1
|
Maroilley T, Flibotte S, Jean F, Rodrigues Alves Barbosa V, Galbraith A, Chida AR, Cotra F, Li X, Oncea L, Edgley M, Moerman D, Tarailo-Graovac M. Genome sequencing of C. elegans balancer strains reveals previously unappreciated complex genomic rearrangements. Genome Res 2023; 33:154-167. [PMID: 36617680 PMCID: PMC9977149 DOI: 10.1101/gr.276988.122] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Genetic balancers in Caenorhabditis elegans are complex variants that allow lethal or sterile mutations to be stably maintained in a heterozygous state by suppressing crossover events. Balancers constitute an invaluable tool in the C. elegans scientific community and have been widely used for decades. The first/traditional balancers were created by applying X-rays, UV, or gamma radiation on C. elegans strains, generating random genomic rearrangements. Their structures have been mostly explored with low-resolution genetic techniques (e.g., fluorescence in situ hybridization or PCR), before genomic mapping and molecular characterization through sequencing became feasible. As a result, the precise nature of most chromosomal rearrangements remains unknown, whereas, more recently, balancers have been engineered using the CRISPR-Cas9 technique for which the structure of the chromosomal rearrangement has been predesigned. Using short-read whole-genome sequencing (srWGS) and tailored bioinformatic analyses, we previously interpreted the structure of four chromosomal balancers randomly created by mutagenesis processes. Here, we have extended our analyses to five CRISPR-Cas9 balancers and 17 additional traditional balancing rearrangements. We detected and experimentally validated their breakpoints and have interpreted the balancer structures. Many of the balancers were found to be more intricate than previously described, being composed of complex genomic rearrangements (CGRs) such as chromoanagenesis-like events. Furthermore, srWGS revealed additional structural variants and CGRs not known to be part of the balancer genomes. Altogether, our study provides a comprehensive resource of complex genomic variations in C. elegans and highlights the power of srWGS to study the complexity of genomes by applying tailored analyses.
Collapse
Affiliation(s)
- Tatiana Maroilley
- Departments of Biochemistry, Molecular Biology and Medical Genetics, Cumming School of Medicine, University of Calgary, Alberta T2N 4N1, Canada;,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Stephane Flibotte
- UBC/LSI Bioinformatics Facility, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Francesca Jean
- Departments of Biochemistry, Molecular Biology and Medical Genetics, Cumming School of Medicine, University of Calgary, Alberta T2N 4N1, Canada;,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Victoria Rodrigues Alves Barbosa
- Departments of Biochemistry, Molecular Biology and Medical Genetics, Cumming School of Medicine, University of Calgary, Alberta T2N 4N1, Canada;,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Andrew Galbraith
- Departments of Biochemistry, Molecular Biology and Medical Genetics, Cumming School of Medicine, University of Calgary, Alberta T2N 4N1, Canada;,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Afiya Razia Chida
- Departments of Biochemistry, Molecular Biology and Medical Genetics, Cumming School of Medicine, University of Calgary, Alberta T2N 4N1, Canada;,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Filip Cotra
- Departments of Biochemistry, Molecular Biology and Medical Genetics, Cumming School of Medicine, University of Calgary, Alberta T2N 4N1, Canada;,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Xiao Li
- Departments of Biochemistry, Molecular Biology and Medical Genetics, Cumming School of Medicine, University of Calgary, Alberta T2N 4N1, Canada;,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Larisa Oncea
- Departments of Biochemistry, Molecular Biology and Medical Genetics, Cumming School of Medicine, University of Calgary, Alberta T2N 4N1, Canada;,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Mark Edgley
- Department of Zoology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Don Moerman
- Department of Zoology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Maja Tarailo-Graovac
- Departments of Biochemistry, Molecular Biology and Medical Genetics, Cumming School of Medicine, University of Calgary, Alberta T2N 4N1, Canada;,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| |
Collapse
|
2
|
Li-Leger E, Feichtinger R, Flibotte S, Holzkamp H, Schnabel R, Moerman DG. Identification of essential genes in Caenorhabditis elegans through whole genome sequencing of legacy mutant collections. G3-GENES GENOMES GENETICS 2021; 11:6373896. [PMID: 34550348 PMCID: PMC8664450 DOI: 10.1093/g3journal/jkab328] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/27/2021] [Indexed: 01/23/2023]
Abstract
