1
|
Lakhotia SC. From Heterochromatin to Long Noncoding RNAs in Drosophila: Expanding the Arena of Gene Function and Regulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1008:75-118. [PMID: 28815537 DOI: 10.1007/978-981-10-5203-3_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Recent years have witnessed a remarkable interest in exploring the significance of pervasive noncoding transcripts in diverse eukaryotes. Classical cytogenetic studies using the Drosophila model system unraveled the perplexing attributes and "functions" of the "gene"-poor heterochromatin. Recent molecular studies in the fly model are likewise revealing the very diverse and significant roles played by long noncoding RNAs (lncRNAs) in development, gene regulation, chromatin organization, cell and nuclear architecture, etc. There has been a rapid increase in the number of identified lncRNAs, although a much larger number still remains unknown. The diversity of modes of actions and functions of the limited number of Drosophila lncRNAs, which have been examined, already reflects the profound roles of such RNAs in generating and sustaining the biological complexities of eukaryotes. Several of the known Drosophila lncRNAs originate as independent sense or antisense transcripts from promoter or intergenic, intronic, or 5'/3'-UTR regions, while many of them are independent genes that produce only lncRNAs or coding as well as noncoding RNAs. The different lncRNAs affect chromatin organization (local or large-scale pan-chromosomal), transcription, RNA processing/stability, or translation either directly through interaction with their target DNA sequences or indirectly by acting as intermediary molecules for specific regulatory proteins or may act as decoys/sinks, or storage sites for specific proteins or groups of proteins, or may provide a structural framework for the assembly of substructures in nucleus/cytoplasm. It is interesting that many of the "functions" alluded to heterochromatin in earlier cytogenetic studies appear to find correlates with the known subtle as well as far-reaching actions of the different small and long noncoding RNAs. Further studies exploiting the very rich and powerful genetic and molecular resources available for the Drosophila model are expected to unravel the mystery underlying the long reach of ncRNAs.
Collapse
Affiliation(s)
- Subhash C Lakhotia
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
2
|
Lo Piccolo L, Yamaguchi M. RNAi of arcRNA hsrω affects sub-cellular localization of Drosophila FUS to drive neurodiseases. Exp Neurol 2017; 292:125-134. [PMID: 28342748 DOI: 10.1016/j.expneurol.2017.03.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 03/01/2017] [Accepted: 03/21/2017] [Indexed: 02/08/2023]
Abstract
Defective RNA metabolism is common pathogenic mechanisms involved in neurological disorders. Indeed, a conspicuous feature of some neurodegenerative diseases is the loss of nuclear activities of RNA-binding proteins (RBPs) like Fused in sarcoma (FUS) and eventually, their accumulation in cytoplasmic proteinaceous inclusions. Long non-coding RNAs (lncRNAs) are emerging as important regulators of tissue physiology and disease processes, including neurological disorders. A subset of these lncRNAs is the core of nuclear bodies (NBs), which are the sites of RNA processing and sequestration of specific ribonucleoproteins (RNPs) complexes. In Drosophila melanogaster the lncRNA hsrω is the architectural RNA (arcRNA) of the NB omega speckles (ω-speckles). Here, we show that the neuron-specific and motor neuron-specific knockdown of hsrω impairs locomotion in larval and adult flies and induces anatomical defects in presynaptic terminals of motor neurons, suggesting a novel role of arcRNA hsrω in development of neuromuscular junctions. Since RBPs are recognized as important regulators of neuronal activities, to examine the molecular mechanism of such neurodegeneration, we analysed interaction between hsrω and Drosophila orthologue of human FUS (dFUS). Strictly, we found that dFUS genetically and physically interacts with the arcRNA hsrω. Moreover, we revealed that a fine regulation of gene expression occurs between hsrω and dFUS and surprisingly, we uncover that depletion of hsrω affects the sub-cellular compartmentalization of dFUS thus, enhancing its cytoplasmic localization and inducing its loss of nuclear function. The model we propose shows the role of arcRNA in diseases affecting the nervous system and in particular it elucidates the molecular mechanism underlying the loss of dFUS nuclear function in the absence of its mutations. Our new findings could provide new insights into the pathogenesis of neurodegenerative disease dependent on mis-function or mis-localization of aggregation prone RNA binding proteins like FUS in Amyotrophic Lateral Sclerosis.
