1
|
Xu G, Jia X, Wu C, Liu X, Dong F. Chiral Fungicide Famoxadone: Stereoselective Bioactivity, Aquatic Toxicity, and Environmental Behavior in Soils. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:8530-8535. [PMID: 34313440 DOI: 10.1021/acs.jafc.1c00825] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this study, the stereoselective bioactivity, acute toxicity, and environmental fate for famoxadone enantiomers were reported for the first time. Five representative pathogens (e.g., Alternaria solani) were used to investigate enantioselective activity, and three non-target organisms (e.g., Selenastrum bibraianum) were used to evaluate acute toxicity. S-Famoxadone was 3.00-6.59 times more effective than R-famoxadone. R-Famoxadone also showed 1.80-6.40 times more toxicity than S-famoxadone toward S. bibraianum and Daphnia magna. The toxicity of R-famoxadone was 100 times more toxic than S-famoxadone toward Danio rerio. Under aerobic conditions, the half-life (t1/2) for famoxadone enantiomer degradation was 46.2-126 days in different soils and the enantiomeric fraction (EF) ranged from 0.435 to 0.470 after 120 days. R-Famoxadone preferentially degraded in three soils, resulting in an enrichment of S-famoxadone. Under anaerobic conditions, t1/2 of famoxadone enantiomers was 62.4-147 days in different soils and the EF ranged from 0.489 to 0.495, indicating that famoxadone enantiomers were not enantioselective. This study will be useful for the environmental and health risk assessments for famoxadone enantiomers.
Collapse
Affiliation(s)
- Guofeng Xu
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning 125100, People's Republic of China
| | - Xiaohui Jia
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning 125100, People's Republic of China
| | - Chi Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Xingang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Fengshou Dong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| |
Collapse
|
2
|
Chebon-Bore L, Sanyanga TA, Manyumwa CV, Khairallah A, Tastan Bishop Ö. Decoding the Molecular Effects of Atovaquone Linked Resistant Mutations on Plasmodium falciparum Cytb-ISP Complex in the Phospholipid Bilayer Membrane. Int J Mol Sci 2021; 22:2138. [PMID: 33670016 PMCID: PMC7926518 DOI: 10.3390/ijms22042138] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/02/2021] [Accepted: 02/07/2021] [Indexed: 12/19/2022] Open
Abstract
Atovaquone (ATQ) is a drug used to prevent and treat malaria that functions by targeting the Plasmodium falciparum cytochrome b (PfCytb) protein. PfCytb catalyzes the transmembrane electron transfer (ET) pathway which maintains the mitochondrial membrane potential. The ubiquinol substrate binding site of the protein has heme bL, heme bH and iron-sulphur [2FE-2S] cluster cofactors that act as redox centers to aid in ET. Recent studies investigating ATQ resistance mechanisms have shown that point mutations of PfCytb confer resistance. Thus, understanding the resistance mechanisms at the molecular level via computational approaches incorporating phospholipid bilayer would help in the design of new efficacious drugs that are also capable of bypassing parasite resistance. With this knowledge gap, this article seeks to explore the effect of three drug resistant mutations Y268C, Y268N and Y268S on the PfCytb structure and function in the presence and absence of ATQ. To draw reliable conclusions, 350 ns all-atom membrane (POPC:POPE phospholipid bilayer) molecular dynamics (MD) simulations with derived metal parameters for the holo and ATQ-bound -proteins were performed. Thereafter, simulation outputs were analyzed using dynamic residue network (DRN) analysis. Across the triplicate MD runs, hydrophobic interactions, reported to be crucial in protein function were assessed. In both, the presence and absence of ATQ and a loss of key active site residue interactions were observed as a result of mutations. These active site residues included: Met 133, Trp136, Val140, Thr142, Ile258, Val259, Pro260 and Phe264. These changes to residue interactions are likely to destabilize the overall intra-protein residue communication network where the proteins' function could be implicated. Protein dynamics of the ATQ-bound mutant complexes showed that they assumed a different pose to the wild-type, resulting in diminished residue interactions in the mutant proteins. In summary, this study presents insights on the possible effect of the mutations on ATQ drug activity causing resistance and describes accurate MD simulations in the presence of the lipid bilayer prior to conducting inhibitory drug discovery for the PfCytb-iron sulphur protein (Cytb-ISP) complex.
Collapse
Affiliation(s)
| | | | | | | | - Özlem Tastan Bishop
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Makhanda 6140, South Africa; (L.C.-B.); (T.A.S.); (C.V.M.); (A.K.)
| |
Collapse
|
3
|
Husen P, Solov'yov IA. Mutations at the Q o Site of the Cytochrome bc 1 Complex Strongly Affect Oxygen Binding. J Phys Chem B 2016; 121:3308-3317. [PMID: 27748117 DOI: 10.1021/acs.jpcb.6b08226] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The homodimeric bc1 protein complex is embedded in membranes of mitochondria and photosynthetic bacteria, where it transports protons across the membrane to maintain an electrostatic potential used to drive ATP synthesis as part of the respiratory or photosynthetic pathways. The reaction cycle of the bc1 complex is driven by series of redox processes involving substrate molecules from the membrane, but occasional side reactions between an intermediate semiquinone substrate and molecular oxygen are suspected to be a source of toxic superoxide, which is believed to be a factor in aging. The present investigation employs molecular dynamics simulations to study the effect of mutations in the Qo binding sites of the bc1 complex on the ability of oxygen molecules to migrate to and bind at various locations within the complex. It is found that the mutations strongly affect the ability of oxygen to bind at the Qo sites, and moreover, different behavior of the two monomers of the bc1 complex is observed. The conformational differences at the Qo sites of the two monomers are studied in detail and discussed. The anionic form of semiquinone was identified as leading to the greatest opportunity for side reactions with oxygen.
Collapse
Affiliation(s)
- Peter Husen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark , Campusvej 55, 5230 Odense M, Denmark
| | - Ilia A Solov'yov
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark , Campusvej 55, 5230 Odense M, Denmark
| |
Collapse
|
4
|
|
5
|
Structure-Function of the Cytochrome b 6 f Lipoprotein Complex. ADVANCES IN PHOTOSYNTHESIS AND RESPIRATION 2016. [DOI: 10.1007/978-94-017-7481-9_9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
6
|
Borek A, Kuleta P, Ekiert R, Pietras R, Sarewicz M, Osyczka A. Mitochondrial Disease-related Mutation G167P in Cytochrome b of Rhodobacter capsulatus Cytochrome bc1 (S151P in Human) Affects the Equilibrium Distribution of [2Fe-2S] Cluster and Generation of Superoxide. J Biol Chem 2015; 290:23781-92. [PMID: 26245902 PMCID: PMC4583038 DOI: 10.1074/jbc.m115.661314] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Indexed: 12/04/2022] Open
Abstract
Cytochrome bc1 is one of the key enzymes of many bioenergetic systems. Its operation involves a large scale movement of a head domain of iron-sulfur protein (ISP-HD), which functionally connects the catalytic quinol oxidation Qo site in cytochrome b with cytochrome c1. The Qo site under certain conditions can generate reactive oxygen species in the reaction scheme depending on the actual position of ISP-HD in respect to the Qo site. Here, using a bacterial system, we show that mutation G167P in cytochrome b shifts the equilibrium distribution of ISP-HD toward positions remote from the Qo site. This renders cytochrome bc1 non-functional in vivo. This effect is remediated by addition of alanine insertions (1Ala and 2Ala) in the neck region of the ISP subunit. These insertions, which on their own shift the equilibrium distribution of ISP-HD in the opposite direction (i.e. toward the Qo site), also act in this manner in the presence of G167P. Changes in the equilibrium distribution of ISP-HD in G167P lead to an increased propensity of cytochrome bc1 to generate superoxide, which becomes evident when the concentration of quinone increases. This result corroborates the recently proposed model in which “semireverse” electron transfer back to the Qo site, occurring when ISP-HD is remote from the site, favors reactive oxygen species production. G167P suggests possible molecular effects of S151P (corresponding in sequence to G167P) identified as a mitochondrial disease-related mutation in human cytochrome b. These effects may be valid for other human mutations that change the equilibrium distribution of ISP-HD in a manner similar to G167P.
Collapse
Affiliation(s)
- Arkadiusz Borek
- From the Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Patryk Kuleta
- From the Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Robert Ekiert
- From the Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Rafał Pietras
- From the Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Marcin Sarewicz
- From the Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Artur Osyczka
- From the Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| |
Collapse
|
7
|
Abstract
Quinol oxidation in the catalytic quinol oxidation site (Qo site) of cytochrome (cyt) bc1 complexes is the key step of the Q cycle mechanism, which laid the ground for Mitchell’s chemiosmotic theory of energy conversion. Bifurcated electron transfer upon quinol oxidation enables proton uptake and release on opposite membrane sides, thus generating a proton gradient that fuels ATP synthesis in cellular respiration and photosynthesis. The Qo site architecture formed by cyt b and Rieske iron–sulfur protein (ISP) impedes harmful bypass reactions. Catalytic importance is assigned to four residues of cyt b formerly described as PEWY motif in the context of mitochondrial complexes, which we now denominate Qo motif as comprehensive evolutionary sequence analysis of cyt b shows substantial natural variance of the motif with phylogenetically specific patterns. In particular, the Qo motif is identified as PEWY in mitochondria, α- and ε-Proteobacteria, Aquificae, Chlorobi, Cyanobacteria, and chloroplasts. PDWY is present in Gram-positive bacteria, Deinococcus–Thermus and haloarchaea, and PVWY in β- and γ-Proteobacteria. PPWF only exists in Archaea. Distinct patterns for acidophilic organisms indicate environment-specific adaptations. Importantly, the presence of PDWY and PEWY is correlated with the redox potential of Rieske ISP and quinone species. We propose that during evolution from low to high potential electron-transfer systems in the emerging oxygenic atmosphere, cyt bc1 complexes with PEWY as Qo motif prevailed to efficiently use high potential ubiquinone as substrate, whereas cyt b with PDWY operate best with low potential Rieske ISP and menaquinone, with the latter being the likely composition of the ancestral cyt bc1 complex.
