1
|
Zhou Y, Li T, Zhang Y, Zhang N, Guo Y, Gao X, Peng W, Shu S, Zhao C, Cui D, Sun H, Sun Y, Liu J, Tang J, Zhang R, Pu J. BAG6 inhibits influenza A virus replication by inducing viral polymerase subunit PB2 degradation and perturbing RdRp complex assembly. PLoS Pathog 2024; 20:e1012110. [PMID: 38498560 PMCID: PMC10977894 DOI: 10.1371/journal.ppat.1012110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 03/28/2024] [Accepted: 03/09/2024] [Indexed: 03/20/2024] Open
Abstract
The interaction between influenza A virus (IAV) and host proteins is an important process that greatly influences viral replication and pathogenicity. PB2 protein is a subunit of viral ribonucleoprotein (vRNP) complex playing distinct roles in viral transcription and replication. BAG6 (BCL2-associated athanogene 6) as a multifunctional host protein participates in physiological and pathological processes. Here, we identify BAG6 as a new restriction factor for IAV replication through targeting PB2. For both avian and human influenza viruses, overexpression of BAG6 reduced viral protein expression and virus titers, whereas deletion of BAG6 significantly enhanced virus replication. Moreover, BAG6-knockdown mice developed more severe clinical symptoms and higher viral loads upon IAV infection. Mechanistically, BAG6 restricted IAV transcription and replication by inhibiting the activity of viral RNA-dependent RNA polymerase (RdRp). The co-immunoprecipitation assays showed BAG6 specifically interacted with the N-terminus of PB2 and competed with PB1 for RdRp complex assembly. The ubiquitination assay indicated that BAG6 promoted PB2 ubiquitination at K189 residue and targeted PB2 for K48-linked ubiquitination degradation. The antiviral effect of BAG6 necessitated its N-terminal region containing a ubiquitin-like (UBL) domain (17-92aa) and a PB2-binding domain (124-186aa), which are synergistically responsible for viral polymerase subunit PB2 degradation and perturbing RdRp complex assembly. These findings unravel a novel antiviral mechanism via the interaction of viral PB2 and host protein BAG6 during avian or human influenza virus infection and highlight a potential application of BAG6 for antiviral drug development.
Collapse
Affiliation(s)
- Yong Zhou
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Department of Preventive Veterinary, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Tian Li
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Department of Preventive Veterinary, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yunfan Zhang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Department of Basic Veterinary, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Nianzhi Zhang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Department of Preventive Veterinary, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yuxin Guo
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Department of Preventive Veterinary, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiaoyi Gao
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Department of Preventive Veterinary, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Wenjing Peng
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Department of Preventive Veterinary, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Sicheng Shu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Department of Preventive Veterinary, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Chuankuo Zhao
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Department of Preventive Veterinary, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Di Cui
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Department of Basic Veterinary, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Honglei Sun
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Department of Preventive Veterinary, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yipeng Sun
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Department of Preventive Veterinary, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jinhua Liu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Department of Preventive Veterinary, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jun Tang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Department of Basic Veterinary, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Rui Zhang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Department of Basic Veterinary, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Juan Pu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Department of Preventive Veterinary, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
2
|
Tomczyk I, Rokicki M, Sieńko W, Rożek K, Nalepa A, Wiench J, Grzmil P. Mouse Pxt1 expression is regulated by Mir6996 miRNA. Theriogenology 2023; 210:9-16. [PMID: 37467697 DOI: 10.1016/j.theriogenology.2023.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 07/07/2023] [Accepted: 07/09/2023] [Indexed: 07/21/2023]
Abstract
Mouse Pxt1 gene is expressed exclusively in male germ cells and encodes for a small, cell death inducing protein. However, upon PXT1 interaction with BAG6, cell death is prevented. In transiently transfected cell lines the PXT1 expression triggered massive cell death, thus we ask the question whether the interaction of PXT1 and BAG6 is the only mechanism preventing normal, developing male germ cells from being killed by PXT1. The Pxt1 gene contains a long 3'UTR thus we have hypothesized that Pxt1 can be regulated by miRNA. We have applied Pxt1 knockout and used Pxt1 transgenic mice that overexpressed this gene to shed more light on Pxt1 regulation. Using the ELISA assay we have demonstrated that PXT1 protein is expressed in adult mouse testis, though at low abundance. The application of dual-Glo luciferase assay and the 3'UTR cloned into p-MIR-Glo plasmid showed that Pxt1 is regulated by miRNA. Combining the use of mirDB and the site-directed mutagenesis further demonstrated that Pxt1 translation is suppressed by Mir6996-3p. Considering previous reports and our current results we propose a model for Pxt1 regulation in the mouse male germ cells.