Collapse
Affiliation(s)
- Luca Lo Piccolo
- Department of Applied Biology, The Center for Advanced Insect Research, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.
| | - Masamitsu Yamaguchi
- Department of Applied Biology, The Center for Advanced Insect Research, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| |
Collapse
|
3
|
Lo Piccolo L, Attardi A, Bonaccorso R, Li Greci L, Giurato G, Ingrassia AMR, Onorati MC. ISWI ATP-dependent remodeling of nucleoplasmic ω-speckles in the brain of Drosophila melanogaster. J Genet Genomics 2016; 44:85-94. [PMID: 28209301 DOI: 10.1016/j.jgg.2016.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 11/21/2016] [Accepted: 12/18/2016] [Indexed: 12/27/2022]
Abstract
Heterogeneous nuclear ribonucleoproteins (hnRNPs) belong to the RNA-binding proteins family. They are involved in processing heterogeneous nuclear RNAs (hnRNAs) into mature mRNAs. These proteins participate in every step of mRNA cycle, such as mRNA export, localization, translation, stability and alternative splicing. At least 14 major hnRNPs, which have structural and functional homologues in mammals, are expressed in Drosophila melanogaster. Until now, six of these hnRNPs are known to be nucleus-localized and associated with the long non-coding RNA (lncRNA) heat shock responsive ω (hsrω) in the omega speckle compartments (ω-speckles). The chromatin remodeler ISWI is the catalytic subunit of several ATP-dependent chromatin-remodeling complexes, and it is an essential factor for organization of ω-speckles. Indeed, in ISWI null mutant, severe defects in ω-speckles structure are detectable. Here, we clarify the role of ISWI in the hnRNPs‒hsrω interaction. Moreover, we describe how ISWI by its remodeling activity, controls hsrω and hnRNPs engagement in ω-speckles. Finally, we demonstrate that the sequestration of hnRNPs in ω-speckles nuclear compartment is a fundamental event in gene expression control and represents a key step in the regulation of several pathways.
Collapse
Affiliation(s)
- Luca Lo Piccolo
- STEBICEF Department, University of Palermo, Palermo 90128, Italy
| | - Andrea Attardi
- STEBICEF Department, University of Palermo, Palermo 90128, Italy
| | - Rosa Bonaccorso
- STEBICEF Department, University of Palermo, Palermo 90128, Italy
| | - Lorenzo Li Greci
- STEBICEF Department, University of Palermo, Palermo 90128, Italy
| | - Giorgio Giurato
- Genomix4Life Srl, University of Salerno, Baronissi Campus, Salerno 84081, Italy
| | | | | |
Collapse
|
4
|
|
5
|
Pleiotropic consequences of misexpression of the developmentally active and stress-inducible non-coding hsrω gene in Drosophila. J Biosci 2011; 36:265-80. [DOI: 10.1007/s12038-011-9061-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Onorati MC, Lazzaro S, Mallik M, Ingrassia AMR, Carreca AP, Singh AK, Chaturvedi DP, Lakhotia SC, Corona DFV. The ISWI chromatin remodeler organizes the hsrω ncRNA-containing omega speckle nuclear compartments. PLoS Genet 2011; 7:e1002096. [PMID: 21637796 PMCID: PMC3102753 DOI: 10.1371/journal.pgen.1002096] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 04/06/2011] [Indexed: 12/23/2022] Open
Abstract
The complexity in composition and function of the eukaryotic nucleus is achieved through its organization in specialized nuclear compartments. The Drosophila chromatin remodeling ATPase ISWI plays evolutionarily conserved roles in chromatin organization. Interestingly, ISWI genetically interacts with the hsrω gene, encoding multiple non-coding RNAs (ncRNA) essential, among other functions, for the assembly and organization of the omega speckles. The nucleoplasmic omega speckles play important functions in RNA metabolism, in normal and stressed cells, by regulating availability of hnRNPs and some other RNA processing proteins. Chromatin remodelers, as well as nuclear speckles and their associated ncRNAs, are emerging as important components of gene regulatory networks, although their functional connections have remained poorly defined. Here we provide multiple lines of evidence showing that the hsrω ncRNA interacts in vivo and in vitro with ISWI, regulating its ATPase activity. Remarkably, we found that the organization of nucleoplasmic omega speckles depends on ISWI function. Our findings highlight a novel role for chromatin remodelers in organization of nucleoplasmic compartments, providing the first example of interaction between an ATP-dependent chromatin remodeler and a large ncRNA. Chromatin structure and function are regulated by the concerted activity of