It has been estimated that 15%–30% of the ∼20,000 genes in C. elegans are essential, yet many of these genes remain to be identified or characterized. With the goal of identifying unknown essential genes, we performed whole-genome sequencing on complementation pairs from legacy collections of maternal-effect lethal and sterile mutants. This approach uncovered maternal genes required for embryonic development and genes with apparent sperm-specific functions. In total, 58 putative essential genes were identified on chromosomes III–V, of which 52 genes are represented by novel alleles in this collection. Of these 52 genes, 19 (40 alleles) were selected for further functional characterization. The terminal phenotypes of embryos were examined, revealing defects in cell division, morphogenesis, and osmotic integrity of the eggshell. Mating assays with wild-type males revealed previously unknown male-expressed genes required for fertilization and embryonic development. The result of this study is a catalog of mutant alleles in essential genes that will serve as a resource to guide further study toward a more complete understanding of this important model organism. As many genes and developmental pathways in C. elegans are conserved and essential genes are often linked to human disease, uncovering the function of these genes may also provide insight to further our understanding of human biology.
Collapse
Affiliation(s)
- Erica Li-Leger
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| | - Richard Feichtinger
- Department of Developmental Genetics, Institute of Genetics, Technische Universität Braunschweig, 38106, Germany
| | - Stephane Flibotte
- UBC/LSI Bioinformatics Facility, University of British Columbia, Vancouver, British Columbia, Canada
| | - Heinke Holzkamp
- Department of Developmental Genetics, Institute of Genetics, Technische Universität Braunschweig, 38106, Germany
| | - Ralf Schnabel
- Department of Developmental Genetics, Institute of Genetics, Technische Universität Braunschweig, 38106, Germany
| | - Donald G Moerman
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| |
Collapse
|
3
|
Lamm AT, Stadler MR, Zhang H, Gent JI, Fire AZ. Multimodal RNA-seq using single-strand, double-strand, and CircLigase-based capture yields a refined and extended description of the C. elegans transcriptome. Genome Res 2011; 21:265-75. [PMID: 21177965 PMCID: PMC3032930 DOI: 10.1101/gr.108845.110] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Accepted: 10/11/2010] [Indexed: 02/06/2023]
Abstract
We have used a combination of three high-throughput RNA capture and sequencing methods to refine and augment the transcriptome map of a well-studied genetic model, Caenorhabditis elegans. The three methods include a standard (non-directional) library preparation protocol relying on cDNA priming and foldback that has been used in several previous studies for transcriptome characterization in this species, and two directional protocols, one involving direct capture of single-stranded RNA fragments and one involving circular-template PCR (CircLigase). We find that each RNA-seq approach shows specific limitations and biases, with the application of multiple methods providing a more complete map than was obtained from any single method. Of particular note in the analysis were substantial advantages of CircLigase-based and ssRNA-based capture for defining sequences and structures of the precise 5' ends (which were lost using the double-strand cDNA capture method). Of the three methods, ssRNA capture was most effective in defining sequences to the poly(A) junction. Using data sets from a spectrum of C. elegans strains and stages and the UCSC Genome Browser, we provide a series of tools, which facilitate rapid visualization and assignment of gene structures.
Collapse
Affiliation(s)
- Ayelet T. Lamm
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305-5324, USA
| | - Michael R. Stadler
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305-5324, USA
| | - Huibin Zhang
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305-5324, USA
| | - Jonathan I. Gent
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305-5324, USA
| | - Andrew Z. Fire
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305-5324, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305-5324, USA
| |
Collapse
|
4
|
Jones MR, Lohn Z, Rose AM. Specialized chromosomes and their uses in Caenorhabditis elegans. Methods Cell Biol 2011; 106:23-64. [PMID: 22118273 DOI: 10.1016/b978-0-12-544172-8.00002-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Research on Caenorhabditis elegans involves the use of a wide range of genetic and molecular tools consisting of chromosomal material captured and modified for specific purposes. These "specialized chromosomes" come in many forms ranging from relatively simple gene deletions to complex rearrangements involving endogenous chromosomes as well as transgenic constructs. In this chapter, we describe the specialized chromosomes that are available in C. elegans, their origins, practical considerations, and methods for generation and evaluation. We will summarize their uses for biological studies, and their contribution to our knowledge about chromosome biology.
