1
|
Wekesa C, Jalloh AA, Muoma JO, Korir H, Omenge KM, Maingi JM, Furch ACU, Oelmüller R. Distribution, Characterization and the Commercialization of Elite Rhizobia Strains in Africa. Int J Mol Sci 2022; 23:ijms23126599. [PMID: 35743041 PMCID: PMC9223902 DOI: 10.3390/ijms23126599] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 02/04/2023] Open
Abstract
Grain legumes play a significant role in smallholder farming systems in Africa because of their contribution to nutrition and income security and their role in fixing nitrogen. Biological Nitrogen Fixation (BNF) serves a critical role in improving soil fertility for legumes. Although much research has been conducted on rhizobia in nitrogen fixation and their contribution to soil fertility, much less is known about the distribution and diversity of the bacteria strains in different areas of the world and which of the strains achieve optimal benefits for the host plants under specific soil and environmental conditions. This paper reviews the distribution, characterization, and commercialization of elite rhizobia strains in Africa.
Collapse
Affiliation(s)
- Clabe Wekesa
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany and Plant Physiology, Friedrich-Schiller-University Jena, Dornburger Str. 159, 07743 Jena, Germany; (C.W.); (K.M.O.); (A.C.U.F.)
| | - Abdul A. Jalloh
- International Centre of Insect Physiology and Ecology, P.O. Box 30772, Nairobi 00100, Kenya;
| | - John O. Muoma
- Department of Biological Sciences, Masinde Muliro University of Science and Technology, P.O. Box 190, Kakamega 50100, Kenya;
| | - Hezekiah Korir
- Crops, Horticulture and Soils Department, Egerton University, P.O. Box 536, Egerton 20115, Kenya;
| | - Keziah M. Omenge
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany and Plant Physiology, Friedrich-Schiller-University Jena, Dornburger Str. 159, 07743 Jena, Germany; (C.W.); (K.M.O.); (A.C.U.F.)
| | - John M. Maingi
- Department of Biochemistry, Microbiology and Biotechnology, Kenyatta University, P.O. Box 43844, Nairobi 00100, Kenya;
| | - Alexandra C. U. Furch
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany and Plant Physiology, Friedrich-Schiller-University Jena, Dornburger Str. 159, 07743 Jena, Germany; (C.W.); (K.M.O.); (A.C.U.F.)
| | - Ralf Oelmüller
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany and Plant Physiology, Friedrich-Schiller-University Jena, Dornburger Str. 159, 07743 Jena, Germany; (C.W.); (K.M.O.); (A.C.U.F.)
- Correspondence: ; Tel.: +49-3641949232
| |
Collapse
|
2
|
Abstract
As the only enzyme currently known to reduce dinitrogen (N2) to ammonia (NH3), nitrogenase is of significant interest for bio-inspired catalyst design and for new biotechnologies aiming to produce NH3 from N2. In order to reduce N2, nitrogenase must also hydrolyze at least 16 equivalents of adenosine triphosphate (MgATP), representing the consumption of a significant quantity of energy available to biological systems. Here, we review natural and engineered electron transfer pathways to nitrogenase, including strategies to redirect or redistribute electron flow in vivo towards NH3 production. Further, we also review strategies to artificially reduce nitrogenase in vitro, where MgATP hydrolysis is necessary for turnover, in addition to strategies that are capable of bypassing the requirement of MgATP hydrolysis to achieve MgATP-independent N2 reduction.