Collapse
Affiliation(s)
- Wei-Chun Kao
- Institute for Biochemistry and Molecular Biology, ZBMZ, BIOSS Centre for Biological Signalling Studies, University of Freiburg, Germany
- Faculty of Biology, University of Freiburg, Germany
| | - Carola Hunte
- Institute for Biochemistry and Molecular Biology, ZBMZ, BIOSS Centre for Biological Signalling Studies, University of Freiburg, Germany
- *Corresponding author: E-mail:
| |
Collapse
|
8
|
Synthesis and chemoinformatics analysis of N-aryl-β-alanine derivatives. RESEARCH ON CHEMICAL INTERMEDIATES 2014. [DOI: 10.1007/s11164-014-1841-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Bleier L, Dröse S. Superoxide generation by complex III: from mechanistic rationales to functional consequences. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1827:1320-31. [PMID: 23269318 DOI: 10.1016/j.bbabio.2012.12.002] [Citation(s) in RCA: 241] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 12/05/2012] [Accepted: 12/12/2012] [Indexed: 01/21/2023]
Abstract
Apart from complex I (NADH:ubiquinone oxidoreductase) the mitochondrial cytochrome bc1 complex (complex III; ubiquinol:cytochrome c oxidoreductase) has been identified as the main producer of superoxide and derived reactive oxygen species (ROS) within the mitochondrial respiratory chain. Mitochondrial ROS are generally linked to oxidative stress, aging and other pathophysiological settings like in neurodegenerative diseases. However, ROS produced at the ubiquinol oxidation center (center P, Qo site) of complex III seem to have additional physiological functions as signaling molecules during cellular processes like the adaptation to hypoxia. The molecular mechanism of superoxide production that is mechanistically linked to the electron bifurcation during ubiquinol oxidation is still a matter of debate. Some insight comes from extensive kinetic studies with mutated complexes from yeast and bacterial cytochrome bc1 complexes. This review is intended to bridge the gap between those mechanistic studies and investigations on complex III ROS in cellular signal transduction and highlights factors that impact superoxide generation. This article is part of a Special Issue entitled: Respiratory complex III and related bc complexes.
Collapse
Affiliation(s)
- Lea Bleier
- Molecular Bioenergetics Group, Medical School, Johann Wolfgang Goethe-Universität, Frankfurt am Main, Germany
| | | |
Collapse
|
10
|
Czapla M, Borek A, Sarewicz M, Osyczka A. Fusing two cytochromes b of Rhodobacter capsulatus cytochrome bc1 using various linkers defines a set of protein templates for asymmetric mutagenesis. Protein Eng Des Sel 2011; 25:15-25. [PMID: 22119789 PMCID: PMC3276305 DOI: 10.1093/protein/gzr055] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cytochrome bc1 (mitochondrial complex III), one of the key enzymes of biological energy conversion, is a functional homodimer in which each monomer contains three catalytic subunits: cytochrome c1, the iron–sulfur subunit and cytochrome b. The latter is composed of eight transmembrane α-helices which, in duplicate, form a hydrophobic core of a dimer. We show that two cytochromes b can be fused into one 16-helical subunit using a number of different peptide linkers that vary in length but all connect the C-terminus of one cytochrome with the N-terminus of the other. The fusion proteins replace two cytochromes b in the dimer defining a set of available protein templates for introducing mutations that allow breaking symmetry of a dimer. A more detailed comparison of the form with the shortest, 3 amino acid, linker to the form with 12 amino acid linker established that both forms display similar level of structural plasticity to accommodate several, but not all, asymmetric patterns of mutations that knock out individual segments of cofactor chains. While the system based on a fused gene does not allow for the assessments of the functionality of electron-transfer paths in vivo, the family of proteins with fused cytochrome b offers attractive model for detailed investigations of molecular mechanism of catalysis at in vitro/reconstitution level.
Collapse
Affiliation(s)
- Monika Czapla
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | | | | | | |
Collapse
|
11
|
|
12
|
Sener M, Hsin J, Trabuco LG, Villa E, Qian P, Hunter CN, Schulten K. Structural model and excitonic properties of the dimeric RC-LH1-PufX complex from Rhodobacter sphaeroides. Chem Phys 2009; 357:188-197. [PMID: 20161332 DOI: 10.1016/j.chemphys.2009.01.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The light-harvesting apparatus of the purple bacterial photosynthetic unit consists of a pool of peripheral light-harvesting complexes that transfer excitation energy to a reaction center (RC) via the surrounding pigment-protein complex LH1. Recent electron microscopy and atomic force microscopy studies have revealed that RC-LH1 units of Rhodobacter sphaeroides form membrane-bending dimeric complexes together with the polypeptide PufX. We present a structural model for these RC-LH1-PufX dimeric complexes constructed using the molecular dynamics flexible fitting method based on an EM density map. The arrangement of the LH1 BChls displays a distortion near the proposed location of the PufX polypeptide. The resulting atomic model for BChl arrays is used to compute the excitonic properties of the dimeric RC-LH1 complex. A comparison is presented between the structural and excitonic features of the S-shaped dimeric BChl array of Rhodobacter sphaeroides and the circular BChl arrangement found in other purple bacteria.
Collapse
Affiliation(s)
- Melih Sener
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | | | | | | | | | | | | |
Collapse
|
13
|
From Atomic-Level Structure to Supramolecular Organization in the Photosynthetic Unit of Purple Bacteria. THE PURPLE PHOTOTROPHIC BACTERIA 2009. [DOI: 10.1007/978-1-4020-8815-5_15] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
14
|
The Cytochrome bc 1 and Related bc Complexes: The Rieske/Cytochrome b Complex as the Functional Core of a Central Electron/Proton Transfer Complex. THE PURPLE PHOTOTROPHIC BACTERIA 2009. [DOI: 10.1007/978-1-4020-8815-5_23] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
15
|
Covian R, Trumpower BL. Regulatory interactions in the dimeric cytochrome bc(1) complex: the advantages of being a twin. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1777:1079-91. [PMID: 18471987 PMCID: PMC2607007 DOI: 10.1016/j.bbabio.2008.04.022] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Revised: 04/10/2008] [Accepted: 04/12/2008] [Indexed: 10/22/2022]
Abstract
The dimeric cytochrome bc(1) complex catalyzes the oxidation-reduction of quinol and quinone at sites located in opposite sides of the membrane in which it resides. We review the kinetics of electron transfer and inhibitor binding that reveal functional interactions between the quinol oxidation site at center P and quinone reduction site at center N in opposite monomers in conjunction with electron equilibration between the cytochrome b subunits of the dimer. A model for the mechanism of the bc(1) complex has emerged from these studies in which binding of ligands that mimic semiquinone at center N regulates half-of-the-sites reactivity at center P and binding of ligands that mimic catalytically competent binding of ubiquinol at center P regulates half-of-the-sites reactivity at center N. An additional feature of this model is that inhibition of quinol oxidation at the quinone reduction site is avoided by allowing catalysis in only one monomer at a time, which maximizes the number of redox acceptor centers available in cytochrome b for electrons coming from quinol oxidation reactions at center P and minimizes the leakage of electrons that would result in the generation of damaging oxygen radicals.
Collapse
Affiliation(s)
- Raul Covian
- Department of Biochemistry, Dartmouth Medical School Hanover, New Hampshire 03755, U.S.A
| | - Bernard L. Trumpower
- Department of Biochemistry, Dartmouth Medical School Hanover, New Hampshire 03755, U.S.A
| |
Collapse
|
16
|
Why is it so difficult to construct Qi site mutants in Chlamydomonas reinhardtii? C R Biol 2008; 331:510-7. [DOI: 10.1016/j.crvi.2008.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Revised: 04/02/2008] [Accepted: 04/03/2008] [Indexed: 11/18/2022]
|
17
|
Lee DW, Oztürk Y, Osyczka A, Cooley JW, Daldal F. Cytochrome bc1-cy fusion complexes reveal the distance constraints for functional electron transfer between photosynthesis components. J Biol Chem 2008; 283:13973-82. [PMID: 18343816 DOI: 10.1074/jbc.m800091200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Photosynthetic (Ps) growth of purple non-sulfur bacteria such as Rhodobacter capsulatus depends on the cyclic electron transfer (ET) between the ubihydroquinone (QH2): cytochrome (cyt) c oxidoreductases (cyt bc1 complex), and the photochemical reaction centers (RC), mediated by either a membrane-bound (cyt c(y)) or a freely diffusible (cyt c2) electron carrier. Previously, we constructed a functional cyt bc1-c(y) fusion complex that supported Ps growth solely relying on membrane-confined ET ( Lee, D.-W., Ozturk, Y., Mamedova, A., Osyczka, A., Cooley, J. W., and Daldal, F. (2006) Biochim. Biophys. Acta 1757, 346-352 ). In this work, we further characterized this cyt bc1-c(y) fusion complex, and used its derivatives with shorter cyt c(y) linkers as "molecular rulers" to probe the distances separating the Ps components. Comparison of the physicochemical properties of both membrane-embedded and purified cyt bc1-c(y) fusion complexes established that these enzymes were matured and assembled properly. Light-activated, time-resolved kinetic spectroscopy analyses revealed that their variants with shorter cyt c(y) linkers exhibited fast, native-like ET rates to the RC via the cyt bc1. However, shortening the length of the cyt c(y) linker decreased drastically this electronic coupling between the cyt bc1-c(y) fusion complexes and the RC, thereby limiting Ps growth. The shortest and still functional cyt c(y) linker was about 45 amino acids long, showing that the minimal distance allowed between the cyt bc1-c(y) fusion complexes and the RC and their surrounding light harvesting proteins was very short. These findings support the notion that membrane-bound Ps components form large, active structural complexes that are "hardwired" for cyclic ET.