covalent modifiers of chromatin, nucleosome remodeling factors, and several emerging classes of non-coding RNAs. ISWI is an evolutionarily conserved ATP-dependent chromatin remodeler playing essential roles in chromosome condensation, gene expression, and DNA replication. ISWI activity has been involved in a variety of nuclear functions including telomere silencing, stem cell renewal, neural morphogenesis, and epigenetic reprogramming. Using an in vivo assay to identify factors regulating ISWI activity in the model system Drosophila melanogaster, we recovered a genetic interaction between ISWI and hsrω. The hsrω gene encodes multiple non-coding RNAs (ncRNAs), of which the >10 kb nuclear hsrω-n RNA, with functional homolog in mammals, is essential for the assembly and organization of hnRNP-containing nucleoplasmic omega speckles. These special nuclear compartments play essential roles in the storage/sequestration of hnRNP family and other proteins, thus playing important roles in mRNA maturation and other regulatory processes. Here we show that the hsrω-n ncRNA interacts in vivo and in vitro with ISWI to directly regulate its ATPase activity. We also provide in vivo data showing that omega speckle nuclear organization depends on ISWI function, highlighting a novel role for chromatin remodelers in nuclear speckles organization.
Collapse
Affiliation(s)
- Maria C. Onorati
- Dulbecco Telethon Institute, Università degli Studi di Palermo, Dipartimento STEMBIO – Sezione Biologia Cellulare, Palermo, Italy
| | - Sandra Lazzaro
- Dulbecco Telethon Institute, Università degli Studi di Palermo, Dipartimento STEMBIO – Sezione Biologia Cellulare, Palermo, Italy
| | - Moushami Mallik
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, India
| | - Antonia M. R. Ingrassia
- Dulbecco Telethon Institute, Università degli Studi di Palermo, Dipartimento STEMBIO – Sezione Biologia Cellulare, Palermo, Italy
| | - Anna P. Carreca
- Dulbecco Telethon Institute, Università degli Studi di Palermo, Dipartimento STEMBIO – Sezione Biologia Cellulare, Palermo, Italy
| | - Anand K. Singh
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, India
| | - Deo Prakash Chaturvedi
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, India
| | - Subhash C. Lakhotia
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, India
| | - Davide F. V. Corona
- Dulbecco Telethon Institute, Università degli Studi di Palermo, Dipartimento STEMBIO – Sezione Biologia Cellulare, Palermo, Italy
- * E-mail:
| |
Collapse
|
7
|
Johnson TK, Carrington LB, Hallas RJ, McKechnie SW. Protein synthesis rates in Drosophila associate with levels of the hsr-omega nuclear transcript. Cell Stress Chaperones 2009; 14:569-77. [PMID: 19280368 PMCID: PMC2866946 DOI: 10.1007/s12192-009-0108-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Revised: 02/06/2009] [Accepted: 02/19/2009] [Indexed: 10/21/2022] Open
Abstract
Transcripts of the Drosophila hsr-omega gene are known to interact with RNA processing factors and ribosomes and are postulated to aid in co-ordinating nuclear and cytoplasmic activities particularly in stressed cells. However, the significance of these interactions for physiological processes and in turn for whole-organism fitness remains an open question. Because hsr-omega's cellular expression characteristics suggest it may influence protein synthesis, and because both genotypic and expression variation of hsr-omega have been associated with thermotolerance, we characterised 30 lines for variation in the rates of protein synthesis, measured in ovarian tissues, both before and after a mild heat shock, and for basal levels of the two main hsr-omega transcripts, omega-n and omega-c. As expected, the mild heat shock reduced protein synthesis rates. Large variation occurred among lines in levels of omega-n which was negatively associated with rates of basal protein synthesis--a result that supports the model for the cellular function of omega-n. Furthermore, omega-n levels were associated with hsr-omega genotype of the line parents. Little variation occurred among lines for omega-c levels and no associations were detected with protein synthesis or genotype. Since protein synthesis is a fundamental process for growth and development, we characterised the lines for several life-history traits; however, no associations with protein synthesis, omega-n or omega-c levels were detected. Our results are consistent with the idea that natural variation in hsr-omega expression influence rates of protein synthesis in this species.