Collapse
|
3
|
Freeman MF, Helf MJ, Bhushan A, Morinaka BI, Piel J. Seven enzymes create extraordinary molecular complexity in an uncultivated bacterium. Nat Chem 2016; 9:387-395. [DOI: 10.1038/nchem.2666] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 10/02/2016] [Indexed: 12/20/2022]
|
4
|
Liu J, Chakraborty S, Hosseinzadeh P, Yu Y, Tian S, Petrik I, Bhagi A, Lu Y. Metalloproteins containing cytochrome, iron-sulfur, or copper redox centers. Chem Rev 2014; 114:4366-469. [PMID: 24758379 PMCID: PMC4002152 DOI: 10.1021/cr400479b] [Citation(s) in RCA: 620] [Impact Index Per Article: 56.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Indexed: 02/07/2023]
Affiliation(s)
- Jing Liu
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Saumen Chakraborty
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Parisa Hosseinzadeh
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yang Yu
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Shiliang Tian
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Igor Petrik
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Ambika Bhagi
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yi Lu
- Department of Chemistry, Department of Biochemistry, and Center for Biophysics
and Computational
Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
5
|
Zhao H, Li M, Fang K, Chen W, Wang J. In silico insights into the symbiotic nitrogen fixation in Sinorhizobium meliloti via metabolic reconstruction. PLoS One 2012; 7:e31287. [PMID: 22319621 PMCID: PMC3272708 DOI: 10.1371/journal.pone.0031287] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Accepted: 01/05/2012] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Sinorhizobium meliloti is a soil bacterium, known for its capability to establish symbiotic nitrogen fixation (SNF) with leguminous plants such as alfalfa. S. meliloti 1021 is the most extensively studied strain to understand the mechanism of SNF and further to study the legume-microbe interaction. In order to provide insight into the metabolic characteristics underlying the SNF mechanism of S. meliloti 1021, there is an increasing demand to reconstruct a metabolic network for the stage of SNF in S. meliloti 1021. RESULTS Through an iterative reconstruction process, a metabolic network during the stage of SNF in S. meliloti 1021 was presented, named as iHZ565, which accounts for 565 genes, 503 internal reactions, and 522 metabolites. Subjected to a novelly defined objective function, the in silico predicted flux distribution was highly consistent with the in vivo evidences reported previously, which proves the robustness of the model. Based on the model, refinement of genome annotation of S. meliloti 1021 was performed and 15 genes were re-annotated properly. There were 19.8% (112) of the 565 metabolic genes included in iHZ565 predicted to be essential for efficient SNF in bacteroids under the in silico microaerobic and nutrient sharing condition. CONCLUSIONS As the first metabolic network during the stage of SNF in S. meliloti 1021, the manually curated model iHZ565 provides an overview of the major metabolic properties of the SNF bioprocess in S. meliloti 1021. The predicted SNF-required essential genes will facilitate understanding of the key functions in SNF and help identify key genes and design experiments for further validation. The model iHZ565 can be used as a knowledge-based framework for better understanding the symbiotic relationship between rhizobia and legumes, ultimately, uncovering the mechanism of nitrogen fixation in bacteroids and providing new strategies to efficiently improve biological nitrogen fixation.
Collapse
Affiliation(s)
- Hansheng Zhao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People's Republic of China
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Mao Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Kechi Fang
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Wenfeng Chen
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People's Republic of China
- * E-mail: (WC); (JW)
| | - Jing Wang
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, People's Republic of China
- * E-mail: (WC); (JW)
| |
Collapse
|
6
|
Calusinska M, Happe T, Joris B, Wilmotte A. The surprising diversity of clostridial hydrogenases: a comparative genomic perspective. MICROBIOLOGY-SGM 2010; 156:1575-1588. [PMID: 20395274 DOI: 10.1099/mic.0.032771-0] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Among the large variety of micro-organisms capable of fermentative hydrogen production, strict anaerobes such as members of the genus Clostridium are the most widely studied. They can produce hydrogen by a reversible reduction of protons accumulated during fermentation to dihydrogen, a reaction which is catalysed by hydrogenases. Sequenced genomes provide completely new insights into the diversity of clostridial hydrogenases. Building on previous reports, we found that [FeFe] hydrogenases are not a homogeneous group of enzymes, but exist in multiple forms with different modular structures and are especially abundant in members of the genus Clostridium. This unusual diversity seems to support the central role of hydrogenases in cell metabolism. In particular, the presence of multiple putative operons encoding multisubunit [FeFe] hydrogenases highlights the fact that hydrogen metabolism is very complex in this genus. In contrast with [FeFe] hydrogenases, their [NiFe] hydrogenase counterparts, widely represented in other bacteria and archaea, are found in only a few clostridial species. Surprisingly, a heteromultimeric Ech hydrogenase, known to be an energy-converting [NiFe] hydrogenase and previously described only in methanogenic archaea and some sulfur-reducing bacteria, was found to be encoded by the genomes of four cellulolytic strains: Clostridum cellulolyticum, Clostridum papyrosolvens, Clostridum thermocellum and Clostridum phytofermentans.