Collapse
|
18
|
Esser L, Elberry M, Zhou F, Yu CA, Yu L, Xia D. Inhibitor-complexed Structures of the Cytochrome bc1 from the Photosynthetic Bacterium Rhodobacter sphaeroides. J Biol Chem 2008; 283:2846-57. [DOI: 10.1074/jbc.m708608200] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
19
|
Mulkidjanian AY. Proton translocation by the cytochromebc1complexes of phototrophic bacteria: introducing the activated Q-cycle. Photochem Photobiol Sci 2007; 6:19-34. [PMID: 17200733 DOI: 10.1039/b517522d] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The cytochrome bc1 complexes are proton-translocating, dimeric membrane ubiquinol:cytochrome c oxidoreductases that serve as "hubs" in the vast majority of electron transfer chains. After each ubiquinol molecule is oxidized in the catalytic center P at the positively charged membrane side, the two liberated electrons head out, according to the Mitchell's Q-cycle mechanism, to different acceptors. One is taken by the [2Fe-2S] iron-sulfur Rieske protein to be passed further to cytochrome c1. The other electron goes across the membrane, via the low- and high-potential hemes of cytochrome b, to another ubiquinone-binding site N at the opposite membrane side. It has been assumed that two ubiquinol molecules have to be oxidized by center P to yield first a semiquinone in center N and then to reduce this semiquinone to ubiquinol. This review is focused on the operation of cytochrome bc1 complexes in phototrophic purple bacteria. Their membranes provide a unique system where the generation of membrane voltage by light-driven, energy-converting enzymes can be traced via spectral shifts of native carotenoids and correlated with the electron and proton transfer reactions. An "activated Q-cycle" is proposed as a novel mechanism that is consistent with the available experimental data on the electron/proton coupling. Under physiological conditions, the dimeric cytochrome bc1 complex is suggested to be continually primed by prompt oxidation of membrane ubiquinol via center N yielding a bound semiquinone in this center and a reduced, high-potential heme b in the other monomer of the enzyme. Then the oxidation of each ubiquinol molecule in center P is followed by ubiquinol formation in center N, proton translocation and generation of membrane voltage.
Collapse
Affiliation(s)
- Armen Y Mulkidjanian
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119899, Moscow, Russia.
| |
Collapse
|
20
|
Mulkidjanian AY. Ubiquinol oxidation in the cytochrome bc1 complex: Reaction mechanism and prevention of short-circuiting. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2005; 1709:5-34. [PMID: 16005845 DOI: 10.1016/j.bbabio.2005.03.009] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2004] [Revised: 12/01/2004] [Accepted: 03/22/2005] [Indexed: 11/26/2022]
Abstract
This review is focused on the mechanism of ubiquinol oxidation by the cytochrome bc1 complex (bc1). This integral membrane complex serves as a "hub" in the vast majority of electron transfer chains. The bc1 oxidizes a ubiquinol molecule to ubiquinone by a unique "bifurcated" reaction where the two released electrons go to different acceptors: one is accepted by the mobile redox active domain of the [2Fe-2S] iron-sulfur Rieske protein (FeS protein) and the other goes to cytochrome b. The nature of intermediates in this reaction remains unclear. It is also debatable how the enzyme prevents short-circuiting that could happen if both electrons escape to the FeS protein. Here, I consider a reaction mechanism that (i) agrees with the available experimental data, (ii) entails three traits preventing the short-circuiting in bc1, and (iii) exploits the evident structural similarity of the ubiquinone binding sites in the bc1 and the bacterial photosynthetic reaction center (RC). Based on the latter congruence, it is suggested that the reaction route of ubiquinol oxidation by bc1 is a reversal of that leading to the ubiquinol formation in the RC. The rate-limiting step of ubiquinol oxidation is then the re-location of a ubiquinol molecule from its stand-by site within cytochrome b into a catalytic site, which is formed only transiently, after docking of the mobile redox domain of the FeS protein to cytochrome b. In the catalytic site, the quinone ring is stabilized by Glu-272 of cytochrome b and His-161 of the FeS protein. The short circuiting is prevented as long as: (i) the formed semiquinone anion remains bound to the reduced FeS domain and impedes its undocking, so that the second electron is forced to go to cytochrome b; (ii) even after ubiquinol is fully oxidized, the reduced FeS domain remains docked to cytochrome b until electron(s) pass through cytochrome b; (iii) if cytochrome b becomes (over)reduced, the binding and oxidation of further ubiquinol molecules is hampered; the reason is that the Glu-272 residue is turned towards the reduced hemes of cytochrome b and is protonated to stabilize the surplus negative charge; in this state, this residue cannot participate in the binding/stabilization of a ubiquinol molecule.
Collapse
Affiliation(s)
- Armen Y Mulkidjanian
- Max Planck Institute of Biophysics, Department of Biophysical Chemistry, Max-von-Laue-Str. 3, D-60438 Frankfurt-am-Main, Germany.
| |
Collapse
|
21
|
Pember SO, Fleck LC, Moberg WK, Walker MP. Mechanistic differences in inhibition of ubiquinol cytochrome c reductase by the proximal Qo-site inhibitors famoxadone and methoxyacrylate stilbene. Arch Biochem Biophys 2005; 435:280-90. [PMID: 15708371 DOI: 10.1016/j.abb.2004.12.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2004] [Revised: 12/09/2004] [Indexed: 11/22/2022]
Abstract
Famoxadone (FAM) is a newly commercialized antibiotic for use against plant pathogenic fungi. It inhibits mitochondria ubiquinol:cytochrome c oxidoreductase (EC 1.10.2.2, bc(1) complex) function by binding to the proximal niche of the quinol oxidation site on the enzyme. FAM has effects on the enzyme characteristic of both type Ia (E-beta-methoxyacrylates) and type Ic (stigmatellin) inhibitors. Steady-state and tight-binding inhibition kinetics; as well as direct binding measurements with famoxadone (FAM) and methoxyacrylate stilbene (MOAS), indicated that FAM is a non-competitive inhibitor of the enzyme while methoxyacrylate stilbene (MOAS) is better described as a mixed-competitive inhibitor with respect to substrate. Mixed-competitive and non-competitive inhibition kinetics predicts a ternary enzyme-substrate-inhibitor (ESI) intermediate in the reaction sequence. Current views of the Qo domain architecture propose substrate binding niches in both distal and proximal regions of the domain. Since both inhibitors bind within the proximal niche, the formation of an ESI complex implicates substrate binding within the distal niche near the iron-sulfur protein (ISP) and cytochrome c(1) (C1). In the presence of saturating FAM, addition of substrate led to a slow, nearly stoichiometric reduction of C1 that was enzyme dependent, and independent of O(2)(-) production. Similar experiments with saturating MOAS led to a slow, sub-stoichiometric reduction of C1 by substrate. A comparison of the stoichiometries of reduction, and the apparent second order rate constants (K(cat)/K(m)) indicated that saturating MOAS elicits two distinct enzyme-inhibitor (EI) intermediates. One form does not bind substrate, but the other does. In contrast, saturating FAM leads to a predominant EI form capable of binding substrate. We suggest that these differences can be correlated to the respective effects of each inhibitor on the position of the ISP, and the integrity of a distal substrate binding site. The results also indicate that binding of these inhibitory substrate analogues to the proximal niche of the Qo domain significantly increases the DeltaG(double dagger) for reduction of C1.
Collapse
Affiliation(s)
- Stephen O Pember
- E.I. Dupont Company, Division of Agriculture and Nutrition, Stine Haskell Research Center, 1094 Elkton Rd., Newark, DE 19711-3507, USA.
| | | | | | | |
Collapse
|
22
|
Esser L, Quinn B, Li YF, Zhang M, Elberry M, Yu L, Yu CA, Xia D. Crystallographic studies of quinol oxidation site inhibitors: a modified classification of inhibitors for the cytochrome bc(1) complex. J Mol Biol 2004; 341:281-302. [PMID: 15312779 DOI: 10.1016/j.jmb.2004.05.065] [Citation(s) in RCA: 217] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2004] [Revised: 05/24/2004] [Accepted: 05/26/2004] [Indexed: 10/26/2022]
Abstract
Cytochrome bc(1) is an integral membrane protein complex essential for cellular respiration and photosynthesis; it couples electron transfer from quinol to cytochrome c to proton translocation across the membrane. Specific bc(1) inhibitors have not only played crucial roles in elucidating the mechanism of bc(1) function but have also provided leads for the development of novel antibiotics. Crystal structures of bovine bc(1) in complex with the specific Q(o) site inhibitors azoxystrobin, MOAS, myxothiazol, stigmatellin and 5-undecyl-6-hydroxy-4,7-dioxobenzothiazole were determined. Interactions, conformational changes and possible mechanisms of resistance, specific to each inhibitor, were defined. Residues and secondary structure elements that are capable of discriminating different classes of Q(o) site inhibitors were identified for the cytochrome b subunit. Directions in the displacement of the cd1 helix of cytochrome b subunit in response to various Q(o) site inhibitors were correlated to the binary conformational switch of the extrinsic domain of the iron-sulfur protein subunit. The new structural information, together with structures previously determined, provide a basis that, combined with biophysical and mutational data, suggest a modification to the existing classification of bc(1) inhibitors. bc(1) inhibitors are grouped into three classes: class P inhibitors bind to the Q(o) site, class N inhibitors bind to the Q(i) site and the class PN inhibitors target both sites. Class P contains two subgroups, Pm and Pf, that are distinct by their ability to induce mobile or fixed conformation of iron-sulfur protein.