Collapse
Affiliation(s)
- Travis K. Johnson
- Centre for Environmental Stress and Adaptation Research (CESAR), School of Biological Sciences, Monash University, Melbourne, VIC 3800 Australia
| | - Lauren B. Carrington
- Centre for Environmental Stress and Adaptation Research (CESAR), School of Biological Sciences, Monash University, Melbourne, VIC 3800 Australia
| | - Rebecca J. Hallas
- Centre for Environmental Stress and Adaptation Research (CESAR), School of Biological Sciences, Monash University, Melbourne, VIC 3800 Australia
| | - Stephen W. McKechnie
- Centre for Environmental Stress and Adaptation Research (CESAR), School of Biological Sciences, Monash University, Melbourne, VIC 3800 Australia
| |
Collapse
|
8
|
Savvateeva-Popova E, Medvedeva A, Popov A, Evgen'ev M. Role of non-coding RNAs in neurodegeneration and stress response in Drosophila. Biotechnol J 2008; 3:1010-21. [PMID: 18702036 DOI: 10.1002/biot.200800120] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The inherent limitations of genetic analysis in humans and other mammals as well as striking conservation of most genes controlling nervous system functioning in flies and mammals made Drosophila an attractive model to investigate various aspects of brain diseases. Since RNA research has made great progress in recent years here we present an overview of studies demonstrating the role of various non-coding RNAs in neurodegeneration and stress response in Drosophila as a model organism. We put special emphasis on the role of non-coding micro RNAs, hsr-omega transcripts, and artificial small highly structured RNAs as triggers of neuropathology including aggregates formation, cognitive abnormalities and other symptoms. Cellular stress is a conspicuous feature of many neurodegenerative diseases and the production of specialized proteins protects the nerve cells against aggregates formation. Therefore, herein we describe some data implicating various classes of non-coding RNAs in stress response in Drosophila. All these findings highlight Drosophila as an important model system to investigate various brain diseases potentially mediated by some non-coding RNAs including polyglutamine diseases, Alzheimer's disease, Huntigton's disease, and many others.
Collapse
|
9
|
Sarkar S, Lakhotia SC. The Hsp60C gene in the 25F cytogenetic region in Drosophila melanogaster is essential for tracheal development and fertility. J Genet 2005; 84:265-81. [PMID: 16385159 DOI: 10.1007/bf02715797] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Earlier studies have shown that of the four genes (Hsp60A, Hsp60B, Hsp60C, Hsp60D genes) predicted to encode the conserved Hsp60 family chaperones in Drosophila melanogaster, the Hsp60A gene (at the 10A polytene region) is expressed in all cell types of the organism and is essential from early embryonic stages, while the Hsp60B gene (at 21D region) is expressed only in testis, being essential for sperm individualization. In the present study, we characterized the Hsp60C gene (at 25F region), which shows high sequence homology with the other three Hsp60 genes of D. melanogaster. In situ hybridization of Hsp60C-specific riboprobe shows that expression of this gene begins in late embryonic stages (stage 14 onwards), particularly in the developing tracheal system and salivary glands; during larval and adult stages, it is widely expressed in many cell types but much more strongly in tracheae and in developing and differentiating germ cells. A P-insertion mutant (Hsp60C(1)) allele with the P transposon inserted at -251 position of the Hsp60C gene promoter was generated. This early larval recessive lethal mutation significantly reduces levels of Hsp60C transcripts in developing tracheae and this is associated with a variety of defects in the tracheal system, including lack of liquid clearance. About 10% of the homozygotes survive as weak, shortlived and completely sterile adults. Testes of the surviving mutant males are significantly smaller, with fewer spermatocytes, most of which do not develop beyond the round spermatid stage. In situ and Northern hybridizations show significantly reduced levels of the Hsp60C transcripts in Hsp60C(1) homozygous adult males. The absence of early meiotic stages in the Hsp60C(1) homozygous testes contrasts with the effect of testis-specific Hsp60B (21D) gene, whose mutation affects individualization of sperm bundles later in spermiogenesis. In view of the specific effects in tracheal development and in early stages of spermatogenesis, it is likely that, besides its functions as a chaperone, Hsp60C may have signalling functions and may also be involved in cation transport across the developing tracheal epithelial cells.