Collapse
Affiliation(s)
- Magdalena Calusinska
- Center for Protein Engineering, University of Liège, Allée de la Chimie 3, B4000 Liège, Belgium
| | - Thomas Happe
- Lehrstuhl für Biochemie der Pflanzen, AG, Photobiotechnologie, Ruhr - Universität Bochum, 44780 Bochum, Germany
| | - Bernard Joris
- Center for Protein Engineering, University of Liège, Allée de la Chimie 3, B4000 Liège, Belgium
| | - Annick Wilmotte
- Center for Protein Engineering, University of Liège, Allée de la Chimie 3, B4000 Liège, Belgium
| |
Collapse
|
7
|
Insight into the protein and solvent contributions to the reduction potentials of [4Fe-4S]2+/+ clusters: crystal structures of the Allochromatium vinosum ferredoxin variants C57A and V13G and the homologous Escherichia coli ferredoxin. J Biol Inorg Chem 2009; 14:783-99. [PMID: 19290553 DOI: 10.1007/s00775-009-0492-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Accepted: 02/26/2009] [Indexed: 10/21/2022]
Abstract
The crystal structures of the C57A and V13G molecular variants of Allochromatium vinosum 2[4Fe-4S] ferredoxin (AlvinFd) and that of the homologous ferredoxin from Escherichia coli (EcFd) have been determined at 1.05-, 1.48-, and 1.65-A resolution, respectively. The present structures combined with cyclic voltammetry studies establish clear effects of the degree of exposure of the cluster with the lowest reduction potential (cluster I) towards less negative reduction potentials (E degrees ). This is better illustrated by V13G AlvinFd (high exposure, E degrees = -594 mV) and EcFd (low exposure, E degrees = -675 mV). In C57A AlvinFd, the movement of the protein backbone, as a result of replacing the noncoordinating Cys57 by Ala, leads to a +50-mV upshift of the potential of the nearby cluster I, by removal of polar interactions involving the thiolate group and adjustment of the hydrogen-bond network involving the cluster atoms. In addition, the present structures and other previously reported accurate structures of this family of ferredoxins indicate that polar interactions of side chains and water molecules with cluster II sulfur atoms, which are absent in the environment of cluster I, are correlated to the approximately 180-250 mV difference between the reduction potentials of clusters I and II. These findings provide insight into the significant effects of subtle structural differences of the protein and solvent environment around the clusters of [4Fe-4S] ferredoxins on their electrochemical properties.
Collapse
|
8
|
Schlüter A, Krahn I, Kollin F, Bönemann G, Stiens M, Szczepanowski R, Schneiker S, Pühler A. IncP-1-beta plasmid pGNB1 isolated from a bacterial community from a wastewater treatment plant mediates decolorization of triphenylmethane dyes. Appl Environ Microbiol 2007; 73:6345-50. [PMID: 17675426 PMCID: PMC2075058 DOI: 10.1128/aem.01177-07] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Accepted: 07/27/2007] [Indexed: 11/20/2022] Open
Abstract
Plasmid pGNB1 was isolated from bacteria residing in the activated sludge compartment of a wastewater treatment plant by using a transformation-based approach. This 60-kb plasmid confers resistance to the triphenylmethane dye crystal violet and enables its host bacterium to decolorize crystal violet. Partial sequencing of pGNB1 revealed that its backbone is very similar to that of previously sequenced IncP-1beta plasmids. The two accessory regions of the plasmid, one located downstream of the replication initiation gene trfA and the other located between the conjugative transfer modules Tra and Trb, were completely sequenced. Accessory region L1 contains a transposon related to Tn5501 and a gene encoding a Cupin 2 conserved barrel protein with an unknown function. The triphenylmethane reductase gene tmr and a truncated dihydrolipoamide dehydrogenase gene that is flanked by IS1071 and another putative insertion element were identified in accessory region L2. Subcloning of the pGNB1 tmr gene demonstrated that this gene is responsible for the observed crystal violet resistance phenotype and mediates decolorization of the triphenylmethane dyes crystal violet, malachite green, and basic fuchsin. Plasmid pGNB1 and the associated phenotype are transferable to the alpha-proteobacterium Sinorhizobium meliloti and the gamma-proteobacterium Escherichia coli. This is the first report of a promiscuous IncP-1beta plasmid isolated from the bacterial community from a wastewater treatment plant that harbors a triphenylmethane reductase gene. The pGNB1-encoded enzyme activity is discussed with respect to bioremediation of sewage polluted with triphenylmethane dyes.