Collapse
Affiliation(s)
- Lothar Esser
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4255, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Cooley JW, Roberts AG, Bowman MK, Kramer DM, Daldal F. The raised midpoint potential of the [2Fe2S] cluster of cytochrome bc1 is mediated by both the Qo site occupants and the head domain position of the Fe-S protein subunit. Biochemistry 2004; 43:2217-27. [PMID: 14979718 DOI: 10.1021/bi035938u] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have previously reported that mutant strains of Rhodobacter capsulatus that have alanine insertions (+nAla mutants) in the hinge region of the iron sulfur (Fe-S) containing subunit of the bc(1) complex have increased redox midpoint potentials (E(m)) for their [2Fe2S] clusters. The alteration of the E(m) in these strains, which contain mutations far from the metal binding site, implied that the local environment of the metal center is indirectly altered by a change in the interaction of this subunit with the hydroquinone oxidizing (Q(o)) site [Darrouzet, E., Valkova-Valchanova, M., and Daldal, F. (2002) J. Biol. Chem. 277, 3464-3470]. Subsequently, the E(m) changes have been proposed to be predominantly due to a stronger or more stabilized hydrogen bonding between the reduced [2Fe2S] cluster and the Q(o) site inhabitant ubiquinone (Q) [Shinkarev, V. P., Kolling, D. R. J., Miller, T. J., and Crofts, A. R. (2002) Biochemistry 41, 14372-14382]. To further investigate this issue, Fe-S protein-Q interactions were monitored by electron paramagnetic resonance (EPR) spectroscopy and the findings indicated that the wild type and mutant proteins interactions with Q are similar. Moreover, when the Q(pool) was chemically depleted, the E(m) of the [2Fe2S] cluster in mutant bc(1) complexes remained more positive than a similarly treated native enzyme (e.g., the [2Fe2S] E(m) of the +2Ala mutant was 55 mV more positive than the wild type). These data suggest that the increased E(m) of the [2Fe2S] cluster in the +nAla mutants is in part due to the cluster's interaction with Q, and in part to additional factors that are independent of hydrogen bonding to Q. One such factor, the possibility of a different position of the Fe-S at the Q(o) site of the mutant proteins versus the native enzyme, was addressed by determining the orientation of the [2Fe2S] cluster in the membrane using EPR spectroscopy. In the case of the +2Ala mutant, the [2Fe2S] cluster orientation in the absence of inhibitor is different than that seen in the native enzyme. However, the +2Ala mutant cluster shared a similar orientation with the native enzyme when both samples were exposed to either stigmatellin or myxothiazol. In addition, Q(pool) extracted membranes of +2Ala mutant exhibited fewer overall orientations, with the predominant one being more similar to that observed in the non-Q-depleted membranes of the +2Ala mutant than the Q-depleted membranes of a wild-type strain. Therefore, additional component(s) that are independent of Q(o) site inhabitants and that originate from the newly observed orientations of the [2Fe2S] clusters in the +nAla mutants also contribute to the increased midpoint potentials of their [2Fe2S] clusters. While the molecular basis of these components remains to be determined, salient implications of these findings in terms of Q(o) site catalysis are discussed.
Collapse
Affiliation(s)
- Jason W Cooley
- Department of Biology, Institute for Plant Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6018, USA
| | | | | | | | | |
Collapse
|
24
|
Le Moigne C, Picaud T, Boussac A, Loock B, Momenteau M, Desbois A. Absorption and resonance Raman investigations of ligand rotation and nonplanar heme distortion in bis-base low-spin iron(II)-tetrakis(o-pivalamidophenyl)porphyrin complexes. Inorg Chem 2003; 42:6081-8. [PMID: 12971780 DOI: 10.1021/ic034449f] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The absorption and resonance Raman (RR) spectra of the bis-N-methylimidazole, bis-1,5-dicyclohexylimidazole, and bis-pyridine complexes of the meso-alphaalphabetabeta and meso-alphabetaalphabeta atropisomers of Fe(II)-tetrakis(o-pivalamidophenyl)porphyrins (Fe(II)TpivPP) were obtained in methylene chloride. The different spatial arrangements of the o-pivalamide pickets in these two Fe(II)TpivPP compounds are expected to control the absolute and relative positions of the axial ligand rings with respect to the Fe-N(pyrrole) bonds. In particular, the spectroscopic data obtained for the bis-N-methylimidazole and bis-dicyclohexylimidazole complexes of the Fe(II)[alphabetaalphabeta-TpivPP] derivative showed the most important differences. Redshifts of the B and Q absorption bands (+ 4-5 nm) as well as an upshift of the low frequency nu(8) RR mode (+ 5 cm(-)(1)) were observed. No shift of the skeletal high frequency modes was detected. These spectral effects were associated with a change in relative position of the axial imidazole rings from nearly parallel in the bis-N-methylimidazole complex to nearly perpendicular in the bis-dicyclohexylimidazole complex. On the basis of stereochemical considerations as well as previous spectroscopic investigations, the data were interpreted in terms of change in porphyrin structure from planar to saddled. Complementing to a parallel study on bis-base Fe(II) "basket handle" porphyrin complexes, this spectroscopic investigation provides an additional means to distinguish planar, ruffled, and saddled conformations for ferrous hemes included in proteins.
Collapse
Affiliation(s)
- Carole Le Moigne
- Département de Biologie Joliot-Curie, CEA et URA 2096, CEA/Saclay, F-91191 Gif-sur-Yvette Cedex, France
| | | | | | | | | | | |
Collapse
|
25
|
Crofts AR, Shinkarev VP, Kolling DRJ, Hong S. The modified Q-cycle explains the apparent mismatch between the kinetics of reduction of cytochromes c1 and bH in the bc1 complex. J Biol Chem 2003; 278:36191-201. [PMID: 12829696 DOI: 10.1074/jbc.m305461200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Crystallographic structures of the bc1 complex from different sources have provided evidence that a movement of the Rieske iron-sulfur protein (ISP) extrinsic domain is essential for catalysis. This dynamic feature has opened up the question of what limits electron transfer, and several authors have suggested that movement of the ISP head, or gating of such movement, is rate-limiting. Measurements of the kinetics of cytochromes and of the electrochromic shift of carotenoids, following flash activation through the reaction center in chromatophore membranes from Rhodobacter sphaeroides, have allowed us to demonstrate that: (i) ubiquinol oxidation at the Qo-site of the bc1 complex has the same rate in the absence or presence of antimycin bound at the Qi-site, and is the reaction limiting turnover. (ii) Activation energies for transient processes to which movement of the ISP must contribute are much lower than that of the rate-limiting step. (iii) Comparison of experimental data with a simple mathematical model demonstrates that the kinetics of reduction of cytochromes c1 and bH are fully explained by the modified Q-cycle. (iv) All rates for processes associated with movement of the ISP are more rapid by at least an order of magnitude than the rate of ubiquinol oxidation. (v) Movement of the ISP head does not introduce a significant delay in reduction of the high potential chain by quinol, and it is not necessary to invoke such a delay to explain the kinetic disparity between the kinetics of reduction of cytochromes c1 and bH.
Collapse
Affiliation(s)
- Antony R Crofts
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| | | | | | | |
Collapse
|
26
|
Gao X, Wen X, Esser L, Quinn B, Yu L, Yu CA, Xia D. Structural basis for the quinone reduction in the bc1 complex: a comparative analysis of crystal structures of mitochondrial cytochrome bc1 with bound substrate and inhibitors at the Qi site. Biochemistry 2003; 42:9067-80. [PMID: 12885240 DOI: 10.1021/bi0341814] [Citation(s) in RCA: 197] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cytochrome bc(1) is an integral membrane protein complex essential to cellular respiration and photosynthesis. The Q cycle reaction mechanism of bc(1) postulates a separated quinone reduction (Q(i)) and quinol oxidation (Q(o)) site. In a complete catalytic cycle, a quinone molecule at the Q(i) site receives two electrons from the b(H) heme and two protons from the negative side of the membrane; this process is specifically inhibited by antimycin A and NQNO. The structures of bovine mitochondrial bc(1) in the presence or absence of bound substrate ubiquinone and with either the bound antimycin A(1) or NQNO were determined and refined. A ubiquinone with its first two isoprenoid repeats and an antimycin A(1) were identified in the Q(i) pocket of the substrate and inhibitor bound structures, respectively; the NQNO, on the other hand, was identified in both Q(i) and Q(o) pockets in the inhibitor complex. The two inhibitors occupied different portions of the Q(i) pocket and competed with substrate for binding. In the Q(o) pocket, the NQNO behaves similarly to stigmatellin, inducing an iron-sulfur protein conformational arrest. Extensive binding interactions and conformational adjustments of residues lining the Q(i) pocket provide a structural basis for the high affinity binding of antimycin A and for phenotypes of inhibitor resistance. A two-water-mediated ubiquinone protonation mechanism is proposed involving three Q(i) site residues His(201), Lys(227), and Asp(228).
Collapse
Affiliation(s)
- Xiugong Gao
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Li J, Osyczka A, Conover RC, Johnson MK, Qin H, Daldal F, Knaff DB. Role of acidic and aromatic amino acids in Rhodobacter capsulatus cytochrome c1. A site-directed mutagenesis study. Biochemistry 2003; 42:8818-30. [PMID: 12873143 DOI: 10.1021/bi020693r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The roles of two evolutionarily conserved aromatic residues in the cytochrome c(1) component of the Rhodobacter capsulatus cytochrome bc(1) complex, phenylalanine 138 and tyrosine 194, were analyzed by site-directed mutagenesis, in combination with biophysical and biochemical measurements. Changing Phe138 to either alanine or valine, but not to tyrosine, results in redox heterogeneity of cytochrome c(1). Replacement of Phe138 by an aliphatic amino acid also caused changes in the EPR spectrum of the cytochrome and resulted in decreases in the steady-state V(max) for the hydroquinone/cytochrome c oxidoreductase activity of cytochrome bc(1) complexes containing the mutated cytochrome c(1). These findings indicate that the presence of an aromatic residue at position 138 is essential for maintaining the native environment of the cytochrome c(1) heme. In contrast, replacement of Tyr194 by aliphatic amino acids had no significant effect on either the E(m) of cytochrome c(1) or the steady-state activity parameters. Site-directed mutagenesis of glutamate and aspartate residues in a conserved acidic patch (region 2) on Rb. capsulatus cytochrome c(1) suggests that these negatively charged residues do not play a role in the docking of cytochrome c(2) with the cytochrome bc(1) complex.