Collapse
Affiliation(s)
- Igor Tomczyk
- Department of Genetics and Evolution, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| | - Mikołaj Rokicki
- Department of Genetics and Evolution, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| | - Wioleta Sieńko
- Department of Genetics and Evolution, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| | - Katarzyna Rożek
- Department of Plant Ecology, Institute of Botany, Jagiellonian University, Gronostajowa 3, 30-387, Krakow, Poland
| | - Anna Nalepa
- Department of Chemical Technology and Environmental Analytics, Cracow University of Technology, Warszawska 24, 31-155, Krakow, Poland
| | - Jasmin Wiench
- Department of Genetics and Evolution, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| | - Paweł Grzmil
- Department of Genetics and Evolution, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland.
| |
Collapse
|
3
|
Bitzer A, Basler M, Groettrup M. Chaperone BAG6 is dispensable for MHC class I antigen processing and presentation. Mol Immunol 2015; 69:99-105. [PMID: 26598275 DOI: 10.1016/j.molimm.2015.11.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 11/03/2015] [Accepted: 11/04/2015] [Indexed: 12/20/2022]
Abstract
Antigen processing for direct presentation on MHC class I molecules is a multistep process requiring the concerted activity of several cellular complexes. The essential steps at the beginning of this pathway, namely protein synthesis at the ribosome and degradation via the proteasome, have been known for years. Nevertheless, there is a considerable lack of factors identified to function between protein synthesis and degradation during antigen processing. Here, we analyzed the impact of the chaperone BAG6 on MHC class I cell surface expression and presentation of virus-derived peptides. Although an essential role of BAG6 in antigen processing has been proposed previously, we found BAG6 to be dispensable in this pathway. Still, interaction of BAG6 and the model antigen tyrosinase was enhanced during proteasome inhibition pointing towards a role of BAG6 in antigen degradation. Redundant chaperone pathways potentially mask the contribution of BAG6 to antigen processing and presentation.
Collapse
Affiliation(s)
- Annegret Bitzer
- Division of Immunology, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
| | - Michael Basler
- Division of Immunology, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany; Biotechnology Institute Thurgau (BITg) at the University of Konstanz, CH-8280 Kreuzlingen, Switzerland
| | - Marcus Groettrup
- Division of Immunology, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany; Biotechnology Institute Thurgau (BITg) at the University of Konstanz, CH-8280 Kreuzlingen, Switzerland.
| |
Collapse
|
4
|
Lee JG, Ye Y. Bag6/Bat3/Scythe: a novel chaperone activity with diverse regulatory functions in protein biogenesis and degradation. Bioessays 2013; 35:377-85. [PMID: 23417671 DOI: 10.1002/bies.201200159] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Upon emerging from the ribosome exiting tunnel, polypeptide folding occurs immediately with the assistance of both ribosome-associated and free chaperones. While many chaperones known to date are dedicated folding catalysts, recent studies have revealed a novel chaperoning system that functions at the interface of protein biogenesis and quality control by using a special "holdase" activity in order to sort and channel client proteins to distinct destinations. The key component, Bag6/Bat3/Scythe, can effectively shield long hydrophobic segments exposed on the surface of a polypeptide, preventing aggregation or inappropriate interactions before a triaging decision is made. The biological consequences of Bag6-mediated chaperoning are divergent for different substrates, ranging from membrane integration to proteasome targeting and destruction. Accordingly, Bag6 can act in various cellular contexts in order to execute many essential cellular functions, while dysfunctions in the Bag6 system can cause severe cellular abnormalities that may be associated with some pathological conditions.