Collapse
Affiliation(s)
- Andreas Schlüter
- Fakultät für Biologie, Lehrstuhl für Genetik, Universität Bielefeld, Postfach 100131, D-33501 Bielefeld, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Bönemann G, Stiens M, Pühler A, Schlüter A. Mobilizable IncQ-related plasmid carrying a new quinolone resistance gene, qnrS2, isolated from the bacterial community of a wastewater treatment plant. Antimicrob Agents Chemother 2006; 50:3075-80. [PMID: 16940104 PMCID: PMC1563527 DOI: 10.1128/aac.00378-06] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Plasmid-encoded quinolone resistance was previously reported for different bacteria isolated from patients not only in the United States and Asia but also in Europe. Here we describe the isolation, by applying a new selection strategy, of the quinolone resistance plasmid pGNB2 from an activated sludge bacterial community of a wastewater treatment plant in Germany. The hypersensitive Escherichia coli strain KAM3 carrying a mutation in the multidrug efflux system genes acrAB was transformed with total plasmid DNA preparations isolated from activated sludge bacteria and subsequently selected on medium containing the fluoroquinolone norfloxacin. This approach resulted in the isolation of plasmid pGNB2 conferring decreased susceptibility to nalidixic acid and to different fluoroquinolones. Analysis of the pGNB2 nucleotide sequence revealed that it is 8,469 bp in size and has a G+C content of 58.2%. The plasmid backbone is composed of a replication initiation module (repA-repC) belonging to the IncQ-family and a two-component mobilization module that confers horizontal mobility to the plasmid. In addition, plasmid pGNB2 carries an accessory module consisting of a transposon Tn1721 remnant and the quinolone resistance gene, qnrS2, that is 92% identical to the qnrS gene located on plasmid pAH0376 from Shigella flexneri 2b. QnrS2 belongs to the pentapeptide repeat protein family and is predicted to protect DNA-gyrase activity against quinolones. This is not only the first report on a completely sequenced plasmid mediating quinolone resistance isolated from an environmental sample but also on the first qnrS-like gene detected in Europe.
Collapse
Affiliation(s)
- Gabriele Bönemann
- Fakultät für Biologie, Lehrstuhl für Genetik, Universität Bielefeld, Postfach 100131, D-33501 Bielefeld, Germany
| | | | | | | |
Collapse
|
10
|
Beck BW, Xie Q, Ichiye T. Sequence determination of reduction potentials by cysteinyl hydrogen bonds and peptide pipoles in [4Fe-4S] ferredoxins. Biophys J 2001; 81:601-13. [PMID: 11463610 PMCID: PMC1301538 DOI: 10.1016/s0006-3495(01)75726-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A sequence determinant of reduction potentials is reported for bacterial [4Fe-4S]-type ferredoxins. The residue that is four residues C-terminal to the fourth ligand of either cluster is generally an alanine or a cysteine. In five experimental ferredoxin structures, the cysteine has the same structural orientation relative to the nearest cluster, which is stabilized by the SH...S bond. Although such bonds are generally considered weak, indications that Fe-S redox site sulfurs are better hydrogen-bond acceptors than most sulfurs include the numerous amide NH...S bonds noted by Adman and our quantum mechanical calculations. Furthermore, electrostatic potential calculations of 11 experimental ferredoxin structures indicate that the extra cysteine decreases the reduction potential relative to an alanine by approximately 60 mV, in agreement with experimental mutational studies. Moreover, the decrease in potential is due to a shift in the polar backbone stabilized by the SH...S bond rather than to the slightly polar cysteinyl side chain. Thus, these cysteines can "tune" the reduction potential, which could optimize electron flow in an electron transport chain. More generally, hydrogen bonds involving sulfur can be important in protein structure/function, and mutations causing polar backbone shifts can alter electrostatics and thus affect redox properties or even enzymatic activity of a protein.