Collapse
Affiliation(s)
- Jun Li
- Department of Chemistry and Biochemistry and Center for Biotechnology and Genomics, Texas Tech University, Lubbock, Texas 79401-1061, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Darrouzet E, Daldal F. Protein-protein interactions between cytochrome b and the Fe-S protein subunits during QH2 oxidation and large-scale domain movement in the bc1 complex. Biochemistry 2003; 42:1499-507. [PMID: 12578362 DOI: 10.1021/bi026656h] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The ubihydroquinone:cytochrome (cyt) c oxidoreductase, or bc(1) complex, and its homologue the b(6)f complex are key components of respiratory and photosynthetic electron transport chains as they contribute to the generation of an electrochemical gradient used by the ATP synthase to produce ATP. The bc(1) complex has two catalytic domains, ubihydroquinone oxidation (Q(o)) and ubiquinone reduction (Q(i)) sites, that are located on each side of the membrane. The key to the energetic efficiency of this enzyme relies upon the occurrence of a unique electron bifurcation reaction at its Q(o) site. Recently, several lines of evidence have converged to establish that in the bc(1) complex the extrinsic domain of the Fe-S subunit that contains a [2Fe2S] metal cluster moves during catalysis to shuttle electrons between the Q(o) site and c(1) heme. While this step is required for electron bifurcation, available data also suggest that the movement might be controlled to ensure maximal energetic efficiency [Darrouzet et al. (2000) Proc. Natl. Acad. Sci. U.S.A. 97, 4567-4572]. To gain insight into the plausible control mechanism, we used a biochemical genetic approach to define the different regions of the bc(1) complex that might interact with each other. Previously, we found that a mutation located at position L286 of the ef loop of Rhodobacter capsulatus cyt b could alleviate movement impairment resulting from a mutation in the hinge region, linking the [2Fe2S] cluster domain to the membrane anchor of the Fe-S subunit. Here we report that various substitutions at position 288 on the opposite side of the ef loop also impair Q(o) site catalysis. In particular, we note that while most of the substitutions affect only QH(2) oxidation, yet others like T288S also hinder the rate of the movement of the Fe-S subunit. Thus, position 288 of cyt b appears to be important for both the QH(2) oxidation and the movement of the Fe-S subunit. Moreover, we found that, upon substitution of T288 by other amino acids, additional compensatory mutations located at the [2Fe2S] cluster or the hinge domains of the Fe-S subunit, or on the cd loop of cyt b, arise readily to alleviate these defects. These studies indicate that intimate protein-protein interactions occur between cyt b and the Fe-S subunits to sustain fast movement and efficient QH(2) oxidation and highlight the critical dual role the ef loop of cyt b to fine-tune the docking and movement of the Fe-S subunit during Q(o) site catalysis.
Collapse
Affiliation(s)
- Elisabeth Darrouzet
- Department of Biology, Plant Science Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
29
|
Abstract
In this study, the in vivo function and properties of two cytochrome c maturation proteins, CcmF and CcmH from Rhodobacter sphaeroides, were analyzed. Strains lacking CcmH or both CcmF and CcmH are unable to grow under anaerobic conditions where c-type cytochromes are required, demonstrating their critical role in the assembly of these electron carriers. Consistent with this observation, strains lacking both CcmF and CcmH are deficient in c-type cytochromes when assayed under permissive growth conditions. In contrast, under permissive growth conditions, strains lacking only CcmH contain several soluble and membrane-bound c-type cytochromes, albeit at reduced levels, suggesting that this bacterium has a CcmH-independent route for their maturation. In addition, the function of CcmH that is needed to support anaerobic growth can be replaced by adding cysteine or cystine to growth media. The ability of exogenous thiol compounds to replace CcmH provides the first physiological evidence for a role of this protein in thiol chemistry during c-type cytochrome maturation. The properties of R. sphaeroides cells containing translational fusions between CcmF and CcmH and either Escherichia coli alkaline phosphatase or beta-galactosidase suggest that they are each integral cytoplasmic membrane proteins with their presumed catalytic domains facing the periplasm. Analysis of CcmH shows that it is synthesized as a higher-molecular-weight precursor protein with an N-terminal signal sequence.
Collapse
|
30
|
Marx S, Baumgärtner M, Kannan S, Braun HP, Lang BF, Burger G, Kunnan S. Structure of the bc1 complex from Seculamonas ecuadoriensis, a jakobid flagellate with an ancestral mitochondrial genome. Mol Biol Evol 2003; 20:145-53. [PMID: 12519917 DOI: 10.1093/molbev/msg016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In eubacteria, the respiratory bc(1) complex (complex III) consists of three or four different subunits, whereas that of mitochondria, which have descended from an alpha-proteobacterial endosymbiont, contains about seven additional subunits. To understand better how mitochondrial protein complexes evolved from their simpler bacterial predecessors, we purified complex III of Seculamonas ecuadoriensis, a member of the jakobid protists, which possess the most bacteria-like mitochondrial genomes known. The S. ecuadoriensis complex III has an apparent molecular mass of 460 kDa and exhibits antimycin-sensitive quinol:cytochrome c oxidoreductase activity. It is composed of at least eight subunits between 6 and 46 kDa in size, including two large "core" subunits and the three "respiratory" subunits. The molecular mass of the S. ecuadoriensis bc(1) complex is slightly lower than that reported for other eukaryotes, but about 2x as large as complex III in bacteria. This indicates that the departure from the small bacteria-like complex III took place at an early stage in mitochondrial evolution, prior to the divergence of jakobids. We posit that the recruitment of additional subunits in mitochondrial respiratory complexes is a consequence of the migration of originally alpha-proteobacterial genes to the nucleus.
Collapse
Affiliation(s)
- Stefanie Marx
- Institut für Angewandte Genetik, Universität Hannover, Hannover, Germany
| | | | | | | | | | | | | |
Collapse
|
31
|
Affiliation(s)
- Jesus M Eraso
- Department of Microbiology and Molecular Genetics, University of Texas Medical School, Houston, Texas 77030, USA
| | | |
Collapse
|
32
|
Darrouzet E, Valkova-Valchanova M, Daldal F. The [2Fe-2S] cluster E(m) as an indicator of the iron-sulfur subunit position in the ubihydroquinone oxidation site of the cytochrome bc1 complex. J Biol Chem 2002; 277:3464-70. [PMID: 11707448 DOI: 10.1074/jbc.m107973200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recent crystallographic and kinetic data have revealed the crucial role of the large scale domain movement of the iron-sulfur subunit [2Fe-2S] cluster domain during the ubihydroquinone oxidation reaction catalyzed by the cytochrome bc(1) complex. Previously, the electron paramagnetic resonance signature of the [2Fe-2S] cluster and its redox midpoint potential (E(m)) value have been used extensively to characterize the interactions of the [2Fe-2S] cluster with the occupants of the ubihydroquinone oxidation (Q(o)) catalytic site. In this work we analyze these interactions in various iron-sulfur subunit mutants that carry mutations in its flexible hinge region. We show that the E(m) increases of the iron-sulfur subunit [2Fe-2S] cluster induced either by these mutations or by the addition of stigmatellin do not act synergistically. Moreover, the E(m) increases disappear in the presence of class I inhibitors like myxothiazol. Because various inhibitors are known to affect the location of the iron-sulfur subunit cluster domain, the measured E(m) value of the [2Fe-2S] cluster therefore reflects its equilibrium position in the Q(o) site. We also demonstrate the existence in this site of a location where the E(m) of the cluster is increased by about 150 mV and discuss its possible implications in term of Q(o) site catalysis and energetics.
Collapse
Affiliation(s)
- Elisabeth Darrouzet
- Department of Biology, Plant Science Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
33
|
Legros F, Chatzoglou E, Frachon P, Ogier De Baulny H, Laforêt P, Jardel C, Godinot C, Lombès A. Functional characterization of novel mutations in the human cytochrome b gene. Eur J Hum Genet 2001; 9:510-8. [PMID: 11464242 DOI: 10.1038/sj.ejhg.5200678] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2001] [Revised: 04/26/2001] [Accepted: 05/02/2001] [Indexed: 11/08/2022] Open
Abstract
The great variability of the human mitochondrial DNA (mtDNA) sequence induces many difficulties in the search for its deleterious mutations. We illustrate these pitfalls by the analysis of the cytochrome b gene of 21 patients affected with a mitochondrial disease. Eighteen different sequence variations were found, five of which were new mutations. Extensive analysis of the cytochrome b gene of 146 controls found 20 supplementary mutations, thus further demonstrating the high variability of the cytochrome b sequence. We fully evaluated the functional relevance of 36 of these 38 mutations using indirect criteria such as the nature of the mutation, its frequency in controls, or the phylogenetic conservation of the mutated amino acid. When appropriate, the mtDNA haplotype, the heteroplasmic state of the mutation, its tissue distribution or its familial transmission were also assessed. The molecular consequences of the mutations, which appeared possibly deleterious in that first step of evaluation, were evaluated on the complex III enzymological properties and protein composition using specific antibodies that we have generated against four of its subunits. Two original deleterious mutations were found in the group of seven patients with overt complex III defect. Both mutations (G15150A (W135X) and T15197C (S151P)) were heteroplasmic and restricted to muscle. They had significant consequences on the complex III structure. In contrast, only two homoplasmic missense mutations with dubious clinical relevance were found in the patients without overt complex III defect.
Collapse
Affiliation(s)
- F Legros
- INSERM U523, Institut de Myologie, Hôpital de la Salpêtrière, 75651 Paris cedex 13, France
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Picaud T, Le Moigne C, Gomez de Gracia A, Desbois A. Soret-excited Raman spectroscopy of the spinach cytochrome b6f complex. Structures of the b- and c-type hemes, chlorophyll a, and beta-carotene. Biochemistry 2001; 40:7309-17. [PMID: 11401579 DOI: 10.1021/bi0106641] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Soret-excited resonance Raman (RR) spectra of the spinach cytochrome b6f complex (cyt b6f) are reported for the oxidized, native, ascorbate-reduced, and dithionite-reduced forms. Using excitations at 441.6, 413.1, and 406.7 nm, RR contributions of chlorophyll a, beta-carotene, the c-type heme of cytochrome f, and the b-type hemes of cytochrome b6 of the b6f complex were identified and the data compared to those previously obtained for the Rhodospirillum rubrum bc1 complex [Le Moigne, C., Schoepp, B., Othman, S., Verméglio, A., and Desbois, A. (1999) Biochemistry 38, 1066-1076]. RR bands arising from the b(6)f-associated chlorophyll a and beta-carotene pigments were found to be particularly intense in the spectra excited at 441.6 nm. The frequencies of the phorbin skeleton of chlorophyll a at 1606, 1552, and 1525 cm(-1) are typical of a Mg atom with a single axial ligand. Strong RR bands corresponding to stretching or deformation modes of beta-carotene were detected at 1137, 1157, 1191, 1216, and 1531 cm(-1) in the different forms of cyt b6f. This set of frequencies is assigned to an all-trans configuration of the polyene chain. The redox titrations of the b(6)f complex allow the characterization of RR bands of the three hemes. The nu10, nu2, nu3, and nu8 modes of reduced cyt f are detected at 1619, 1591, 1492, and 356 cm(-1), respectively. From this set of frequencies, one can conclude that the particular histidine/amine heme coordination found in the truncated soluble domain of cyt f is a specific feature of the entire cyt f included in the b6f complex. The frequencies of the nu2, nu8, and nu10 marker modes are consistent with different conformations for the two b-type hemes of cyt b6f. One of these hemes is strongly distorted (nu2, nu8, and nu10 at 1581, 351, and 1610 cm(-1), respectively), while the other one is planar (1586, 345, and 1618 cm(-1), respectively). Largely different structures for the b-type hemes appear to be a common property for the bc1/b6f complexes.