Collapse
Affiliation(s)
- Martin R Jones
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | |
Collapse
|
5
|
Smolikov S, Schild-Prüfert K, Colaiácovo MP. A yeast two-hybrid screen for SYP-3 interactors identifies SYP-4, a component required for synaptonemal complex assembly and chiasma formation in Caenorhabditis elegans meiosis. PLoS Genet 2009; 5:e1000669. [PMID: 19798442 PMCID: PMC2742731 DOI: 10.1371/journal.pgen.1000669] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Accepted: 09/01/2009] [Indexed: 11/19/2022] Open
Abstract
The proper assembly of the synaptonemal complex (SC) between homologs is critical to ensure accurate meiotic chromosome segregation. The SC is a meiotic tripartite structure present from yeast to humans, comprised of proteins assembled along the axes of the chromosomes and central region (CR) proteins that bridge the two chromosome axes. Here we identify SYP-4 as a novel structural component of the SC in Caenorhabditis elegans. SYP-4 interacts in a yeast two-hybrid assay with SYP-3, one of components of the CR of the SC, and is localized at the interface between homologs during meiosis. SYP-4 is essential for the localization of SYP-1, SYP-2, and SYP-3 CR proteins onto chromosomes, thereby playing a crucial role in the stabilization of pairing interactions between homologous chromosomes. In the absence of SYP-4, the levels of recombination intermediates, as indicated by RAD-51 foci, are elevated in mid-prophase nuclei, and crossover recombination events are significantly reduced. The lack of chiasmata observed in syp-4 mutants supports the elevated levels of chromosome nondisjunction manifested in high embryonic lethality. Altogether our findings place SYP-4 as a central player in SC formation and broaden our understanding of the structure of the SC and its assembly. Meiosis is a two-part cell division program that ensures the formation of haploid gametes (e.g. eggs and sperm), which can then reconstitute a species' ploidy through fertilization. A critical step towards accomplishing this task is the accurate segregation of homologous chromosomes away from each other during meiosis I. This requires the formation of at least one obligatory crossover event (genetic exchange) between each pair of homologous chromosomes. In most organisms, the formation of all crossover events greatly relies on the synaptonemal complex (SC). This “zipper-like” structure holds the pairs of homologous chromosomes together during meiotic prophase I, and crossover recombination is completed in the context of the fully formed SCs. Here, we identify SYP-4 as a novel structural component of the SC in the nematode C. elegans. In its absence, SCs fail to form, resulting in a lack of crossover formation and increased errors in chromosome segregation. SYP-4 interacts in a yeast two-hybrid assay with SYP-3, one of the SC proteins, and its localization onto chromosomes is interdependent with SYP-1, SYP-2, and SYP-3 proteins. SYP-4 therefore plays a critical role during C. elegans meiosis in generating the ultrastructurally conserved SC that is ubiquitously present from yeast to humans.