Collapse
Affiliation(s)
- B W Beck
- Department of Biochemistry and Biophysics, School of Molecular Biosciences, Washington State University, Pullman, Washington 99164, USA
| | | | | |
Collapse
|
11
|
Bahar M, de Majnik J, Wexler M, Fry J, Poole PS, Murphy PJ. A model for the catabolism of rhizopine in Rhizobium leguminosarum involves a ferredoxin oxygenase complex and the inositol degradative pathway. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 1998; 11:1057-1068. [PMID: 9805393 DOI: 10.1094/mpmi.1998.11.11.1057] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Rhizopines are nodule-specific compounds that confer an intraspecies competitive nodulation advantage to strains that can catabolize them. The rhizopine (3-O-methyl-scyllo-inosamine, 3-O-MSI) catabolic moc gene cluster mocCABRDE(F) in Rhizobium leguminosarum bv. viciae strain 1a is located on the Sym plasmid. MocCABR are homologous to the mocCABR gene products from Sinorhizobium meliloti. MocD and MocE contain motifs corresponding to a TOL-like oxygenase and a [2Fe-2S] Rieske-like ferredoxin, respectively. The mocF gene encodes a ferredoxin reductase that would complete the oxygenase system, but is not essential for rhizopine catabolism. We propose a rhizopine catabolic model whereby MocB transports rhizopine into the cell and MocDE and MocF (or a similar protein elsewhere in the genome), under the regulation of MocR, act in concert to form a ferredoxin oxygenase system that demethylates 3-O-MSI to form scyllo-inosamine (SI). MocA, an NAD(H)-dependent dehydrogenase, and MocC continue the catabolic process. Compounds formed then enter the inositol catabolic pathway.
Collapse
Affiliation(s)
- M Bahar
- Department of Crop Protection, University of Adelaide, Australia
| | | | | | | | | | | |
Collapse
|
12
|
Saeki K, Tokuda KI, Fukuyama K, Matsubara H, Nadanami K, Go M, Itoh S. Site-specific mutagenesis of Rhodobacter capsulatus ferredoxin I, FdxN, that functions in nitrogen fixation. Role of extra residues. J Biol Chem 1996; 271:31399-406. [PMID: 8940149 DOI: 10.1074/jbc.271.49.31399] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
One of the two [4Fe-4S]-type clusters of the Rhodobacter capsulatus ferredoxin I, FdxN, was modified through site-specific mutagenesis of the distinctive features of the second cluster-binding motif, Cys38-X2-Cys41-X8-Cys50-X3-Cys54-X4-Cys59. First, various mutagenized products were tested to learn whether they could rescue the decreased capacity of an fdxN-null strain MSA1 to fix nitrogen: the phenotype of MSA1 was reassessed to Nifs (slow growth by nitrogen fixation) from our previous description of Nif- (Saeki, K., Suetsugu, Y., Tokuda, K., Miyatake, Y., Young, D. A., Marrs, B. L. and Matsubara, H. (1991) J. Biol. Chem. 266, 12889-12895). Substitution of Cys59 to Ser yielded an almost fully active product, while that of Cys54 did not. Gradual deletions and deletion-substitution of the 8 residues between Cys41 and Cys50 also yielded active products. Second, three of the modified FdxN proteins were subjected to purification. Only the GA protein, whose 8 residues between positions 42 and 49 were replaced by the Gly-Ala sequence, was purified. The GA protein and the authentic FdxN showed similar optical properties. The two clusters in the former had Em values of -490 and -430 mV, while those in the latter had an identical value of -490 mV, when determined by EPR analysis. It was concluded that: 1) Cys59 is not a ligand to [4Fe-4S] clusters but is important for structural integrity, 2) the residues between positions 42 and 49 may form a "loop-out" from a structure analogous to the Peptococcus aerogenes ferredoxin, and 3) the loop-out region does not have functional significance in nitrogen fixation but may be responsible for maintaining the highly negative redox potential of one of the two clusters.