Collapse
Affiliation(s)
- T Picaud
- Département de Biologie Cellulaire et Moléculaire, Section de Biophysique des Protéines et des Membranes, CEA et CNRS URA 2096, CEA/Saclay, F-91191 Gif-sur-Yvette Cedex, France
| | | | | | | |
Collapse
|
35
|
Paddock ML, Adelroth P, Chang C, Abresch EC, Feher G, Okamura MY. Identification of the proton pathway in bacterial reaction centers: cooperation between Asp-M17 and Asp-L210 facilitates proton transfer to the secondary quinone (QB). Biochemistry 2001; 40:6893-902. [PMID: 11389604 DOI: 10.1021/bi010280a] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The reaction center (RC) from Rhodobacter sphaeroides uses light energy to reduce and protonate a quinone molecule, Q(B) (the secondary quinone electron acceptor), to form quinol, Q(B)H2. Asp-L210 and Asp-M17 have been proposed to be components of the pathway for proton transfer [Axelrod, H. L., Abresch, E. C., Paddock, M. L., Okamura, M. Y., and Feher, G. (2000) Proc. Natl. Acad. Sci. U.S.A. 97, 1542-1547]. To test the importance of these residues for efficient proton transfer, the rates of the proton-coupled electron-transfer reaction k(AB)(2) (Q(A-*)Q(B-*) + H+ <==>Q(A-*)Q(B)H* --> Q(A)Q(B)H-) and its associated proton uptake were measured in native and mutant RCs, lacking one or both Asp residues. In the double mutant RCs, the k(AB)(2) reaction and its associated proton uptake were approximately 300-fold slower than in native RCs (pH 8). In contrast, single mutant RCs displayed reaction rates that were < or =3-fold slower than native (pH 8). In addition, the rate-limiting step of k(AB)(2) was changed from electron transfer (native and single mutants) to proton transfer (double mutant) as shown from the lack of a dependence of the observed rate on the driving force for electron transfer in the double mutant RCs compared to the native or single mutants. This implies that the rate of the proton-transfer step was reduced (> or =10(3)-fold) upon replacement of both Asp-L210 and Asp-M17 with Asn. Similar, but less drastic, differences were observed for k(AB)(1), which at pH > or =8 is coupled to the protonation of Glu-L212 [(Q(A-*)Q(B))-Glu- + H+ --> (Q(A)Q(B-*)-GluH]. These results show that the pathway for proton transfer from solution to reduced Q(B) involves both Asp-L210 and Asp-M17, which provide parallel branches to the proton-transfer pathway and through their electrostatic interaction have a cooperative effect on the proton-transfer rate. A possible mechanism for the cooperativity is discussed.
Collapse
Affiliation(s)
- M L Paddock
- Department of Physics 0319, 9500 Gilman Drive, University of California, San Diego, La Jolla, California 92093, USA
| | | | | | | | | | | |
Collapse
|
36
|
Abstract
A systematic screen for dominant-negative mutations of the CYT1 gene, which encodes cytochrome c(1), revealed seven mutants after testing approximately 10(4) Saccharomyces cerevisiae strains transformed with a library of mutagenized multicopy plasmids. DNA sequence analysis revealed multiple nucleotide substitutions with six of the seven altered Cyt1p having a common R166G replacement, either by itself or accompanied with other amino acid replacements. A single R166G replacement produced by site-directed mutagenesis demonstrated that this change produced a nearly nonfunctional cytochrome c(1), with diminished growth on glycerol medium and diminished respiration but with the normal or near normal level of cytochrome c(1) having an attached heme group. In contrast, R166K, R166M, or R166L replacements resulted in normal or near normal function. Arg-166 is conserved in all cytochromes c(1) and lies on the surface of Cyt1p in close proximity to the heme group but does not seem to interact directly with any of the physiological partners of the cytochrome bc(1) complex. Thus, the large size of the side chain at position 166 is critical for the function of cytochrome c(1) but not for its assembly in the cytochrome bc(1) complex.
Collapse
Affiliation(s)
- Z Ahmad
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | |
Collapse
|
37
|
Abstract
The cytochrome bc complexes represent a phylogenetically diverse group of complexes of electron-transferring membrane proteins, most familiarly represented by the mitochondrial and bacterial bc1 complexes and the chloroplast and cyanobacterial b6f complex. All these complexes couple electron transfer to proton translocation across a closed lipid bilayer membrane, conserving the free energy released by the oxidation-reduction process in the form of an electrochemical proton gradient across the membrane. Recent exciting developments include the application of site-directed mutagenesis to define the role of conserved residues, and the emergence over the past five years of X-ray structures for several mitochondrial complexes, and for two important domains of the b6f complex.
Collapse
Affiliation(s)
- E A Berry
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
| | | | | | | |
Collapse
|
38
|
Valkova-Valchanova M, Darrouzet E, Moomaw CR, Slaughter CA, Daldal F. Proteolytic cleavage of the Fe-S subunit hinge region of Rhodobacter capsulatus bc(1) complex: effects of inhibitors and mutations. Biochemistry 2000; 39:15484-92. [PMID: 11112534 DOI: 10.1021/bi000751d] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The three-dimensional structure of the mitochondrial bc(1) complex reveals that the extrinsic domain of the Fe-S subunit, which carries the redox-active [2Fe2S] cluster, is attached to its transmembrane anchor domain by a short flexible hinge sequence (amino acids D43 to S49 in Rhodobacter capsulatus). In various structures, this extrinsic domain is located in different positions, and the conformation of the hinge region is different. In addition, proteolysis of this region has been observed previously in a bc(1) complex mutant of R. capsulatus [Saribas, A. S., Valkova-Valchanova, M. B., Tokito, M., Zhang, Z., Berry E. A., and Daldal, F. (1998) Biochemistry 37, 8105-8114]. Thus, possible correlations between proteolysis, conformation of the hinge region, and position of the extrinsic domain of the Fe-S subunit within the bc(1) complex were sought. In this work, we show that thermolysin, or an endogenous activity present in R. capsulatus, cleaves the hinge region of the Fe-S subunit between its amino acid residues A46-M47 or D43-V44, respectively, to yield a protease resistant fragment with a M(r) of approximately 18 kDa. The cleavage was affected significantly by ubihydroquinone oxidation (Q(o)) and ubiquinone reduction (Q(i)) site inhibitors and by specific mutations located in the bc(1) complex. In particular, using either purified or detergent dispersed chromatophore-embedded R. capsulatus bc(1) complex, we demonstrated that while stigmatellin blocked the cleavage, myxothiazol hardly affected it, and antimycin A greatly enhanced it. Moreover, mutations in various regions of the Fe-S subunit and cyt b subunit changed drastically proteolysis patterns, indicating that the structure of the hinge region of the Fe-S subunit was modified in these mutants. The overall findings establish that protease accessibility of the Fe-S subunit of the bc(1) complex is a useful biochemical assay for probing the conformation of its hinge region and for monitoring indirectly the position of its extrinsic [2Fe2S] cluster domain within the Q(o) pocket.
Collapse
Affiliation(s)
- M Valkova-Valchanova
- Department of Biology, Plant Science Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
39
|
Darrouzet E, Valkova-Valchanova M, Daldal F. Probing the role of the Fe-S subunit hinge region during Q(o) site catalysis in Rhodobacter capsulatus bc(1) complex. Biochemistry 2000; 39:15475-83. [PMID: 11112533 DOI: 10.1021/bi000750l] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The ubihydroquinone:cytochrome c oxidoreductase, or bc(1) complex, functions according to a mechanism known as the modified Q cycle. Recent crystallographic data have revealed that the extrinsic domain containing the [2Fe2S] cluster of the Fe-S subunit of this enzyme occupies different positions in various crystal forms, suggesting that this subunit may move during ubihydroquinone oxidation. As in these structures the hydrophobic membrane anchor of the Fe-S subunit remains at the same position, the movement of the [2Fe2S] cluster domain would require conformational changes of the hinge region linking its membrane anchor to its extrinsic domain. To probe the role of the hinge region, Rhodobacter capsulatus bc(1) complex was used as a model, and various mutations altering the hinge region amino acid sequence, length, and flexibility were obtained. The effects of these modifications on the bc(1) complex function and assembly were investigated in detail. These studies demonstrated that the nature of the amino acid residues located in the hinge region (positions 43-49) of R. capsulatus Fe-S subunit was not essential per se for the function of the bc(1) complex. Mutants with a shorter hinge (up to five amino acid residues deletion) yielded functional bc(1) complexes, but contained substoichiometric amounts of the Fe-S subunit. Moreover, mutants with increased rigidity or flexibility of the hinge region altered both the function and the assembly or the steady-state stability of the bc(1) complex. In particular, the extrinsic domain of the Fe-S subunit of a mutant containing six proline residues in the hinge region was shown to be locked in a position similar to that seen in the presence of stigmatellin. Interestingly, the latter mutant readily overcomes this functional defect by accumulating an additional mutation which shortens the length of the hinge. These findings indicate that the hinge region of the Fe-S subunit of bacterial bc(1) complexes has a remarkable structural plasticity.