Collapse
Affiliation(s)
- Jin-Gu Lee
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
5
|
Kawahara H, Minami R, Yokota N. BAG6/BAT3: emerging roles in quality control for nascent polypeptides. J Biochem 2012; 153:147-60. [PMID: 23275523 DOI: 10.1093/jb/mvs149] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BAG6 (also known as BAT3/Scythe) is a ubiquitin-like protein that is thought to participate in a variety of seemingly unrelated physiological and pathological processes, such as apoptosis, antigen presentation and the T-cell response. Recent studies have shown that BAG6 is essential for the quality control of aggregation-prone polypeptide biogenesis. It forms part of a complex that determines the fate of newly synthesized client proteins for membrane insertion, ubiquitin-mediated degradation and/or aggregate formation. A biologically relevant transmembrane protein family has recently been shown to be a major client of BAG6, suggesting that many of the known diverse BAG6 functions can be interpreted by BAG6-mediated control of membrane protein biogenesis. In this review, we summarize the current understanding of the physiological roles of BAG6 with a particular focus on quality control for nascent chain polypeptides.
Collapse
Affiliation(s)
- Hiroyuki Kawahara
- Department of Biological Sciences, Laboratory of Cell Biology and Biochemistry, Tokyo Metropolitan University, Tokyo, Japan.
| | | | | |
Collapse
|
6
|
Kaczmarek K, Studencka M, Meinhardt A, Wieczerzak K, Thoms S, Engel W, Grzmil P. Overexpression of peroxisomal testis-specific 1 protein induces germ cell apoptosis and leads to infertility in male mice. Mol Biol Cell 2011; 22:1766-79. [PMID: 21460186 PMCID: PMC3093327 DOI: 10.1091/mbc.e09-12-0993] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Peroxisomal testis-specific 1 gene (Pxt1) is the only male germ cell-specific gene that encodes a peroxisomal protein known to date. To elucidate the role of Pxt1 in spermatogenesis, we generated transgenic mice expressing a c-MYC-PXT1 fusion protein under the control of the PGK2 promoter. Overexpression of Pxt1 resulted in induction of male germ cells' apoptosis mainly in primary spermatocytes, finally leading to male infertility. This prompted us to analyze the proapoptotic character of mouse PXT1, which harbors a BH3-like domain in the N-terminal part. In different cell lines, the overexpression of PXT1 also resulted in a dramatic increase of apoptosis, whereas the deletion of the BH3-like domain significantly reduced cell death events, thereby confirming that the domain is functional and essential for the proapoptotic activity of PXT1. Moreover, we demonstrated that PXT1 interacts with apoptosis regulator BAT3, which, if overexpressed, can protect cells from the PXT1-induced apoptosis. The PXT1-BAT3 association leads to PXT1 relocation from the cytoplasm to the nucleus. In summary, we demonstrated that PXT1 induces apoptosis via the BH3-like domain and that this process is inhibited by BAT3.
Collapse
Affiliation(s)
- Karina Kaczmarek
- Institute of Human Genetics, Georg-August-University of Göttingen, 37073 Göttingen, Germany
| | | | | | | | | | | | | |
Collapse
|
7
|
Sturgill TW, Stoddard PB, Cohn SM, Mayo MW. The promoter for intestinal cell kinase is head-to-head with F-Box 9 and contains functional sites for TCF7L2 and FOXA factors. Mol Cancer 2010; 9:104. [PMID: 20459822 PMCID: PMC2876993 DOI: 10.1186/1476-4598-9-104] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Accepted: 05/11/2010] [Indexed: 12/13/2022] Open
Abstract
Background Intestinal cell kinase (ICK; GeneID 22858) is a conserved MAPK and CDK-like kinase that is widely expressed in human tissues. Data from the Cancer Genome Anatomy Project indicated ICK mRNA is increased in cancer, and that its expression correlated with expression of mRNA for an uncharacterized F-box protein, FBX9 (GeneID: 26268). ICK and FBX9 genes are arranged head-to-head on opposite strands, with start sites for transcription separated by ~3.3 kb. We hypothesized ICK and FBX9 are potentially important genes in cancer controlled by a bidirectional promoter. Results We assessed promoter activity of the intergenic region in both orientations in cancer cell lines derived from breast (AU565, SKBR3), colon (HCT-15, KM12), and stomach (AGS) cancers, as well as in embryonic human kidney (HEK293T) cells. The intergenic segment was active in both orientations in all of these lines, and ICK promoter activity was greater than FBX9 promoter activity. Results from deletions and truncations defined a minimal promoter for ICK, and revealed that repressors and enhancers differentially regulate ICK versus FBX9 promoter activity. The ICK promoter contains consensus motifs for several FOX-family transcription factors that align when mouse and human are compared using EMBOSS. FOXA1 and FOXA2 increase luciferase activity of a minimal promoter 10-20 fold in HEK293T cells. Consensus sites for TCF7L2 (TCF4) (Gene Id: 6934) are also present in both mouse and human. The expression of β-catenin increased activity of the minimal promoter ~10 fold. ICK reference mRNAs (NM_014920.3, NM_016513) are expressed in low copy number and increased in some breast cancers, using a ten base tag 5'-TCAACCTTAT-3' specific for both ICK transcripts. Conclusion ICK and FBX9 are divergently transcribed from a bidirectional promoter that is GC-rich and contains a CpG island. A minimal promoter for ICK contains functional sites for β-cateinin/TCF7L2 and FOXA. These data are consistent with functions that have been proposed for ICK in development and in proliferation or survival of some breast and colon cancers.