Collapse
Affiliation(s)
- K Saeki
- Department of Biology, Graduate School of Science, Osaka University, Toyonaka, Osaka 560
| | | | | | | | | | | | | |
Collapse
|
13
|
Jouanneau Y, Meyer C, Naud I, Klipp W. Characterization of an fdxN mutant of Rhodobacter capsulatus indicates that ferredoxin I serves as electron donor to nitrogenase. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1232:33-42. [PMID: 7495836 DOI: 10.1016/0005-2728(95)00106-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A mutant of Rhodobacter capsulatus, carrying an insertion into the fdxN gene encoding ferredoxin I (FdI), has been studied by biochemical analysis and genetic complementation experiments. When compared to the wild-type strain, the fdxN mutant exhibited altered nitrogen fixing ability and 20-fold lower levels of nitrogenase activity as assayed in vivo. When assayed in vitro with an artificial reductant, nitrogenase activity was only 3- to 4-fold lower than in the wild type. These results suggested that the FdI-deleted mutant had impaired electron transport to nitrogenase. Immunochemical assay of both nitrogenase components showed that the fdxN mutant contained about 4-fold less enzyme than wild-type cells. Results of pulse-chase labeling experiments using [35S]methionine indicated that nitrogenase was significantly less stable in the FdI-deleted mutant. When a copy of fdxN was introduced in the mutant in trans, the resulting strain appeared to be fully complemented with respect to both diazotrophic growth and nitrogenase activity. Depending on whether fdxN expression was driven by a nif promoter or a fructose-inducible promoter, FdI was synthesized either at wild-type level or in 10-fold lower amounts. The strain producing 10-fold less FdI did, however, display normal N2-fixing ability. Analysis of cytosolic proteins by bidimensional electrophoresis revealed that the fdxN mutant produced a 14 kDa polypeptide in amounts about 3-fold greater than wild-type cells. This protein was identified by N-terminal microsequencing as a recently purified [2Fe-2S] ferredoxin, called FdV, which cannot reduce nitrogenase. It is concluded that FdI serves as the main electron donor to nitrogenase in R. capsulatus and that an ancillary electron carrier, distinct of FdV, is responsible for the residual nitrogenase activity observed in the FdI-deleted mutant.
Collapse
Affiliation(s)
- Y Jouanneau
- Département de Biologie Moléculaire et Structurale, Centre d'Etudes Nucléaires de Grenoble, France
| | | | | | | |
Collapse
|
14
|
Riedel KU, Jouanneau Y, Masepohl B, Pühler A, Klipp W. A Rhizobium meliloti ferredoxin (FdxN) purified from Escherichia coli donates electrons to Rhodobacter capsulatus nitrogenase. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 231:742-6. [PMID: 7649175 DOI: 10.1111/j.1432-1033.1995.tb20756.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The fdxN gene from Rhizobium meliloti encoding a bacterial-type ferredoxin (FdxN) was expressed in Escherichia coli under the control of the lac promoter. The fdxN gene product was purified under anaerobic conditions by ion-exchange chromatography and gel-filtration steps using an antiserum raised against an FdxN-LacZ fusion protein as a detection system. The purified ferredoxin was shown to be identical to the predicted R. meliloti FdxN protein in its amino acid composition and N-terminal amino acid sequence. Chemical determination of the iron content revealed 8.6 +/- 0.6 mol Fe/mol FdxN. The ultraviolet/visible absorption spectrum of the FdxN protein in the oxidized form exhibited maxima at 284 nm and 378 nm, with an A378/A284 ratio of 0.7. EPR spectroscopy revealed a rhombic signal when FdxN was partially reduced, and a broad signal indicative of spin-spin interaction when fully reduced, suggesting the presence of two Fe-S cluster/ferredoxin polypeptide. Our data suggest that FdxN contains two [4Fe-4S] clusters. Purified FdxN was able to mediate electron transport between illuminated chloroplasts and Rhodobacter capsulatus nitrogenase in vitro.