Collapse
Affiliation(s)
- Sarit Smolikov
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Kristina Schild-Prüfert
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Mónica P. Colaiácovo
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
6
|
Smardon A, Spoerke JM, Stacey SC, Klein ME, Mackin N, Maine EM. EGO-1 is related to RNA-directed RNA polymerase and functions in germ-line development and RNA interference in C. elegans. Curr Biol 2000; 10:169-78. [PMID: 10704412 DOI: 10.1016/s0960-9822(00)00323-7] [Citation(s) in RCA: 386] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
BACKGROUND Cell-fate determination requires that cells choose between alternative developmental pathways. For example, germ cells in the nematode worm Caenorhabditis elegans choose between mitotic and meiotic division, and between oogenesis and spermatogenesis. Germ-line mitosis depends on a somatic signal that is mediated by a Notch-type signaling pathway. The ego-1 gene was originally identified on the basis of genetic interactions with the receptor in this pathway and was also shown to be required for oogenesis. Here, we provide more insight into the role of ego-1 in germ-line development. RESULTS We have determined the ego-1 gene structure and the molecular basis of ego-1 alleles. Putative ego-1 null mutants had multiple, previously unreported defects in germ-line development. The ego-1 transcript was found predominantly in the germ line. The predicted EGO-1 protein was found to be related to the tomato RNA-directed RNA polymerase (RdRP) and to Neurospora crassa QDE-1, two proteins implicated in post-transcriptional gene silencing (PTGS). For a number of germ-line-expressed genes, ego-1 mutants were resistant to a form of PTGS called RNA interference. CONCLUSIONS The ego-1 gene is the first example of a gene encoding an RdRP-related protein with an essential developmental function. The ego-1 gene is also required for a robust response to RNA interference by certain genes. Hence, a protein required for germ-line development in C. elegans may be a component of the RNA interference/PTGS machinery.
Collapse
Affiliation(s)
- A Smardon
- Department of Biology, Syracuse University, 108 College Place, New York 13244, USA
| | | | | | | | | | | |
Collapse
|
7
|
Yochem J, Tuck S, Greenwald I, Han M. A gp330/megalin-related protein is required in the major epidermis of Caenorhabditis elegans for completion of molting. Development 1999; 126:597-606. [PMID: 9876188 DOI: 10.1242/dev.126.3.597] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A genetic analysis of a gp330/megalin-related protein, LRP-1, has been undertaken in Caenorhabditis elegans. Consistent with megalin's being essential for development of mice, likely null mutations reveal that this large member of the low density lipoprotein receptor family is also essential for growth and development of this nematode. The mutations confer a striking defect, an inability to shed and degrade all of the old cuticle at each of the larval molts. The mutations also cause an arrest of growth usually at the molt from the third to the fourth larval stage. Genetic mosaic analysis suggests that the lrp-1 gene functions in the major epidermal syncytium hyp7, a polarized epithelium that secretes cuticle from its apical surface. Staining of whole mounts with specific monoclonal antibodies reveals that the protein is expressed on the apical surface of hyp7. Sterol starvation can phenocopy the lrp-1 mutations, suggesting that LRP-1 is a receptor for sterols that must be endocytosed by hyp7. These observations indicate that LRP-1 is related to megalin not only structurally but also functionally.
Collapse
Affiliation(s)
- J Yochem
- Department of Molecular, Cellular and Developmental Biology, Howard Hughes Medical Institute, University of Colorado, Boulder, CO 80309 USA.
| | | | | | | |
Collapse
|
8
|
Sluder AE, Mathews SW, Hough D, Yin VP, Maina CV. The Nuclear Receptor Superfamily Has Undergone Extensive Proliferation and Diversification in Nematodes. Genome Res 1999. [DOI: 10.1101/gr.9.2.103] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The nuclear receptor (NR) superfamily is the most abundant class of transcriptional regulators encoded in the Caenorhabditis elegans genome, with >200 predicted genes revealed by the screens and analysis of genomic sequence reported here. This is the largest number of NR genes yet described from a single species, although our analysis of available genomic sequence from the related nematode Caenorhabditis briggsae indicates that it also has a large number. Existing data demonstrate expression for 25% of theC. elegans NR sequences. Sequence conservation and statistical arguments suggest that the majority represent functional genes. An analysis of these genes based on the DNA-binding domain motif revealed that several NR classes conserved in both vertebrates and insects are also represented among the nematode genes, consistent with the existence of ancient NR classes shared among most, and perhaps all, metazoans. Most of the nematode NR sequences, however, are distinct from those currently known in other phyla, and reveal a previously unobserved diversity within the NR superfamily. In C. elegans, extensive proliferation and diversification of NR sequences have occurred on chromosome V, accounting for > 50% of the predicted NR genes.[The sequence data described in this paper have been submitted to the GenBank data library under accession nos.AF083222–AF083225 and AF083251–AF083234.]