Collapse
Affiliation(s)
- Thomas W Sturgill
- Departments of Pharmacology and Internal Medicine, University of Virginia, 1300 Jefferson Park Avenue, Charlottesville, Virginia 22908, USA.
| | | | | | | |
Collapse
|
8
|
Hermo L, Pelletier RM, Cyr DG, Smith CE. Surfing the wave, cycle, life history, and genes/proteins expressed by testicular germ cells. Part 1: Background to spermatogenesis, spermatogonia, and spermatocytes. Microsc Res Tech 2009; 73:241-78. [DOI: 10.1002/jemt.20783] [Citation(s) in RCA: 320] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
9
|
BAT3 and SET1A form a complex with CTCFL/BORIS to modulate H3K4 histone dimethylation and gene expression. Mol Cell Biol 2008; 28:6720-9. [PMID: 18765639 DOI: 10.1128/mcb.00568-08] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Chromatin status is characterized in part by covalent posttranslational modifications of histones that regulate chromatin dynamics and direct gene expression. BORIS (brother of the regulator of imprinted sites) is an insulator DNA-binding protein that is thought to play a role in chromatin organization and gene expression. BORIS is a cancer-germ line gene; these are genes normally present in male germ cells (testis) that are also expressed in cancer cell lines as well as primary tumors. This work identifies SET1A, an H3K4 methyltransferase, and BAT3, a cochaperone recruiter, as binding partners for BORIS, and these proteins bind to the upstream promoter regions of two well-characterized procarcinogenic genes, Myc and BRCA1. RNA interference (RNAi) knockdown of BAT3, as well as SET1A, decreased Myc and BRCA1 gene expression but did not affect the binding properties of BORIS, but RNAi knockdown of BORIS prevented the assembly of BAT3 and SET1A at the Myc and BRCA1 promoters. Finally, chromatin analysis suggested that BORIS and BAT3 exert their effects on gene expression by recruiting proteins such as SET1A that are linked to changes in H3K4 dimethylation. Thus, we propose that BORIS acts as a platform upon which BAT3 and SET1A assemble and exert effects upon chromatin structure and gene expression.
Collapse
|
10
|
Sasaki T, Marcon E, McQuire T, Arai Y, Moens PB, Okada H. Bat3 deficiency accelerates the degradation of Hsp70-2/HspA2 during spermatogenesis. ACTA ACUST UNITED AC 2008; 182:449-58. [PMID: 18678708 PMCID: PMC2500131 DOI: 10.1083/jcb.200802113] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Meiosis is critical for sexual reproduction. During meiosis, the dynamics and integrity of homologous chromosomes are tightly regulated. The genetic and molecular mechanisms governing these processes in vivo, however, remain largely unknown. In this study, we demonstrate that Bat3/Scythe is essential for survival and maintenance of male germ cells (GCs). Targeted inactivation of Bat3/Scythe in mice results in widespread apoptosis of meiotic male GCs and complete male infertility. Pachytene spermatocytes exhibit abnormal assembly and disassembly of synaptonemal complexes as demonstrated by abnormal SYCP3 staining and sustained γ-H2AX and Rad51/replication protein A foci. Further investigation revealed that a testis-specific protein, Hsp70-2/HspA2, is absent in Bat3-deficient male GCs at any stage of spermatogenesis; however, Hsp70-2 transcripts are expressed at normal levels. We found that Bat3 deficiency induces polyubiquitylation and subsequent degradation of Hsp70-2. Inhibition of proteasomal degradation restores Hsp70-2 protein levels. Our findings identify Bat3 as a critical regulator of Hsp70-2 in spermatogenesis, thereby providing a possible molecular target in idiopathic male infertility.
