1
|
Jaksch C, Thams P. A critical role for CK2 in cytokine-induced activation of NFκB in pancreatic β cell death. Endocrine 2014; 47:117-28. [PMID: 24366643 PMCID: PMC4145192 DOI: 10.1007/s12020-013-0133-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 11/22/2013] [Indexed: 12/22/2022]
Abstract
This study aimed to assess the role of constitutive protein kinase CK2 in cytokine-induced activation of NFκB in pancreatic β cell death. The CK2 inhibitors DRB (5,6-dichloro-1-β-D-ribofuranosylbenzimidazole) (50 μM) and DMAT (2-dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole) (5 μM), which decreased CK2 activity by approx. 65 %, rescued INS-1E β cells and mouse islets from cytokine (IL-1β, TNF-α plus IFN-γ)-induced β cell death without affecting H2O2- or palmitate-induced β cell death. Western blot analysis revealed that while DRB or DMAT did not influence cytokine-induced IκBα degradation, they inhibited NFκB-dependent IκBα resynthesis, demonstrating that cytokine-induced NFκB activity is dependent on CK2. Both DRB and DMAT inhibited the constitutive phosphorylation of NFκB p65 at serine 529, while leaving cytokine-induced phosphorylations of NFκB p65 at serines 276 and 536 unaltered. In comparison, putative phosphorylation sites for CK2 on HDACs 1, 2, and 3 at serines 421/423, 394, and 424, respectively, which may stimulate NFκB transcriptional activity, were unchanged by cytokines and CK2 inhibitors. Whereas IL-1β and TNF-α stimulate IκBα degradation and NFκB activation, IFN-γ potentiates cytokine-induced β cell death through activation of STAT1. DRB and DMAT inhibited IFN-γ-stimulated phosphorylation of STAT1 at serine 727, while leaving IFN-γ-induced phosphorylation of STAT1 at tyrosine 701 unaffected. Inhibition of cytokine-induced β cell death by CK2 inhibitors was, however, not dependent on IFN-γ, and IFN-γ did not affect CK2-dependent IκBα turnover. In conclusion, it is suggested that cytokine-induced activation of NFκB in β cells is dependent on CK2 activity, which phosphorylates NFκB p65 at serine 529.
Collapse
Affiliation(s)
- Caroline Jaksch
- Department of Biomedical Sciences, University of Copenhagen, 3C Blegdamsvej, 2200 Copenhagen N, Denmark
| | - Peter Thams
- Department of Biomedical Sciences, University of Copenhagen, 3C Blegdamsvej, 2200 Copenhagen N, Denmark
| |
Collapse
|
2
|
Nitric oxide is involved in the insulin release in rats by l-arginine. Int J Angiol 2011. [DOI: 10.1007/bf01616180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
3
|
Sjöholm A, Arkhammar P, Berggren PO, Andersson A. Polyamines in pancreatic islets of obese-hyperglycemic (ob/ob) mice of different ages. Am J Physiol Cell Physiol 2001; 280:C317-23. [PMID: 11208527 DOI: 10.1152/ajpcell.2001.280.2.c317] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To further evaluate the role of polyamines in insulin production and cell replication in diabetic pancreatic islets, we have studied hyperplastic islets of obese-hyperglycemic mice of different ages and normal islets of the same strain. The aims of the study were to investigate the impact of the diabetic state and aging on polyamine contents and requirements in these islets. Cultured islets from lean and obese animals contained significantly less polyamines than freshly isolated islets. Spermine-to-spermidine ratio was elevated in freshly isolated islets from young obese mice compared with those from lean mice. In islets from old obese animals, spermidine content was decreased, whereas the content of spermine was not different from that of young obese mice. The physiological significance of polyamines was investigated by exposing islets in tissue culture to inhibitors of polyamine synthesis. This treatment caused a partial polyamine depletion in whole islets but failed to affect polyamine content of cell nuclei. Insulin content was not affected in polyamine-deficient islets of obese mice, irrespective of age, in contrast to decreased islet insulin content in polyamine-depleted young lean animals. Polyamine depletion depressed DNA synthesis rate in obese mouse islets; in lean mice it actually stimulated DNA synthesis. We concluded that important qualitative and quantitative differences exist between islets from obese-hyperglycemic and normal mice with respect to polyamine content and requirements of polyamines for regulation of insulin content and cell proliferation. The results suggest that spermine may be involved in mediating the rapid islet cell proliferation noted early in obese-hyperglycemic syndrome, but changes in spermine concentration do not seem to account for the decline in islet cell DNA synthesis in aged normoglycemic animals.