Collapse
|
9
|
Vassilieva LL, Lynch M. The rate of spontaneous mutation for life-history traits in Caenorhabditis elegans. Genetics 1999; 151:119-29. [PMID: 9872953 PMCID: PMC1460455 DOI: 10.1093/genetics/151.1.119] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Spontaneous mutations were accumulated in 100 replicate lines of Caenorhabditis elegans over a period of approximately 50 generations. Periodic assays of these lines and comparison to a frozen control suggest that the deleterious mutation rate for typical life-history characters in this species is at least 0.05 per diploid genome per generation, with the average mutational effect on the order of 14% or less in the homozygous state and the average mutational heritability approximately 0.0034. While the average mutation rate per character and the average mutational heritability for this species are somewhat lower than previous estimates for Drosophila, these differences can be reconciled to a large extent when the biological differences between these species are taken into consideration.
Collapse
Affiliation(s)
- L L Vassilieva
- Department of Biology, University of Oregon, Eugene, Oregon 97403,
| | | |
Collapse
|
10
|
O'Connell KF, Leys CM, White JG. A genetic screen for temperature-sensitive cell-division mutants of Caenorhabditis elegans. Genetics 1998; 149:1303-21. [PMID: 9649522 PMCID: PMC1460235 DOI: 10.1093/genetics/149.3.1303] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A novel screen to isolate conditional cell-division mutants in Caenorhabditis elegans has been developed. The screen is based on the phenotypes associated with existing cell-division mutations: some disrupt postembryonic divisions and affect formation of the gonad and ventral nerve cord-resulting in sterile, uncoordinated animals-while others affect embryonic divisions and result in lethality. We obtained 19 conditional mutants that displayed these phenotypes when shifted to the restrictive temperature at the appropriate developmental stage. Eighteen of these mutations have been mapped; 17 proved to be single alleles of newly identified genes, while 1 proved to be an allele of a previously identified gene. Genetic tests on the embryonic lethal phenotypes indicated that for 13 genes, embryogenesis required maternal expression, while for 6, zygotic expression could suffice. In all cases, maternal expression of wild-type activity was found to be largely sufficient for embryogenesis. Cytological analysis revealed that 10 mutants possessed embryonic cell-division defects, including failure to properly segregate DNA, failure to assemble a mitotic spindle, late cytokinesis defects, prolonged cell cycles, and improperly oriented mitotic spindles. We conclude that this approach can be used to identify mutations that affect various aspects of the cell-division cycle.
Collapse
Affiliation(s)
- K F O'Connell
- Laboratory of Molecular Biology, University of Wisconsin, Madison, Wisconsin 53706, USA.
| | | | | |
Collapse
|
11
|
Abstract
The Caenorhabditis elegans germline is composed of mitotically dividing cells at the distal end that give rise to meiotic cells more proximally. Specification of the distal region as mitotic relies on induction by the somatic distal tip cell and the glp-1 signal transduction pathway. However, the genetic control over the transition from mitosis to meiosis is not understood. In this paper, we report the identification of a gene, gld-2, that has at least two functions in germline development. First, gld-2 is required for normal progression through meiotic prophase. Second, gld-2 promotes entry into meiosis from the mitotic cell cycle. With respect to this second function, gld-2 appears to be functionally redundant with a previously described gene, gld-1 (Francis, R., Barton, M. K., Kimble, J. and Schedl, T. (1995) Genetics 139, 579–606). Germ cells in gld-1(o) and gld-2 single mutants enter meiosis at the normal time, but germ cells in gld-2 gld-1(o) double mutants do not enter meiosis. Instead, the double mutant germline is mitotic throughout and forms a large tumor. We suggest that gld-1 and gld-2 define two independent regulatory pathways, each of which can be sufficient for entry into meiosis. Epistasis analyses show that gld-1 and gld-2 work downstream of the glp-1 signal transduction pathway. Therefore, we hypothesize that glp-1 promotes proliferation by inhibiting the meiosis-promoting functions of gld-1 and gld-2.