Collapse
Affiliation(s)
- Toru Sasaki
- The Campbell Family Institute for Breast Cancer Research, Ontario Cancer Institute, University Health Network, University of Toronto, Toronto, Ontario M5G2C1, Canada
| | | | | | | | | | | |
Collapse
|
11
|
Fu Z, Larson KA, Chitta RK, Parker SA, Turk BE, Lawrence MW, Kaldis P, Galaktionov K, Cohn SM, Shabanowitz J, Hunt DF, Sturgill TW. Identification of yin-yang regulators and a phosphorylation consensus for male germ cell-associated kinase (MAK)-related kinase. Mol Cell Biol 2006; 26:8639-54. [PMID: 16954377 PMCID: PMC1636783 DOI: 10.1128/mcb.00816-06] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
MAK (male germ cell-associated protein kinase) and MRK/ICK (MAK-related kinase/intestinal cell kinase) are human homologs of Ime2p in Saccharomyces cerevisiae and of Mde3 and Pit1 in Schizosaccharomyces pombe and are similar to human cyclin-dependent kinase 2 (CDK2) and extracellular signal-regulated kinase 2 (ERK2). MAK and MRK require dual phosphorylation in a TDY motif catalyzed by an unidentified human threonine kinase and tyrosine autophosphorylation. Herein, we establish that human CDK-related kinase CCRK (cell cycle-related kinase) is an activating T157 kinase for MRK, whereas active CDK7/cyclin H/MAT1 complexes phosphorylate CDK2 but not MRK. Protein phosphatase 5 (PP5) interacts with MRK in a complex and dephosphorylates MRK at T157 in vitro and in situ. Thus, CCRK and PP5 are yin-yang regulators of T157 phosphorylation. To determine a substrate consensus, we screened a combinatorial peptide library with active MRK. MRK preferentially phosphorylates R-P-X-S/T-P sites, with the preference for arginine at position -3 (P-3) being more stringent than for prolines at P-2 and P+1. Using the consensus, we identified a putative phosphorylation site (RPLT(1080)S) for MRK in human Scythe, an antiapoptotic protein that interacts with MRK. MRK phosphorylates Scythe at T1080 in vitro as determined by site-directed mutagenesis and mass spectrometry, supporting the consensus and suggesting Scythe as a physiological substrate for MRK.
Collapse
Affiliation(s)
- Zheng Fu
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908-0735, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Hartmann-Petersen R, Gordon C. Integral UBL domain proteins: a family of proteasome interacting proteins. Semin Cell Dev Biol 2004; 15:247-59. [PMID: 15209385 DOI: 10.1016/j.semcdb.2003.12.006] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The family of ubiquitin-like (UBL) domain proteins (UDPs) comprises a conserved group of proteins involved in a multitude of different cellular activities. However, recent studies on UBL-domain proteins indicate that these proteins appear to share a common property in their ability to interact with 26S proteasomes. The 26S proteasome is a multisubunit protease which is responsible for the majority of intracellular proteolysis in eukaryotic cells. Before degradation commences most proteins are first marked for destruction by being coupled to a chain of ubiquitin molecules. Some UBL-domain proteins catalyse the formation of ubiquitin-protein conjugates, whereas others appear to target ubiquitinated proteins for degradation and interact with chaperones. Hence, by binding to the 26S proteasome the UBL-domain proteins seem to tailor and direct the basic proteolytic functions of the particle to accommodate various cellular substrates.