Collapse
Affiliation(s)
- A Sjöholm
- Department of Molecular Medicine, Endocrine and Diabetes Unit, Rolf Luft Center for Diabetes Research, Karolinska Institutet, Karolinska Hospital, SE-171 76 Stockholm.
| | | | | | | |
Collapse
|
4
|
Kowluru A, Seavey SE, Rhodes CJ, Metz SA. A novel regulatory mechanism for trimeric GTP-binding proteins in the membrane and secretory granule fractions of human and rodent beta cells. Biochem J 1996; 313 ( Pt 1):97-107. [PMID: 8546716 PMCID: PMC1216915 DOI: 10.1042/bj3130097] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Recently we described roles for heterotrimeric and low-molecular-mass GTP-binding proteins in insulin release from normal rat islets. During these studies, we observed that a protein with an apparent molecular mass (37 kDa) similar to that of the beta subunit of trimeric GTP-binding proteins underwent phosphorylation in each of five classes of insulin-secreting cells. Incubation of the beta cell total membrane fraction or the isolated secretory granule fraction (but not the cytosolic fraction) with [gamma-32P]ATP or [gamma-32P]GTP resulted in the phosphorylation of this protein, which was selectively immunoprecipitated by an anti-serum directed against the common beta subunit of trimeric G-proteins. Disruption of the alpha beta gamma trimer (by pretreatment with either fluoroaluminate or guanosine 5'(-)[gamma-thio]triphosphate) prevented beta subunit phosphorylation. Based on differential sensitivities to pH, heat and the histidine-selective reagent diethyl pyrocarbonate (and reversal of the latter by hydroxylamine), the phosphorylated amino acid was presumptively identified as histidine. Incubation of pure beta subunit alone or in combination with the exogenous purified alpha subunit of transducin did not result in the phosphorylation of the beta subunit, but addition of the islet cell membrane fraction did support this event, suggesting that membrane localization (or a membrane-associated factor) is required for beta subunit phosphorylation. Incubation of phosphorylated beta subunit with G alpha.GDP accelerated the dephosphorylation of the beta subunit, accompanied by the formation of G alpha-GTP. Immunoblotting detected multiple alpha subunits (of Gi, G(o) and Gq) and at least one beta subunit in the secretory granule fraction of normal rat islets and insulinoma cells. These data describe a potential alternative mechanism for the activation of GTP-binding proteins in beta cells which contrasts with the classical receptor-agonist mechanism: G beta undergoes transient phosphorylation at a histidine residue by a GTP-specific protein kinase; this phosphate, in turn, may be transferred via a classical Ping-Pong mechanism to G alpha.GDP (inactive), yielding the active configuration G alpha.GTP in secretory granules (a strategic location to modulate exocytosis).
Collapse
Affiliation(s)
- A Kowluru
- Department of Medicine, University of Wisconsin School of Medicine, Madison 53705, USA
| | | | | | | |
Collapse
|
5
|
Sjöholm A. Role of polyamines in the regulation of proliferation and hormone production by insulin-secreting cells. THE AMERICAN JOURNAL OF PHYSIOLOGY 1993; 264:C501-18. [PMID: 8460662 DOI: 10.1152/ajpcell.1993.264.3.c501] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
This paper focuses on the mechanisms regulating proliferation and insulin production by normal and tumoral pancreatic beta-cells. In particular, the evidence for involvement of polyamines is reviewed. Pancreatic islet cells contain high levels of polyamines, and based on findings obtained using enzyme-directed inhibitors, it appears that putrescine and spermidine are necessary for proinsulin biosynthesis, whereas spermine may exert a stimulatory or permissive role in RNA transcription-stabilization and long-term insulin release. Islet polyamine content is not altered by short-term secretory stimulation, nor is the acute secretory response impeded by polyamine synthesis inhibitors, making it unlikely that these amines play any major role in short-term insulin release. Various mitogens increase islet polyamine contents and DNA synthesis, but increases in cytosolic polyamines do not seem to mediate their mitogenicity. Nuclear polyamine content is not altered by the inhibitors, suggesting that maintenance of polyamines within this organelle may be sufficient to sustain elevated DNA synthesis. In tumoral RINm5F cells, polyamine depletion results in decreased proliferation and increased cellular content of insulin and insulin secretory granules without affecting insulin mRNA levels or translation. Moreover, polyamine-depleted RINm5F cells display improved substrate metabolism and sensitivity of the stimulus-secretion coupling. Possible levels of polyamine interaction with Ca2+ metabolism are discussed.