Collapse
Affiliation(s)
- L C Kadyk
- Howard Hughes Medical Institute, Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
12
|
Abstract
The unconventional myosins are a superfamily of actin-based motor proteins that are expressed in a wide range of cell types and organisms. Thirteen classes of unconventional myosin have been defined, and current efforts are focused on elucidating their individual functions in vivo. Here, we report the identification of a family of unconventional myosin genes in Caenorhabditis elegans. The hum-1, hum-2, hum-3 and hum-6 (heavy chain of an unconventional myosin) genes encode members of myosin classes I, V, VI and VII, respectively. The hum-4 gene encodes a high molecular mass myosin (ca 307 kDa) that is one of the most highly divergent myosins, and is the founding and only known member of class XII. The physical position of each hum gene has been determined. The hum-1, hum-2 and hum-3 genes have been mapped by extrapolation near previously uncharacterized mutations, several of which are lethal, identifying potentially essential unconventional myosin genes in C. elegans.
Collapse
Affiliation(s)
- J P Baker
- University Program in Genetics and Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
13
|
Janke DL, Schein JE, Ha T, Franz NW, O'Neil NJ, Vatcher GP, Stewart HI, Kuervers LM, Baillie DL, Rose AM. Interpreting a sequenced genome: toward a cosmid transgenic library of Caenorhabditis elegans. Genome Res 1997; 7:974-85. [PMID: 9331368 DOI: 10.1101/gr.7.10.974] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have generated a library of transgenic Caenorhabditis elegans strains that carry sequenced cosmids from the genome of the nematode. Each strain carries an extrachromosomal array containing a single cosmid, sequenced by the C. elegans Genome Sequencing Consortium, and a dominate Rol-6 marker. More than 500 transgenic strains representing 250 cosmids have been constructed. Collectively, these strains contain approximately 8 Mb of sequence data, or approximately 8% of the C. elegans genome. The transgenic strains are being used to rescue mutant phenotypes, resulting in a high-resolution map alignment of the genetic, physical, and DNA sequence maps of the nematode. We have chosen the region of chromosome III deleted by sDf127 and not covered by the duplication sDp8(III;I) as a starting point for a systematic correlation of mutant phenotypes with nucleotide sequence. In this defined region, we have identified 10 new essential genes whose mutant phenotypes range from developmental arrest at early larva, to maternal effect lethal. To date, 8 of these 10 essential genes have been rescued. In this region, these rescues represent approximately 10% of the genes predicted by GENEFINDER and considerably enhance the map alignment. Furthermore, this alignment facilitates future efforts to physically position and clone other genes in the region. [Updated information about the Transgenic Library is available via the Internet at http://darwin.mbb.sfu.ca/imbb/dbaillie/cos mid.html.]
Collapse
Affiliation(s)
- D L Janke
- Institute of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada, V5A 1S6.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Pflugrad A, Meir JY, Barnes TM, Miller DM. The Groucho-like transcription factor UNC-37 functions with the neural specificity gene unc-4 to govern motor neuron identity in C. elegans. Development 1997; 124:1699-709. [PMID: 9165118 DOI: 10.1242/dev.124.9.1699] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Groucho and Tup1 are members of a conserved family of WD repeat proteins that interact with specific transcription factors to repress target genes. Here we show that mutations in WD domains of the Groucho-like protein, UNC-37, affect a motor neuron trait that also depends on UNC-4, a homeodomain protein that controls neuronal specificity in Caenorhabditis elegans. In unc-4 mutants, VA motor neurons assume the pattern of synaptic input normally reserved for their lineal sister cells, the VB motor neurons; the loss of normal input to the VAs produces a distinctive backward movement defect. Substitution of a conserved residue (H to Y) in the fifth WD repeat in unc-37(e262) phenocopies the Unc-4 movement defect. Conversely, an amino acid change (E to K) in the sixth WD repeat of UNC-37 is a strong suppressor of unc-37(e262) and of specific unc-4 missense mutations. We have previously shown that UNC-4 expression in the VA motor neurons specifies the wild-type pattern of presynaptic input. Here we demonstrate that UNC-37 is also expressed in the VAs and that unc-37 activity in these neurons is sufficient to restore normal movement to unc-37(e262) animals. We propose that UNC-37 and UNC-4 function together to prevent expression of genes that define the VB pattern of synaptic inputs and thereby generate connections specific to the VA motor neurons. In addition, we show that the WD repeat domains of UNC-37 and of the human homolog, TLE1, are functionally interchangeable in VA motor neurons which suggests that this highly conserved protein domain may also specify motor neuron identity and synaptic choice in more complex nervous systems.