Collapse
Affiliation(s)
- Surajit Sarkar
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi 221 005, India
| | | |
Collapse
|
10
|
Rajendra TK, Prasanth KV, Lakhotia SC. Male sterility associated with overexpression of the noncoding hsromega gene in cyst cells of testis of Drosophila melanogaster. J Genet 2001; 80:97-110. [PMID: 11910129 DOI: 10.1007/bf02728335] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Of the several noncoding transcripts produced by the hsromega gene of Drosophila melanogaster, the nucleus-limited >10-kb hsromega-n transcript colocalizes with heterogeneous nuclear RNA binding proteins (hnRNPs) to form fine nucleoplasmic omega speckles. Our earlier studies suggested that the noncoding hsromega-n transcripts dynamically regulate the distribution of hnRNPs in active (chromatin bound) and inactive (in omega speckles) compartments. Here we show that a P transposon insertion in this gene's promoter (at -130 bp) in the hsromega05421; enhancer-trap line had no effect on viability or phenotype of males or females, but the insertion-homozygous males were sterile. Testes of hsromega05421; homozygous flies contained nonmotile sperms while their seminal vesicles were empty. RNA:RNA in situ hybridization showed that the somatic cyst cells in testes of the mutant male flies contained significantly higher amounts of hsromega-n transcripts, and unlike the characteristic fine omega speckles in other cell types they displayed large clusters of omega speckles as typically seen after heat shock. Two of the hnRNPs, viz. HRB87F and Hrb57A, which are expressed in cyst cells, also formed large clusters in these cells in parallel with the hsromega-n transcripts. A complete excision of the P transposon insertion restored male fertility as well as the fine-speckled pattern of omega speckles in the cyst cells. The in situ distribution patterns of these two hnRNPs and several other RNA-binding proteins (Hrp40, Hrb57A, S5, Sxl, SRp55 and Rb97D) were not affected by hsromega mutation in any of the meiotic stages in adult testes. The present studies, however, revealed an unexpected presence (in wild-type as well as mutant) of the functional form of Sxl in primary spermatocytes and an unusual distribution of HRB87F along the retracting spindle during anaphase telophase of the first meiotic division. It appears that the P transposon insertion in the promoter region causes a misregulated overexpression of hsromega in cyst cells, which in turn results in excessive sequestration of hnRNPs and formation of large clusters of omega speckles in these cell nuclei. The consequent limiting availability of hnRNPs is likely to trans-dominantly affect processing of other pre-mRNAs in cyst cells. We suggest that a compromise in the activity of cyst cells due to the aberrant hnRNP distribution is responsible for the failure of individualization of sperms in hsromega05421; mutant testes. These results further support a significant role of the noncoding hsromega-n transcripts in basic cellular activities, namely regulation of the availability of hnRNPs in active (chromatin bound) and inactive (in omega speckles) compartments.