Collapse
Affiliation(s)
- A Sjöholm
- Department of Endocrinology, Rolf Luft Center for Diabetes Research, Karolinska Institute, Karolinska Hospital, Stockholm, Sweden
| |
Collapse
|
6
|
Metz S, Rabaglia M, Pintar T. Selective inhibitors of GTP synthesis impede exocytotic insulin release from intact rat islets. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)42308-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
7
|
Sjöholm A, Hellerström C. TGF-beta stimulates insulin secretion and blocks mitogenic response of pancreatic beta-cells to glucose. THE AMERICAN JOURNAL OF PHYSIOLOGY 1991; 260:C1046-51. [PMID: 2035613 DOI: 10.1152/ajpcell.1991.260.5.c1046] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The long-term influence of transforming growth factor-beta (TGF-beta) on replication and insulin secretion by insulin-producing pancreatic beta-cells was investigated. For this purpose, fetal rat pancreatic islets containing a high proportion of beta-cells were isolated and maintained in tissue culture for 3 days at different concentrations of TGF-beta. TGF-beta (5-500 pM) at a glucose concentration of 11.1 mM did not affect the replication of the beta-cells or their insulin content but enhanced secretion of insulin from these cells. TGF-beta (500 pM) counter-acted the mitogenic action of 16.7 mM glucose but failed to affect the glucose-induced increase in islet insulin content or secretion. Growth hormone (GH) also stimulated beta-cell DNA synthesis and insulin secretion, but TGF-beta was unable to prevent these effects. It was found, moreover, that TGF-beta did not prevent the increase in islet polyamine content which occurred in response to glucose or GH, indicating that the effects of TGF-beta are not mediated through this pathway. Addition of neutralizing antibodies to TGF-beta did not affect the mitogenic or secretory responses to glucose or GH, suggesting that TGF-beta does not exert any autocrine or paracrine function in islets.
Collapse
Affiliation(s)
- A Sjöholm
- Department of Medical Cell Biology, Uppsala University, Sweden
| | | |
Collapse
|
8
|
Sjöholm A, Welsh N, Sandler S, Hellerström C. Role of polyamines in mitogenic and secretory responses of pancreatic beta-cells to growth factors. THE AMERICAN JOURNAL OF PHYSIOLOGY 1990; 259:C828-33. [PMID: 2240196 DOI: 10.1152/ajpcell.1990.259.5.c828] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We have investigated the effects of glucose and the polypeptide growth factor growth hormone (GH), platelet-derived growth factor (PDGF), insulin-like growth factor I (IGF-I), epidermal growth factor (EGF), and transforming growth factor alpha (TGF alpha) on the polyamine content, in relation to proliferation and insulin secretion and content, of pancreatic beta-cells. Fetal rat pancreatic islets containing a high proportion of beta-cells were cultured for 3 days with growth factors. beta-cell replication was significantly increased by glucose, GH, and PDGF plus IGF-I in parallel with increased islet polyamine contents. In contrast, neither EGF nor TGF alpha influenced the islet DNA synthesis rate, polyamine content, insulin content, or insulin accumulation in culture medium. When the increased polyamine content evoked by growth-promoting agents was prevented by inhibitors of polyamine synthesis, elevated DNA synthesis rates persisted or were even augmented. However, subcellular fractionation analysis of islet homogenates revealed that the nuclear polyamine content was not affected by the inhibitors. On the other hand, islet insulin content and glucose-regulated insulin release were decreased by polyamine synthesis inhibitors. Glucose oxidation rates remained unchanged, suggesting that inhibitors were not toxic to islet cells. We conclude that prevention of increases in total cellular content of polyamines in response to glucose, GH, or PDGF plus IGF-I does not prevent mitogenicity of these growth factors. However, when their synthesis is inhibited normal levels of polyamines seem to be maintained in the cell nucleus, an event that may be sufficient to permit a mitotic signal to be translated into a proliferative response.
Collapse
Affiliation(s)
- A Sjöholm
- Department of Medical Cell Biology, Uppsala University, Sweden
| | | | | | | |
Collapse
|
9
|
Malaisse WJ, Blachier F, Mourtada A, Camara J, Albor A, Valverde I, Sener A. Stimulus-secretion coupling of arginine-induced insulin release. Metabolism of L-arginine and L-ornithine in pancreatic islets. BIOCHIMICA ET BIOPHYSICA ACTA 1989; 1013:133-43. [PMID: 2669974 DOI: 10.1016/0167-4889(89)90041-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Exogenous L-arginine and L-ornithine rapidly accumulate in rat pancreatic islets. L-Arginine is converted to L-ornithine and urea. Endogenous or exogenous L-ornithine generates di- and polyamines, the putrescine turnover being faster than that of spermidine and spermine. However, the major pathway for L-ornithine metabolism consists of its transamination to L-glutamaldehyde and further conversion to L-glutamate. The amines and L-glutamate derived from exogenous L-ornithine are incorporated into islet proteins at the intervention of transglutaminase and cycloheximide-sensitive biosynthetic processes, respectively. These findings suggest the hypothesis that the insulinotropic action of L-arginine and L-ornithine could somehow be related to the metabolism of these cationic amino acids in islet cells.