Collapse
Affiliation(s)
- A Pflugrad
- Department of Cell Biology, Vanderbilt University Medical Center, Nashville, TN 37232-2175, USA
| | | | | | | |
Collapse
|
15
|
Browning H, Berkowitz L, Madej C, Paulsen JE, Zolan ME, Strome S. Macrorestriction analysis of Caenorhabditis elegans genomic DNA. Genetics 1996; 144:609-19. [PMID: 8889524 PMCID: PMC1207554 DOI: 10.1093/genetics/144.2.609] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The usefulness of genomic physical maps is greatly enhanced by linkage of the physical map with the genetic map. We describe a "macrorestriction mapping" procedure for Caenorhabditis elegans that we have applied to this endeavor. High molecular weight, genomic DNA is digested with infrequently cutting restriction enzymes and size-fractionated by pulsed field gel electrophoresis. Southern blots of the gels are probed with clones from the C. elegans physical map. This procedure allows the construction of restriction maps covering several hundred kilobases and the detection of polymorphic restriction fragments using probes that map several hundred kilobases away. We describe several applications of this technique. (1) We determined that the amount of DNA in a previously uncloned region is < 220 kb. (2) We mapped the mes-1 gene to a cosmid, by detecting polymorphic restriction fragments associated with a deletion allele of the gene. The 25-kb deletion was initially detected using as a probe sequences located approximately 400 kb away from the gene. (3) We mapped the molecular endpoint of the deficiency hDf6, and determined that three spontaneously derived duplications in the unc-38-dpy-5 region have very complex molecular structures, containing internal rearrangements and deletions.
Collapse
Affiliation(s)
- H Browning
- Department of Biology, Indiana University, Bloomington 47405, USA
| | | | | | | | | | | |
Collapse
|
16
|
Fleming JT, Baylis HA, Sattelle DB, Lewis JA. Molecular cloning and in vitro expression of C. elegans and parasitic nematode ionotropic receptors. Parasitology 1996; 113 Suppl:S175-90. [PMID: 9051934 DOI: 10.1017/s0031182000077969] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The free living nematode, C. elegans is understood at a level of detail equalled by few other organisms, and much of the cell biology and sequence information is proving of considerable utility in the study of parasitic nematodes. Already, C. elegans provides a convenient vehicle for investigating anthelmintic drug action and resistance mechanisms. Among the ionotropic receptors, with their important roles in the behaviour and development of the organism, are targets for anthelmintics. The subunits of nicotinic acetylcholine receptors of C. elegans form a large and diverse multigene family. Members of this family are among the 11 genes associated with resistance to the anthelmintic drug levamisole.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Caenorhabditis elegans/genetics
- Caenorhabditis elegans/metabolism
- Calcium Channels/genetics
- Cloning, Molecular
- DNA, Helminth
- Humans
- Inositol 1,4,5-Trisphosphate Receptors
- Molecular Sequence Data
- Muscle Proteins/genetics
- Nematoda/genetics
- Nematoda/metabolism
- Receptors, Amino Acid/genetics
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, GABA/genetics
- Receptors, Glutamate/genetics
- Receptors, Neurotransmitter/chemistry
- Receptors, Neurotransmitter/genetics
- Receptors, Nicotinic/chemistry
- Receptors, Nicotinic/genetics
- Ryanodine Receptor Calcium Release Channel
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- J T Fleming
- Massachusetts General Hospital Cancer Center, Charlestown 02129, USA
| | | | | | | |
Collapse
|
17
|
Fukushige T, Yasuda H, Siddiqui SS. Selective expression of the tba-1 alpha tubulin gene in a set of mechanosensory and motor neurons during the development of Caenorhabditis elegans. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1261:401-16. [PMID: 7742369 DOI: 10.1016/0167-4781(95)00028-f] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In the nematode Caenorhabditis elegans, a monoclonal antibody 3A5 raised against Drosophila alpha tubulins selectively stains the nervous system immuno-cytochemically. Direct screening of a C. elegans cDNA expression library with 3A5 has allowed cloning of the tba-1 (tubulin alpha-1) gene from C. elegans. The corresponding genomic DNA encodes a protein of 449 amino acid residues that has a high homology with the vertebrate alpha tubulins but a lower homology with yeast alpha tubulins. Interestingly, the carboxyl-terminus sequence EEEGEEY (Glu-Glu-Glu-Gly-Glu-Glu-Tyr) of the nematode tba-1 encoded isotype is identical to these residues in human, mouse, rat, pig and chicken alpha-1 tubulin isotypes that are expressed in the brain. Temporal and spatial expression studies of the tba-1 gene using Northern blot analysis and tba-1::lacZ fusion gene expression analysis during embryonic and the postembryonic development of C. elegans reveal that the tba-1 tubulin is preferentially expressed in the nematode nervous system, especially in a set of mechanosensory neurons and a set of ventral cord motor neurons (DA, DB, VA, and VB) during embryonic and postembryonic development. Our results indicate an inter-species conservation of the alpha tubulin carboxyl-terminal domain in functionally related brain specific isotypes from metazoans as divergent as mammals and nematodes. These results also suggest specificity of the individual alpha tubulin isotypes during neural development.