Collapse
Affiliation(s)
- K U Riedel
- Lehrstuhl für Genetik, Fakultät für Biologie, Universität Bielefeld, Germany
| | | | | | | | | |
Collapse
|
15
|
Abstract
This review presents a comparison between the complex genetic regulatory networks that control nitrogen fixation in three representative rhizobial species, Rhizobium meliloti, Bradyrhizobium japonicum, and Azorhizobium caulinodans. Transcription of nitrogen fixation genes (nif and fix genes) in these bacteria is induced primarily by low-oxygen conditions. Low-oxygen sensing and transmission of this signal to the level of nif and fix gene expression involve at least five regulatory proteins, FixL, FixJ, FixK, NifA, and RpoN (sigma 54). The characteristic features of these proteins and their functions within species-specific regulatory pathways are described. Oxygen interferes with the activities of two transcriptional activators, FixJ and NifA. FixJ activity is modulated via phosphorylation-dephosphorylation by the cognate sensor hemoprotein FixL. In addition to the oxygen responsiveness of the NifA protein, synthesis of NifA is oxygen regulated at the level of transcription. This type of control includes FixLJ in R. meliloti and FixLJ-FixK in A. caulinodans or is brought about by autoregulation in B. japonicum. NifA, in concert with sigma 54 RNA polymerase, activates transcription from -24/-12-type promoters associated with nif and fix genes and additional genes that are not directly involved in nitrogen fixation. The FixK proteins constitute a subgroup of the Crp-Fnr family of bacterial regulators. Although the involvement of FixLJ and FixK in nifA regulation is remarkably different in the three rhizobial species discussed here, they constitute a regulatory cascade that uniformly controls the expression of genes (fixNOQP) encoding a distinct cytochrome oxidase complex probably required for bacterial respiration under low-oxygen conditions. In B. japonicum, the FixLJ-FixK cascade also controls genes for nitrate respiration and for one of two sigma 54 proteins.
Collapse
Affiliation(s)
- H M Fischer
- Mikrobiologisches Institut, Eidgenössische Technische Hochschule, ETH-Zentrum, Zürich, Switzerland
| |
Collapse
|
16
|
von Sternberg R, Yoch DC. Molecular cloning and sequencing of the ferredoxin I fdxN gene of the photosynthetic bacterium Rhodospirillum rubrum. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1144:435-8. [PMID: 8399287 DOI: 10.1016/0005-2728(93)90131-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Using an oligonucleotide probe derived from the amino acid sequence of Rhodospirillum rubrum ferredoxin I, the gene (fdxN) was identified, cloned and sequenced. The FdxN coding region is 183 nucleotides which codes for a 61 amino acid (7267 Da) protein. Phylogenetic comparisons between the R. rubrum FdI and other 8Fe-8S nif-coupled ferredoxins showed only moderate degrees of similarity between the amino acid sequences. R. rubrum FdI synthesis was stimulated by nif derepressing conditions, but was not completely repressed by nif repression. Previous reports of an extracellular clostridial-type ferredoxin in R. rubrum could not be confirmed.
Collapse
Affiliation(s)
- R von Sternberg
- Department of Biological Sciences, University of South Carolina, Columbia 29208
| | | |
Collapse
|