Collapse
Affiliation(s)
- E Darrouzet
- Department of Biology, Plant Science Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
40
|
van Rotterdam BJ, Westerhoff HV, Visschers RW, Jones MR, Hellingwerf KJ, Crielaard W. Steady-state cyclic electron transfer through solubilized Rhodobacter sphaeroides reaction centres. Biophys Chem 2000; 88:137-52. [PMID: 11152271 DOI: 10.1016/s0301-4622(00)00206-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The mechanism, thermodynamics and kinetics of light-induced cyclic electron transfer have been studied in a model energy-transducing system consisting of solubilized Rhodobacter sphaeroides reaction center/light harvesting-1 complexes (so-called core complexes), horse heart cytochrome c and a ubiquinone-0/ubiquinol-0 pool. An analysis of the steady-state kinetics of cytochrome c reduction by ubiquinol-0, after a light-induced steady-state electron flow had been attained, showed that the rate of this reaction is primarily controlled by the one-electron oxidation of the ubiquinol-anion. Re-reduction of the light-oxidized reaction center primary donor by cytochrome c was measured at different reduction levels of the ubiquinone-0/ubiquinol-0 pool. These experiments involved single turnover flash excitation on top of background illumination that elicited steady-state cyclic electron transfer. At low reduction levels of the ubiquinone-0/ubiquinol-0 pool, the total cytochrome c concentration had a major control over the rate of reduction of the primary donor. This control was lost at higher reduction levels of the ubiquinone/ubiquinol-pool, and possible reasons for this behaviour are discussed.
Collapse
Affiliation(s)
- B J van Rotterdam
- Swammerdam Institute for Life Sciences, University of Amsterdam, Biocentrum Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
41
|
Shifman JM, Gibney BR, Sharp RE, Dutton PL. Heme redox potential control in de novo designed four-alpha-helix bundle proteins. Biochemistry 2000; 39:14813-21. [PMID: 11101297 DOI: 10.1021/bi000927b] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The effects of various mechanisms of metalloporphyrin reduction potential modulation were investigated experimentally using a robust, well-characterized heme protein maquette, synthetic protein scaffold H10A24 [¿CH(3)()CONH-CGGGELWKL.HEELLKK.FEELLKL.AEERLKK. L-CONH(2)()¿(2)](2). Removal of the iron porphyrin macrocycle from the high dielectric aqueous environment and sequestration within the hydrophobic core of the H10A24 maquette raises the equilibrium reduction midpoint potential by 36-138 mV depending on the hydrophobicity of the metalloporphyrin structure. By incorporating various natural and synthetic metalloporphyrins into a single protein scaffold, we demonstrate a 300-mV range in reduction potential modulation due to the electron-donating/withdrawing character of the peripheral macrocycle substituents. Solution pH is used to modulate the metalloporphyrin reduction potential by 160 mV, regardless of the macrocycle architecture, by controlling the protonation state of the glutamate involved in partial charge compensation of the ferric heme. Attempts to control the reduction potential by inserting charged amino acids into the hydrophobic core at close proximity to the metalloporphyrin lead to varied success, with H10A24-L13E lowering the E(m8.5) by 40 mV, H10A24-E11Q raising it by 50 mV, and H10A24-L13R remaining surprisingly unaltered. Modifying the charge of the adjacent metalloporphyrin, +1 for iron(III) protoporphyrin IX or neutral for zinc(II) protoporphyrin IX resulted in a loss of 70 mV [Fe(III)PPIX](+) - [Fe(III)PPIX](+) interaction observed in maquettes. Using these factors in combination, we illustrate a 435-mV variation of the metalloporphyrin reduction midpoint potential in a simple heme maquette relative to the about 800-mV range observed for natural cytochromes. Comparison between the reduction potentials of the heme maquettes and other de novo designed heme proteins reveals global trends in the E(m) values of synthetic cytochromes.
Collapse
Affiliation(s)
- J M Shifman
- The Johnson Research Foundation, Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
42
|
Affiliation(s)
- P A Loach
- Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
43
|
Rao BK, Tyryshkin AM, Roberts AG, Bowman MK, Kramer DM. Inhibitory copper binding site on the spinach cytochrome b6f complex: implications for Qo site catalysis. Biochemistry 2000; 39:3285-96. [PMID: 10727220 DOI: 10.1021/bi991974a] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The isolated cytochrome (cyt) b(6)f complex from spinach is inhibited by Cu(2+) with a K(D) of about 1 microM at pH 7.6 in the presence of 1.6 microM decyl-plastoquinol (C(10)-PQH(2)) as a substrate. Inhibition was competitive with respect to C(10)-PQH(2) but noncompetitive with respect to horse heart cyt c or plastocyanin (PC). Inhibition was also pH-sensitive, with an apparent pK at about 7, above which inhibition was stronger, suggesting that binding occurred at or near a protonatable amino acid residue. Equilibrium binding titrations revealed ca. 1.4 tight Cu(2+) binding sites with a K(D) of about 0.5 microM and multiple (>8) weak (K(D) > 50 microM) binding sites per complex. Pulsed electron paramagnetic resonance (EPR) techniques were used to identify probable binding sites for inhibitory Cu(2+). A distinct enhancement of the relaxation time constant for the EPR signal from bound Cu(2+) was observed when the cyt f was paramagnetic. The magnitude and temperature-dependence of this relaxation enhancement were consistent with a dipole interaction between Cu(2+) and the cyt f (Fe(3+)) heme at a distance of between 30 and 54 A, depending upon the relative orientations of Cu(2+) and cyt f heme g-tensors. Two-pulse electron spin-echo envelope modulation (ESEEM) and 4-pulse 2-dimensional hyperfine sublevel correlation (2D HYSCORE) measurements of Cu(2+) bound to isolated cyt b(6)f complex indicated the presence of a weakly coupled nitrogen nucleus. The nuclear quadrupole interaction (NQI) and the hyperfine interaction (HFI) parameters identified one Cu(2+) ligand as an imidazole nitrogen of a His residue, and electron-nuclear double resonance (ENDOR) confirmed the presence of a directly coordinated nitrogen. A model of the 3-dimensional structure of the cytochrome b(6)f complex was constructed on the basis of sequences and structural similarities with the mitochondrial cyt bc(1) complex, for which X-ray structures have been solved. This model indicated three possible His residues as ligands to inhibitory Cu(2+). Two of these are located on the "Rieske" iron-sulfur protein protein (ISP) while the third is found on the cyt f protein. None of these potential ligands appear to interact directly with the quinol oxidase (Q(o)) binding pocket. A model is thus proposed wherein Cu(2+) interferes with the interaction of the ISP protein with the Q(o) site, preventing the binding and subsequent oxidation of plastoquinonol. Implications for the involvement of ISP "domain movement" in Q(o) site catalysis are discussed.
Collapse
Affiliation(s)
- B K Rao
- Institute of Biological Chemistry, Washington State University, 289 Clark Hall, Pullman, Washington 99164-6340, USA
| | | | | | | | | |
Collapse
|
44
|
Paddock ML, Feher G, Okamura MY. Identification of the proton pathway in bacterial reaction centers: replacement of Asp-M17 and Asp-L210 with asn reduces the proton transfer rate in the presence of Cd2+. Proc Natl Acad Sci U S A 2000; 97:1548-53. [PMID: 10677498 PMCID: PMC26472 DOI: 10.1073/pnas.97.4.1548] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/1999] [Indexed: 11/18/2022] Open
Abstract
The reaction center (RC) from Rhodobacter sphaeroides converts light into chemical energy through the reduction and protonation of a bound quinone molecule Q(B) (the secondary quinone electron acceptor). We investigated the proton transfer pathway by measuring the proton-coupled electron transfer, k(AB)((2)) [Q(A)Q(B) + H(+) --> Q(A)(Q(B)H)(-)] in native and mutant RCs in the absence and presence of Cd(2+). Previous work has shown that the binding of Cd(2+) decreases k(AB)((2)) in native RCs approximately 100-fold. The preceding paper shows that bound Cd(2+) binds to Asp-H124, His-H126, and His-H128. This region represents the entry point for protons. In this work we investigated the proton transfer pathway connecting the entry point with Q(B) by searching for mutations that greatly affect k(AB)((2)) ( greater, similar10-fold) in the presence of Cd(2+), where k(AB)((2)) is limited by the proton transfer rate (k(H)). Upon mutation of Asp-L210 or Asp-M17 to Asn, k(H) decreased from approximately 60 s(-1) to approximately 7 s(-1), which shows the important role that Asp-L210 and Asp-M17 play in the proton transfer chain. By comparing the rate of proton transfer in the mutants (k(H) approximately 7 s(-1)) with that in native RCs in the absence of Cd(2+) (k(H) >/= 10(4) s(-1)), we conclude that alternate proton transfer pathways, which have been postulated, are at least 10(3)-fold less effective.
Collapse
Affiliation(s)
- M L Paddock
- Department of Physics 0319, 9500 Gilman Drive, University of California at San Diego, La Jolla, CA 92093, USA
| | | | | |
Collapse
|
45
|
Axelrod HL, Abresch EC, Paddock ML, Okamura MY, Feher G. Determination of the binding sites of the proton transfer inhibitors Cd2+ and Zn2+ in bacterial reaction centers. Proc Natl Acad Sci U S A 2000; 97:1542-7. [PMID: 10677497 PMCID: PMC26471 DOI: 10.1073/pnas.97.4.1542] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/1999] [Indexed: 11/18/2022] Open
Abstract
The reaction center (RC) from Rhodobacter sphaeroides couples light-driven electron transfer to protonation of a bound quinone acceptor molecule, Q(B), within the RC. The binding of Cd(2+) or Zn(2+) has been previously shown to inhibit the rate of reduction and protonation of Q(B). We report here on the metal binding site, determined by x-ray diffraction at 2.5-A resolution, obtained from RC crystals that were soaked in the presence of the metal. The structures were refined to R factors of 23% and 24% for the Cd(2+) and Zn(2+) complexes, respectively. Both metals bind to the same location, coordinating to Asp-H124, His-H126, and His-H128. The rate of electron transfer from Q(A)(-) to Q(B) was measured in the Cd(2+)-soaked crystal and found to be the same as in solution in the presence of Cd(2+). In addition to the changes in the kinetics, a structural effect of Cd(2+) on Glu-H173 was observed. This residue was well resolved in the x-ray structure-i.e., ordered-with Cd(2+) bound to the RC, in contrast to its disordered state in the absence of Cd(2+), which suggests that the mobility of Glu-H173 plays an important role in the rate of reduction of Q(B). The position of the Cd(2+) and Zn(2+) localizes the proton entry into the RC near Asp-H124, His-H126, and His-H128. Based on the location of the metal, likely pathways of proton transfer from the aqueous surface to Q(B) are proposed.