Collapse
Affiliation(s)
- T K Rajendra
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi 221 005, India
| | | | | |
Collapse
|
11
|
Lakhotia SC, Rajendra TK, Prasanth KV. Developmental regulation and complex organization of the promoter of the non-coding hsr(omega) gene of Drosophila melanogaster. J Biosci 2001; 26:25-38. [PMID: 11255511 DOI: 10.1007/bf02708978] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The nucleus-limited large non-coding hsr(omega)-n RNA product of the 93D or the hsr(omega) gene of Drosophila melanogaster binds to a variety of RNA-binding proteins involved in nuclear RNA processing. We examined the developmental and heat shock induced expression of this gene by in situ hybridization of nonradioactively labelled riboprobe to cellular transcripts in intact embryos, larval and adult somatic tissues of wild type and an enhancer-trap line carrying the hsr(omega) 05241 allele due to insertion of a P-LacZ-rosy+ transposon at -130 bp position of the hsr(omega) promoter. We also examined LacZ expression in the enhancer-trap line and in two transgenic lines carrying different lengths of the hsr(omega) promoter upstream of the LacZ reporter. The hsr(omega) gene is expressed widely at all developmental stages; in later embryonic stages, its expression in the developing central nervous system was prominent. In spite of insertion of a big transposon in the promoter, expression of the hsr(omega) 05241 allele in the enhancer-trap line, as revealed by in situ hybridization to hsr(omega) transcripts in cells, was similar to that of the wild type allele in all the embryonic, larval and adult somatic tissues examined. Expression of the LacZ gene in this enhancer-trap line was similar to that of the hsr(omega) RNA in all diploid cell types in embryos and larvae but in the polytene cells, the LacZ gene did not express at all, neither during normal development nor after heat shock. Comparison of the expression patterns of hsr(omega) gene and those of the LacZ reporter gene under its various promoter regions in the enhancer-trap and transgenic lines revealed a complex pattern of regulation, which seems to be essential for its dynamically varying expression in diverse cell types.
Collapse
Affiliation(s)
- S C Lakhotia
- Cytogenetics Laboratory,Department of Zoology, Banaras Hindu University, Varanasi 221 005, India.
| | | | | |
Collapse
|
12
|
Prasanth KV, Rajendra TK, Lal AK, Lakhotia SC. Omega speckles - a novel class of nuclear speckles containing hnRNPs associated with noncoding hsr-omega RNA in Drosophila. J Cell Sci 2000; 113 Pt 19:3485-97. [PMID: 10984439 DOI: 10.1242/jcs.113.19.3485] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Fluorescence RNA:RNA in situ hybridization studies in various larval and adult cell types of Drosophila melanogaster showed that the noncoding hsr-omega nuclear (hsromega-n) transcripts were present in the form of many small speckles. These speckles, which we name ‘omega speckles’, were distributed in the interchromatin space in close proximity to the chromatin. The only chromosomal site where hsromega-n transcripts localized was the 93D locus or the hsromega gene itself. The number of nucleoplasmic speckles varied in different cell types. Heat shock, which inhibits general chromosomal transcription, caused the individual speckles to coalesce into larger but fewer clusters. In extreme cases, only a single large cluster of hsromega-n transcripts localizing to the hsromega locus was seen in each nucleus. In situ immunocytochemical staining using antibodies against heterogenous nuclear RNA binding proteins (hnRNPs) like HRB87F, Hrp40, Hrb57A and S5 revealed that, in all cell types, all the hnRNPs gave a diffuse staining of chromatin areas and in addition, were present as large numbers of speckles. Colocalization studies revealed an absolute colocalization of the hnRNPs and the omegaspeckles. Heat shock caused all the hnRNPs to cluster together exactly, following the hsromega-n transcripts. Immunoprecipitation studies using the hnRNP antibodies further demonstrated a physical association of hnRNPs and hsromega transcripts. The omegaspeckles are distinct from interchromatin granules since nuclear speckles containing serine/arginine-rich SR-proteins like SC35 and SRp55 did not colocalize with the ω speckles. The speckled distribution of hnRNPs was completely disrupted in hsromega nullosomics. We conclude that the hsromega-n transcripts play essential structural and functional roles in organizing and establishing the hnRNP-containing omega speckles and thus regulate the trafficking and availability of hnRNPs and other related RNA binding proteins in the cell nucleus.