Collapse
Affiliation(s)
- W J Malaisse
- Laboratory of Experimental Medicine, Brussels Free University, Belgium
| | | | | | | | | | | | | |
Collapse
|
10
|
McCroskey MC, Palazuk BJ, Pierce-Ramsey PA, Colca JR, Pearson JD. Insulin-like effects of histones H3 and H4 on isolated rat adipocytes. BIOCHIMICA ET BIOPHYSICA ACTA 1989; 1011:212-9. [PMID: 2540834 DOI: 10.1016/0167-4889(89)90212-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Crude preparations of histones had insulin-like actions in isolated adipocytes. This activity was attributed to the arginine-rich histones, H3 and H4. The metabolic effects of purified H3 and H4 on isolated adipocytes were similar to those of insulin in a number of respects. Like insulin, H3 and H4 stimulated the incorporation of both glucose and pyruvate in isolated cells and stimulated intercellular oxidation of glucose; in contrast, the lipolytic agents ACTH and isoproterenol actually inhibited the incorporation of pyruvate into adipocytes. In contrast to the effects of the lipolytic hormones, the effects of H3 and H4, like insulin, were not blocked by the presence of adenosine deaminase in the medium. The same concentrations of phenylarsine oxide were required to inhibit the stimulation of glucose incorporation whether by insulin or by histones. Furthermore, the addition of H4 or insulin to isolated adipocytes resulted in the increased phosphorylation of 17 kDa phosphoproteins as detected by two-dimensional electrophoresis. The insulin-like effect of the active histones was specific to their structure. Lysine-rich histones (H1, H2A and H2B), various polycations, and proteolytic fragments of purified H3 or H4 were all inactive. It is unknown whether this phenomenon might imply a physiological function for such endogenous molecules; however, a comparison of the detailed effects of insulin and histones might be informative in terms of common intracellular transduction systems.
Collapse
Affiliation(s)
- M C McCroskey
- Department of Biopolymer Chemistry, Upjohn Company, Kalamazoo, MI 49001
| | | | | | | | | |
Collapse
|
11
|
Abstract
The aim of the present study was to evaluate the role of polyamines in the metabolism and insulin production of pancreatic-islet cells. For this purpose islets were prepared from adult mice and used either immediately or after tissue culture. There was a significant decrease in the islet content of spermidine during culture, although the effect was less pronounced in a high glucose concentration. Furthermore, a stimulatory effect of a high glucose concentration, as compared with low guclose, on the content of spermine was observed. To elucidate further the role of polyamaines in beta-cell physiology, the ornithine decarboxylase inhibitors difuoromethylornithine (DFMO) and methylacetylenic putrescine (MAP) and the S-adenosylmethionine decarboxylase inhibitor ethylglyoxal bis(guanylhydrazone) (EGBG) were added to the culture media. Addition of DFMO together with MAP decreased the cellular contents of putrescine and spermidine, whereas the content of sperimine was unaffected. When EGBG was added in combination with DFMO and MAP, there was a decrease in the content of spermine also. Cell viability in the islets depleted of their polyamine contents was not impaired, as assessed by determinations of oxygen-uptake rates and ATP contents. Depletion of putescine plus spermidine by addition of DFMO+MAP was associated with decreased biosynthesis of (pro)insulin and total protein. When the content of spermine was decreased also by the further addition of EGBG, the decrease in (pro) insulin biosynthesis was more pronounced and was paralleled by a decrease in the insulin-mRNA content. Under these conditions, the glucose-stimulated insulin release, the insulin content and the rates of islet DNA synthesis were also decreased. It is concluded that putrescine and spermidine are necessary for the maintenance of normal insulin and protein biosynthesis, whereas spermine may exert a role in some other cellular processes, such as DNA replication, RNA transcription and glucose-stimulated insulin release.
Collapse
Affiliation(s)
- N Welsh
- Department of Medical Cell Biology, Uppsala University, Sweden
| | | |
Collapse
|