Collapse
|
13
|
Manchen ST, Hubberstey AV. Human Scythe contains a functional nuclear localization sequence and remains in the nucleus during staurosporine-induced apoptosis. Biochem Biophys Res Commun 2001; 287:1075-82. [PMID: 11587531 DOI: 10.1006/bbrc.2001.5701] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Human Scythe (also known as BAT3) has been implicated in the control of apoptosis and regulating heat shock protein (HSP) 70 activity. We have attempted to further characterize the role of human Scythe in HeLa cells by studying the cellular localization and functional domains of a hemagglutinin (HA) epitope-tagged Scythe protein. Several HA-Scythe deletion mutant proteins were expressed in HeLa cells and their localization was detected using indirect immunofluorescence. Our data demonstrate that full-length human Scythe is a nuclear protein that contains an active C-terminal nuclear localization sequence (NLS). Site-directed mutagenesis of the NLS leads to complete nuclear exclusion of full-length Scythe. Furthermore, induction of apoptosis by staurosporine does not cause redistribution or cleavage of Scythe, suggesting that Scythe remains localized in the nucleus during apoptosis. These results provide evidence that Scythe is a nuclear protein that probably does not interact with elements of the apoptotic machinery in the cytosol.
Collapse
Affiliation(s)
- S T Manchen
- Department of Biological Sciences, University of Windsor, Windsor, Ontario, N9B 3P4, Canada
| | | |
Collapse
|
14
|
Ozaki T, Hanaoka E, Naka M, Nakagawara A, Sakiyama S. Cloning and characterization of rat BAT3 cDNA. DNA Cell Biol 1999; 18:503-12. [PMID: 10390159 DOI: 10.1089/104454999315222] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
HLA-B-associated transcript 3 (BAT3) was originally identified as one of the genes located within human major histocompatibility complex. It encodes a large proline-rich protein with unknown function. In this study, we found that a fragment of the BAT3 gene product interacts with a candidate tumor suppressor, DAN, in the yeast-based two-hybrid system. We cloned the full-length rat BAT3 cDNA from a fibroblast 3Y1 cDNA library. Our sequence analysis has demonstrated that rat BAT3 cDNA is 3617 nucleotides in length and encodes a full-length BAT3 (1098 amino acids) with an estimated molecular mass of 114,801 daltons, which displays an 87.4% identity with human BAT3. The deletion experiment revealed that the N-terminal region (amino acid residues 1-80) of DAN was required for the interaction with BAT3. Green fluorescent protein-tagged BAT3 was largely localized in the cytoplasm of COS cells. Northern hybridization showed that BAT3 mRNA was expressed in all the adult rat tissues examined but predominantly in testis. In addition, the level of BAT3 mRNA expression was more downregulated in some of the transformed cells, including v-mos- and v-Ha-ras-transformed 3Y1 cells, than in the parental cells.
Collapse
Affiliation(s)
- T Ozaki
- Division of Biochemistry, Chiba Cancer Center Research Institute, Japan
| | | | | | | | | |
Collapse
|
15
|
|
16
|
Abstract
We previously identified human CAP, a homolog of the yeast adenylyl cyclase-associated protein. Previous studies suggest that the N-terminal and C-terminal domains of CAP have distinct functions. We have explored the interactions of human CAP with various proteins. First, by performing yeast two-hybrid screens, we have identified peptides from several proteins that interact with the C-terminal and/or the N-terminal domains of human CAP. These peptides include regions derived from CAP and BAT3, a protein with unknown function. We have further shown that MBP fusions with these peptides can associate in vitro with the N-terminal or C-terminal domains of CAP fused to GST. Our observations indicate that CAP contains regions in both the N-terminal and C-terminal domains that are capable of interacting with each other or with themselves. Furthermore, we found that myc-epitope-tagged CAP coimmunoprecipitates with HA-epitope-tagged CAP from either yeast or mammalian cell extracts. Similar results demonstrate that human CAP can also interact with human CAP2. We also show that human CAP interacts with actin, both by the yeast two-hybrid test and by coimmunoprecipitation of epitope-tagged CAP from yeast or mammalian cell extracts. This interaction requires the C-terminal domain of CAP, but not the N-terminal domain. Thus CAP appears to be capable of interacting in vivo with other CAP molecules, CAP2, and actin. We also show that actin co-immunoprecipitates with HA-CAP2 from mammalian cell extracts.
Collapse
Affiliation(s)
- A Hubberstey
- Department of Medical Biochemistry, University of Calgary Health Science Centre, Alberta, Canada
| | | | | | | | | |
Collapse
|