Collapse
Affiliation(s)
- K V Prasanth
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi 221 005, India
| | | | | | | |
Collapse
|
13
|
Affiliation(s)
- I F Zhimulev
- Institute of Cytology and Genetics, Siberian Division of Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
14
|
Erdmann VA, Szymanski M, Hochberg A, de Groot N, Barciszewski J. Collection of mRNA-like non-coding RNAs. Nucleic Acids Res 1999; 27:192-5. [PMID: 9847177 PMCID: PMC148132 DOI: 10.1093/nar/27.1.192] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In last few years much data has accumulated which shows that in different cells various RNA transcripts are synthesized. They lack protein coding capacity and do not produce mature protein. It seems that they work mainly or exclusively on the RNA level. Their function and mechanism of action is poorly understood. In this paper we have collected all known RNA transcript and prepared a database for further structural and functional studies. This is the first collection of the nucleotide sequences of RNAs of this kind. The data can be accessed via WWW at: http://www.man.poznan.pl/5SData/ncRNA/inde x.html
Collapse
Affiliation(s)
- V A Erdmann
- Institut fur Biochemie, Freie Universitat Berlin, Thielallee 63, 14195 Berlin, Germany
| | | | | | | | | |
Collapse
|
15
|
Ray P, Lakhotia SC. Interaction of the non-protein-coding developmental and stress-induciblehsrω gene withRas genes ofDrosophila melanogaster. J Biosci 1998. [DOI: 10.1007/bf02936131] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Buchenau P, Saumweber H, Arndt-Jovin DJ. The dynamic nuclear redistribution of an hnRNP K-homologous protein during Drosophila embryo development and heat shock. Flexibility of transcription sites in vivo. J Cell Biol 1997; 137:291-303. [PMID: 9128243 PMCID: PMC2139770 DOI: 10.1083/jcb.137.2.291] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The Drosophila protein Hrb57A has sequence homology to mammalian heterogenous nuclear ribonucleoprotein (hnRNP) K proteins. Its in vivo distribution has been studied at high resolution by confocal laser scanning microscopy (CLSM) in embryos injected with fluorescently labeled monoclonal antibody. Injection of antibody into living embryos had no apparent deleterious effects on further development. Furthermore, the antibody-protein complex could be observed for more than 7 cell cycles in vivo, revealing a dynamic redistribution from the nucleus to cytoplasm at each mitosis from blastoderm until hatching. The evaluation of two- and three-dimensional CLSM data sets demonstrated important differences in the localization of the protein in the nuclei of living compared to fixed embryos. The Hrb57A protein was recruited to the 93D locus upon heat shock and thus serves as an in vivo probe for the activity of the gene in diploid cells of the embryo. Observations during heat shock revealed considerable mobility within interphase nuclei of this transcription site. Furthermore, the reinitiation as well as the down regulation of transcriptional loci in vivo during the recovery from heat shock could be followed by the rapid redistribution of the hnRNP K during stress recovery. These data are incompatible with a model of the interphase nucleus in which transcription complexes are associated with a rigid nuclear matrix.
Collapse
Affiliation(s)
- P Buchenau
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | | | | |
Collapse
|
17
|
Lakhotia SC, Sharma A. The 93D (hsr-omega) locus of Drosophila: non-coding gene with house-keeping functions. Genetica 1996; 97:339-48. [PMID: 9081862 DOI: 10.1007/bf00055320] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The 93D, or hsr-omega (heat-shock RNA-omega), locus of Drosophila melanogaster and other species of Drosophila, besides being induced as a member of the heat shock gene family, is also selectively and singularly inducible by a variety of agents, notably benzamide, colchicine and vitamin B6 (in species other than D. melanogaster). The genomic structure of this locus is highly conserved in all species, although the primary base sequence has diverged rapidly between species. Three transcripts (two nuclear and one cytoplasmic) are produced by this locus but none of them has any significant protein coding capacity. The profile of the three transcripts varies in a developmental and inducer-specific manner. This locus is developmentally active in nearly all cell types and is essential for viability of flies. Its induction during heat shock is independent of the other members of the heat shock gene family. The other selective inducers act on this locus through separate response elements. hsr-omega activity has a characteristic effect on transcription/turnover of the heat shock induced hsp70 and the alpha-beta transcripts in D. melanogaster. It appears that the hsr-omega locus has important house-keeping functions in transport and turnover of some transcripts and in monitoring the 'health' of the translational machinery of the cell.