Collapse
Affiliation(s)
- T Fukushige
- Department of Ecological Engineering, Toyohashi University of Technology, Japan
| | | | | |
Collapse
|
18
|
Chapter 7 Genetic Balancers. Methods Cell Biol 1995. [DOI: 10.1016/s0091-679x(08)61387-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
19
|
Roussell D, Gruldl M, Bennett K. Germ-line determination in Caenorhabditis and Ascaris: Will a helicase begin to unravel the mystery? ACTA ACUST UNITED AC 1994; 10:110-3. [PMID: 15275493 DOI: 10.1016/0169-4758(94)90011-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
How cell lineages are established during development in higher eukaryotes is being addressed by geneticists and by developmental and molecular biologists. In Drosophila melanogaster, a gene corresponding to a germ-line-specific RNA helicase, vasa, has been shown to be a component o f the posteriorly localized germ granules o f the developing embryo. A putative RNA helicase, glh-I r which appears germ-line specific in its expression, has recently been reported from the free-living nematode Caenorhabditis elegans. Parasitologists studying the nematode Ascaris lumbricoides var. suum have found it to be a useful complement to Caenorhabditis. Deborah Roussell, Michael Gruidl and Karen Bennett predict that Ascaris will be valuable in determining the role played by germ-line helicases in development.
Collapse
Affiliation(s)
- D Roussell
- Department of Molecular Microbiology and Immunology, University of Missouri-Columbia, Columbia, MO 65212, USA
| | | | | |
Collapse
|
20
|
Roussell DL, Bennett KL. glh-1, a germ-line putative RNA helicase from Caenorhabditis, has four zinc fingers. Proc Natl Acad Sci U S A 1993; 90:9300-4. [PMID: 8415696 PMCID: PMC47555 DOI: 10.1073/pnas.90.20.9300] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
We have cloned a family of putative RNA helicases from the free-living nematode Caenorhabditis elegans. One of these, a cDNA that we call glh-1, most closely matches in sequence and expression the previously described germ-line helicases PL10 from mouse and vasa from Drosophila. The amino terminus of the predicted protein of glh-1 contains a set of glycine-rich repeats similar in location and sequence to those in the predicted vasa protein. However, unlike all other putative RNA helicases, glh-1 also contains four retroviral-type zinc fingers. The RNA expression pattern of this Caenorhabditis helicase correlates with the presence of germ-line tissue in the parasitic nematode Ascaris lumbricoides var. suum and with the presence of germ cells in wild type and several germ-line mutants of Caenorhabditis. In the germ-line mutants glp-4 and glp-1, additional larger species of glh-1 RNA exist, which correspond to different adenylylated forms of the glh-1 transcript; these may be specified by motifs in the 3' untranslated region of glh-1 that are similar to adenylylation control elements and nos response elements.
Collapse
Affiliation(s)
- D L Roussell
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri-Columbia 65212
| | | |
Collapse
|