1
|
Sostaric S, Petersen AC, Goodman CA, Gong X, Aw TJ, Brown MJ, Garnham A, Steward CH, Murphy KT, Carey KA, Leppik J, Fraser SF, Cameron-Smith D, Krum H, Snow RJ, McKenna MJ. Oral digoxin effects on exercise performance, K + regulation and skeletal muscle Na + ,K + -ATPase in healthy humans. J Physiol 2022; 600:3749-3774. [PMID: 35837833 PMCID: PMC9541254 DOI: 10.1113/jp283017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 07/08/2022] [Indexed: 11/30/2022] Open
Abstract
Abstract We investigated whether digoxin lowered muscle Na+,K+‐ATPase (NKA), impaired muscle performance and exacerbated exercise K+ disturbances. Ten healthy adults ingested digoxin (0.25 mg; DIG) or placebo (CON) for 14 days and performed quadriceps strength and fatiguability, finger flexion (FF, 105%peak‐workrate, 3 × 1 min, fourth bout to fatigue) and leg cycling (LC, 10 min at 33% VO2peak and 67% VO2peak, 90% VO2peak to fatigue) trials using a double‐blind, crossover, randomised, counter‐balanced design. Arterial (a) and antecubital venous (v) blood was sampled (FF, LC) and muscle biopsied (LC, rest, 67% VO2peak, fatigue, 3 h after exercise). In DIG, in resting muscle, [3H]‐ouabain binding site content (OB‐Fab) was unchanged; however, bound‐digoxin removal with Digibind revealed total ouabain binding (OB+Fab) increased (8.2%, P = 0.047), indicating 7.6% NKA–digoxin occupancy. Quadriceps muscle strength declined in DIG (−4.3%, P = 0.010) but fatiguability was unchanged. During LC, in DIG (main effects), time to fatigue and [K+]a were unchanged, whilst [K+]v was lower (P = 0.042) and [K+]a‐v greater (P = 0.004) than in CON; with exercise (main effects), muscle OB‐Fab was increased at 67% VO2peak (per wet‐weight, P = 0.005; per protein P = 0.001) and at fatigue (per protein, P = 0.003), whilst [K+]a, [K+]v and [K+]a‐v were each increased at fatigue (P = 0.001). During FF, in DIG (main effects), time to fatigue, [K+]a, [K+]v and [K+]a‐v were unchanged; with exercise (main effects), plasma [K+]a, [K+]v, [K+]a‐v and muscle K+ efflux were all increased at fatigue (P = 0.001). Thus, muscle strength declined, but functional muscle NKA content was preserved during DIG, despite elevated plasma digoxin and muscle NKA–digoxin occupancy, with K+ disturbances and fatiguability unchanged.
![]() Key points The Na+,K+‐ATPase (NKA) is vital in regulating skeletal muscle extracellular potassium concentration ([K+]), excitability and plasma [K+] and thereby also in modulating fatigue during intense contractions.
NKA is inhibited by digoxin, which in cardiac patients lowers muscle functional NKA content ([3H]‐ouabain binding) and exacerbates K+ disturbances during exercise. In healthy adults, we found that digoxin at clinical levels surprisingly did not reduce functional muscle NKA content, whilst digoxin removal by Digibind antibody revealed an ∼8% increased muscle total NKA content. Accordingly, digoxin did not exacerbate arterial plasma [K+] disturbances or worsen fatigue during intense exercise, although quadriceps muscle strength was reduced. Thus, digoxin treatment in healthy participants elevated serum digoxin, but muscle functional NKA content was preserved, whilst K+ disturbances and fatigue with intense exercise were unchanged. This resilience to digoxin NKA inhibition is consistent with the importance of NKA in preserving K+ regulation and muscle function.
Collapse
Affiliation(s)
- Simon Sostaric
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - Aaron C Petersen
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - Craig A Goodman
- Institute for Health and Sport, Victoria University, Melbourne, Australia.,Centre for Muscle Research, Department of Anatomy and Physiology, University of Melbourne, Parkville, Australia
| | - Xiaofei Gong
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - Tai-Juan Aw
- Department of Epidemiology and Preventive Medicine, Monash University, Alfred Hospital, Melbourne, Australia
| | - Malcolm J Brown
- Department of Biochemistry and Pharmacology, University of Melbourne, Melbourne, Australia
| | - Andrew Garnham
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - Collene H Steward
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - Kate T Murphy
- Institute for Health and Sport, Victoria University, Melbourne, Australia.,Centre for Muscle Research, Department of Anatomy and Physiology, University of Melbourne, Parkville, Australia
| | - Kate A Carey
- School of Women's and Children's Health, University of New South Wales, Sydney, Australia
| | - James Leppik
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - Steve F Fraser
- Institute of Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Melbourne, Australia
| | - David Cameron-Smith
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore
| | - Henry Krum
- Department of Epidemiology and Preventive Medicine, Monash University, Alfred Hospital, Melbourne, Australia
| | - Rodney J Snow
- Institute of Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Melbourne, Australia
| | - Michael J McKenna
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| |
Collapse
|