Collapse
Affiliation(s)
- S C Lakhotia
- Department of Zoology, Banaras Hindu University, Varanasi, India
| | | |
Collapse
|
18
|
hsp 83 mutation is a dominant enhancer of lethality associated with absence of the non-protein codinghsrω locus inDrosophila melanogaster. J Biosci 1996. [DOI: 10.1007/bf02703109] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
19
|
Heat shock but not benzamide and colchicine response elements are present within the — 844 bp upstream region of thehrsω gene ofDrosophila melanogaster. J Biosci 1996. [DOI: 10.1007/bf02703111] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
20
|
Sharma A, Lakhotia SC. In situ quantification of hsp70 and alpha-beta transcripts at 87A and 87C loci in relation to hsr-omega gene activity in polytene cells of Drosophila melanogaster. Chromosome Res 1995; 3:386-93. [PMID: 7551555 DOI: 10.1007/bf00710021] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The hsp70-coding duplicate loci at the 87A and 87C sites (the 87C site also carries heat-inducible alpha-beta repeats) in polytene nuclei are known to puff to different levels under conditions in which heat shock does not induce the non-protein-coding hsr-omega gene at the 93D site. To understand the basis of this unequal puffing, the levels of hsp70 and alpha-beta transcripts at the 87A and 87C heat shock loci in polytene chromosomes of Drosophila melanogaster were quantified in situ by hybridization of antisense RNA probes after treatment with heat shock, benzamide, colchicine, heat shock followed by benzamide or heat shock in the presence of colchicine in salivary glands of late third instar larvae. Heat shock, resulting in equal puffing of the 87A and 87C loci, increased the hsp70 transcripts at both sites in proportion to the numbers of hsp70 gene copies at the two loci; levels of alpha-beta transcripts were also elevated at the 87C site following heat shock. Heat shock followed by benzamide treatment, which results in a larger puff at 87A, caused an increase in hsp70 transcripts per gene copy at 87A and a decrease at 87C without any effect on the alpha-beta transcripts; heat shock in the presence of colchicine, which causes the 87C puff to be larger than 87A, resulted in a decrease in hsp70 RNA at 87A but an increase in the levels of hsp70 as well as alpha-beta transcripts at the 87C site.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- A Sharma
- Department of Zoology, Banaras Hindu University, Varanasi, India
| | | |
Collapse
|
21
|
Mutsuddi M, Lakhotia SC. Spatial expression of the hsr-omega (93D) gene in different tissues of Drosophila melanogaster and identification of promoter elements controlling its developmental expression. DEVELOPMENTAL GENETICS 1995; 17:303-11. [PMID: 8641048 DOI: 10.1002/dvg.1020170403] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Developmental expression of the heat shock inducible non-protein coding hsr-omega gene in several larval and adult tissues of Drosophila melanogaster was examined by in situ hybridization to transcripts in intact organs and by X-gal staining in the germline transformants and carrying the lacZ reporter gene under the control of hsr-omega promoter. This gene is expressed in a specific spatial pattern in all the larval and adult tissue types examined; however, its transcripts were specifically absent in certain gonadal cell types like the male as well as female gonial cells and in follicle cells and oocytes in ovary. All polytenised tissues like the prothoracic and salivary glands, certain regions of larval gut and the Malpighian tubules showed a greater abundance of hsr-omega transcripts with a strong hybridization in nuclei. Our results with promoter deletion variant germline transformants suggest that a region between -346bp to -844bp upstream contains major regulatory elements for developmental expression of this gene in most of the larval and adult tissues examined; however, this region is not sufficient for its normal expression in male and female reproductive systems. An analysis of the base sequence of the hsr-omega promoter (upto - 844 bp) reveals putative ecdysone receptor element half-sites and two GAGA factor binding sites which may be involved in its developmental expression and its ready inducibility. The widespread expression in most tissue types and the known lethality associated with its homozygous deletion, suggest that the variety of non-protein coding transcripts of the hsr-omega gene have vital "house-keeping" functions.
Collapse
Affiliation(s)
- M Mutsuddi
- Department of Zoology, Banaras Hindu University, Varanasi, India
| | | |
Collapse
|