Collapse
Affiliation(s)
- H L Axelrod
- Department of Physics 0319, 9500 Gilman Drive, University of California at San Diego, La Jolla, CA 92093, USA
| | | | | | | | | |
Collapse
|
46
|
Crofts AR, Hong S, Zhang Z, Berry EA. Physicochemical aspects of the movement of the rieske iron sulfur protein during quinol oxidation by the bc(1) complex from mitochondria and photosynthetic bacteria. Biochemistry 1999; 38:15827-39. [PMID: 10625447 DOI: 10.1021/bi990963e] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Crystallographic structures for the mitochondrial ubihydroquinone:cytochrome c oxidoreductase (bc(1) complex) from different sources, and with different inhibitors in cocrystals, have revealed that the extrinsic domain of the iron sulfur subunit is not fixed [Zhang, Z., Huang, L., Shulmeister, V. M., Chi, Y.-I., Kim, K. K., Hung, L.-W., Crofts, A. R., Berry, E. A., and Kim, S.-H. (1998) Nature (London), 392, 677-684], but moves between reaction domains on cytochrome c(1) and cytochrome b subunits. We have suggested that the movement is necessary for quinol oxidation at the Q(o) site of the complex. In this paper, we show that the electron-transfer reactions of the high-potential chain of the complex, including oxidation of the iron sulfur protein by cytochrome c(1) and the reactions by which oxidizing equivalents become available at the Q(o) site, are rapid compared to the rate-determining step. Activation energies of partial reactions that contribute to movement of the iron sulfur protein have been measured and shown to be lower than the high activation barrier associated with quinol oxidation. We conclude that the movement is not the source of the activation barrier. We estimate the occupancies of different positions for the iron sulfur protein from the crystallographic electron densities and discuss the parameters determining the binding of the iron sulfur protein in different configurations. The low activation barrier is consistent with a movement between these locations through a constrained diffusion. Apart from ligation in enzyme-substrate or inhibitor complexes, the binding forces in the native structure are likely to be < = RT, suggesting that the mobile head can explore the reaction interfaces through stochastic processes within the time scale indicated by kinetic measurements.
Collapse
Affiliation(s)
- A R Crofts
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | | | |
Collapse
|
47
|
Crofts AR, Barquera B, Gennis RB, Kuras R, Guergova-Kuras M, Berry EA. Mechanism of ubiquinol oxidation by the bc(1) complex: different domains of the quinol binding pocket and their role in the mechanism and binding of inhibitors. Biochemistry 1999; 38:15807-26. [PMID: 10625446 DOI: 10.1021/bi990962m] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Structures of mitochondrial ubihydroquinone:cytochrome c oxidoreductase (bc(1) complex) from several animal sources have provided a basis for understanding the functional mechanism at the molecular level. Using structures of the chicken complex with and without inhibitors, we analyze the effects of mutation on quinol oxidation at the Q(o) site of the complex. We suggest a mechanism for the reaction that incorporates two features revealed by the structures, a movement of the iron sulfur protein between two separate reaction domains on cytochrome c(1) and cytochrome b and a bifurcated volume for the Q(o) site. The volume identified by inhibitor binding as the Q(o) site has two domains in which inhibitors of different classes bind differentially; a domain proximal to heme b(L), where myxothiazole and beta-methoxyacrylate- (MOA-) type inhibitors bind (class II), and a distal domain close to the iron sulfur protein docking interface, where stigmatellin and 5-n-undecyl-6-hydroxy-4,7-dioxobenzothiaole (UHDBT) bind (class I). Displacement of one class of inhibitor by another is accounted for by the overlap of their volumes, since the exit tunnel to the lipid phase forces the hydrophobic "tails" to occupy common space. We conclude that the site can contain only one "tailed" occupant, either an inhibitor or a quinol or one of their reaction products. The differential sensitivity of strains with mutations in the different domains is explained by the proximity of the affected residues to the binding domains of the inhibitors. New insights into mechanism are provided by analysis of mutations that affect changes in the electron paramagnetic resonance (EPR) spectrum of the iron sulfur protein, associated with its interactions with the Q(o)-site occupant. The structures show that all interactions with the iron sulfur protein must occur at the distal position. These include interactions between quinone, or class I inhibitors, and the reduced iron sulfur protein and formation of a reaction complex between quinol and oxidized iron sulfur protein. The step with high activation energy is after formation of the reaction complex, likely in formation of the semiquinone and subsequent dissociation of the complex into products. We suggest that further progress of the reaction requires a movement of semiquinone to the proximal position, thus mapping the bifurcated reaction to the bifurcated volume. We suggest that such a movement, together with a change in conformation of the site, would remove any semiquinone formed from further interaction with the oxidized [2Fe-2S] center and also from reaction with O(2) to form superoxide anion. We also identify two separate reaction paths for exit of the two protons released in quinol oxidation.
Collapse
Affiliation(s)
- A R Crofts
- Center for Biophysics and Computational Biology and Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | | | | | | | |
Collapse
|
48
|
Hong S, Ugulava N, Guergova-Kuras M, Crofts AR. The energy landscape for ubihydroquinone oxidation at the Q(o) site of the bc(1) complex in Rhodobacter sphaeroides. J Biol Chem 1999; 274:33931-44. [PMID: 10567355 DOI: 10.1074/jbc.274.48.33931] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activation energies for partial reactions involved in oxidation of quinol by the bc(1) complex were independent of pH in the range 5. 5-8.9. Formation of enzyme-substrate complex required two substrates, ubihydroquinone binding from the lipid phase and the extrinsic domain of the iron-sulfur protein. The activation energy for ubihydroquinone oxidation was independent of the concentration of either substrate, showing that the activated step was in a reaction after formation of the enzyme-substrate complex. At all pH values, the partial reaction with the limiting rate and the highest activation energy was oxidation of bound ubihydroquinone. The pH dependence of the rate of ubihydroquinone oxidation reflected the pK on the oxidized iron-sulfur protein and requirement for the deprotonated form in formation of the enzyme-substrate complex. We discuss different mechanisms to explain the properties of the bifurcated reaction, and we preclude models in which the high activation barrier is in the second electron transfer or is caused by deprotonation of QH(2). Separation to products after the first electron transfer and movement of semiquinone formed in the Q(o) site would allow rapid electron transfer to heme b(L). This would also insulate the semiquinone from oxidation by the iron-sulfur protein, explaining the efficiency of bifurcation.
Collapse
Affiliation(s)
- S Hong
- Center for Biophysics, University of Illinois, Urbana, Illinois 61801, USA
| | | | | | | |
Collapse
|
49
|
Baymann F, Robertson DE, Dutton PL, Mäntele W. Electrochemical and spectroscopic investigations of the cytochrome bc1 complex from Rhodobacter capsulatus. Biochemistry 1999; 38:13188-99. [PMID: 10529191 DOI: 10.1021/bi990565b] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The cytochrome bc(1) complex from Rhodobacter capsulatus was investigated by protein electrochemistry and visible/IR spectroscopy. Infrared difference spectra, which represent redox-induced conformational changes of cofactors and their protein environments, show signals of the hemes, the quinone Q(i), and small conformational changes of the protein backbone. Furthermore, band features were tentatively assigned to protonated aspartic or glutamic acids involved in the redox transition of each of the b hemes, a proline in that of the [2Fe-2S] protein, and an arginine in that of cytochrome b(H). The midpoint potential of the [2Fe-2S] protein was determined for the first time at physiological temperature to be +290 mV at pH 8.7. The reduced minus oxidized difference extinction coefficients of the alpha-bands of the cytochromes were calculated as 11.5, 19, and 6.7 mM(-1) cm(-1) for cytochromes c(1), b(H), and b(L), respectively. A novel method has been developed to quantify protonation reactions of the complex during the redox reactions of its cofactors by evaluation of the buffer signals in the midinfrared region. Values will be discussed in relation to the pH dependence of the midpoint potentials.
Collapse
Affiliation(s)
- F Baymann
- Institute de Biologie Physico-chimique, Paris, France.
| | | | | | | |
Collapse
|
50
|
Izrailev S, Crofts AR, Berry EA, Schulten K. Steered molecular dynamics simulation of the Rieske subunit motion in the cytochrome bc(1) complex. Biophys J 1999; 77:1753-68. [PMID: 10512801 PMCID: PMC1300462 DOI: 10.1016/s0006-3495(99)77022-0] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Crystallographic structures of the mitochondrial ubiquinol/cytochrome c oxidoreductase (cytochrome bc(1) complex) suggest that the mechanism of quinol oxidation by the bc(1) complex involves a substantial movement of the soluble head of the Rieske iron-sulfur protein (ISP) between reaction domains in cytochrome b and cytochrome c(1) subunits. In this paper we report the results of steered molecular dynamics simulations inducing, through an applied torque within 1 ns, a 56 degrees rotation of the soluble domain of ISP. For this purpose, a solvated structure of the bc(1) complex in a phospholipid bilayer (a total of 206,720 atoms) was constructed. A subset of 91,061 atoms was actually simulated with 45,131 moving atoms. Point charge distributions for the force field parametrization of heme groups and the Fe(2)S(2) cluster of the Rieske protein included in the simulated complex were determined. The simulations showed that rotation of the soluble domain of ISP is actually feasible. Several metastable conformations of the ISP during its rotation were identified and the interactions stabilizing the initial, final, and intermediate positions of the soluble head of the ISP domain were characterized. A pathway for proton conduction from the Q(o) site to the solvent via a water channel has been identified.
Collapse
Affiliation(s)
- S Izrailev
- Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, Illinois 61801, USA
| | | | | | | |
Collapse
|