secondary structure prediction, and 123D suggest a mononucleotide-binding fold topology for the Central domain amino acid sequence. Finally, and most importantly, three of five reported residue alterations that impair the Central domain. ATPase activity of the E sigma 54 activators are mapped to polypeptide regions that might be playing equivalent roles as those involved in nucleotide-binding in the mononucleotide-binding proteins. Furthermore, the known residue substitution that alter the function of the E sigma 54 activators, leaving intact the Central domain ATPase activity, are mapped on region proposed to play an equivalent role as the effector region of the GTPase superfamily.
Collapse
Affiliation(s)
- J Osuna
- Departamento de Reconocimiento Molecular Bioestructura, Universidad Nacional Autónoma de México, México.
| | | | | |
Collapse
|
10
|
Screen S, Watson J, Dixon R. Oxygen sensitivity and metal ion-dependent transcriptional activation by NIFA protein from Rhizobium leguminosarum biovar trifolii. MOLECULAR & GENERAL GENETICS : MGG 1994; 245:313-22. [PMID: 7816041 DOI: 10.1007/bf00290111] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The NIFA protein from Rhizobium leguminosarum biovar trifolii (R. trifolii) strain ANU843 lacks an N-terminal domain present in homologous NIFA proteins from other diazotrophs. The R. trifolii nifA gene product is unstable when expressed in Escherichia coli under both aerobic and microaerobic conditions. Stability is increased by fusion of additional amino acids to the N-terminus of the protein or by expression of nifA in sno mutant (presumed protease deficient) strains of E. coli. Transcriptional activation in vivo by R. trifolii NIFA decreases under aerobic growth conditions, or when cultures are depleted of metal ions. In sno mutant strains this decrease in activity reflects a loss of specific activity rather than proteolytic degradation, implying that R. trifolii NIFA requires metal ions for activity and is oxygen sensitive. The addition of 30 amino acids to the amino-terminus of R. trifoli NIFA results in an oxygen-tolerant protein, with metal ion-dependent activity. Metal ions are therefore not only required for oxygen sensing by R. trifolii NIFA but may play an additional role in determining NIFA structure or activity.
Collapse
Affiliation(s)
- S Screen
- Agricultural and Food Research Council, University of Sussex, Brighton, UK
| | | | | |
Collapse
|
11
|
Abstract
This review presents a comparison between the complex genetic regulatory networks that control nitrogen fixation in three representative rhizobial species, Rhizobium meliloti, Bradyrhizobium japonicum, and Azorhizobium caulinodans. Transcription of nitrogen fixation genes (nif and fix genes) in these bacteria is induced primarily by low-oxygen conditions. Low-oxygen sensing and transmission of this signal to the level of nif and fix gene expression involve at least five regulatory proteins, FixL, FixJ, FixK, NifA, and RpoN (sigma 54). The characteristic features of these proteins and their functions within species-specific regulatory pathways are described. Oxygen interferes with the activities of two transcriptional activators, FixJ and NifA. FixJ activity is modulated via phosphorylation-dephosphorylation by the cognate sensor hemoprotein FixL. In addition to the oxygen responsiveness of the NifA protein, synthesis of NifA is oxygen regulated at the level of transcription. This type of control includes FixLJ in R. meliloti and FixLJ-FixK in A. caulinodans or is brought about by autoregulation in B. japonicum. NifA, in concert with sigma 54 RNA polymerase, activates transcription from -24/-12-type promoters associated with nif and fix genes and additional genes that are not directly involved in nitrogen fixation. The FixK proteins constitute a subgroup of the Crp-Fnr family of bacterial regulators. Although the involvement of FixLJ and FixK in nifA regulation is remarkably different in the three rhizobial species discussed here, they constitute a regulatory cascade that uniformly controls the expression of genes (fixNOQP) encoding a distinct cytochrome oxidase complex probably required for bacterial respiration under low-oxygen conditions. In B. japonicum, the FixLJ-FixK cascade also controls genes for nitrate respiration and for one of two sigma 54 proteins.
Collapse
Affiliation(s)
- H M Fischer
- Mikrobiologisches Institut, Eidgenössische Technische Hochschule, ETH-Zentrum, Zürich, Switzerland
| |
Collapse
|
12
|
Michiels J, D'hooghe I, Verreth C, Pelemans H, Vanderleyden J. Characterization of the Rhizobium leguminosarum biovar phaseoli nifA gene, a positive regulator of nif gene expression. Arch Microbiol 1994; 161:404-8. [PMID: 8042903 DOI: 10.1007/bf00288950] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We report the isolation, mutational analysis and the nucleotide sequence of the Rhizobium leguminosarum bv. phaseoli nifA gene. Comparison of the deduced amino acid sequence with other NifA sequences indicated the presence of the conserved central activator and the C-terminal DNA-binding domains. Nodules elicited by a R. leguminosarum bv. phaseoli nifA mutant were symbiotically ineffective. The expression of a nifA-gusA fusion was shown to be independent on the oxygen status of the cell. We cloned the three nifH copies of R. leguminosarum bv. phaseoli and determined the nucleotide sequence of their promoter regions. The expression of nifH-gusA fusions is induced under microaerobic conditions and is dependent on the presence of NifA.
Collapse
Affiliation(s)
- J Michiels
- F. A. Janssens Laboratory of Genetics, Catholic University of Leuven, Heverlee, Belgium
| | | | | | | | | |
Collapse
|
13
|
Abstract
Rhizobia are gram-negative bacteria with two distinct habitats: the soil rhizosphere in which they have a saprophytic and, usually, aerobic life and a plant ecological niche, the legume nodule, which constitutes a microoxic environment compatible with the operation of the nitrogen reducing enzyme nitrogenase. The purpose of this review is to summarize the present knowledge of the changes induced in these bacteria when shifting to a microoxic environment. Oxygen concentration regulates the expression of two major metabolic pathways: energy conservation by respiratory chains and nitrogen fixation. After reviewing the genetic data on these metabolic pathways and their response to oxygen we will put special emphasis on the regulatory molecules which are involved in the control of gene expression. We will show that, although homologous regulatory molecules allow response to oxygen in different species, they are assembled in various combinations resulting in a variable regulatory coupling between genes for microaerobic respiration and nitrogen fixation genes. The significance of coordinated regulation of genes not essential for nitrogen fixation with nitrogen fixation genes will also be discussed.
Collapse
Affiliation(s)
- J Batut
- Laboratoire de Biologie Moléculaire des Relations Plantes-Microorganismes, CNRS INRA, Castanet-Tolosan, France
| | | |
Collapse
|