1
|
Chowdhury IH, Koo SJ, Gupta S, Liang LY, Bahar B, Silla L, Nuñez-Burgos J, Barrientos N, Zago MP, Garg NJ. Gene Expression Profiling and Functional Characterization of Macrophages in Response to Circulatory Microparticles Produced during Trypanosoma cruzi Infection and Chagas Disease. J Innate Immun 2016; 9:203-216. [PMID: 27902980 DOI: 10.1159/000451055] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 09/27/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Chronic inflammation and oxidative stress are hallmarks of chagasic cardiomyopathy (CCM). In this study, we determined if microparticles (MPs) generated during Trypanosoma cruzi (Tc) infection carry the host's signature of the inflammatory/oxidative state and provide information regarding the progression of clinical disease. METHODS MPs were harvested from supernatants of human peripheral blood mononuclear cells in vitro incubated with Tc (control: LPS treated), plasma of seropositive humans with a clinically asymptomatic (CA) or symptomatic (CS) disease state (vs. normal/healthy [NH] controls), and plasma of mice immunized with a protective vaccine before challenge infection (control: unvaccinated/infected). Macrophages (mφs) were incubated with MPs, and we probed the gene expression profile using the inflammatory signaling cascade and cytokine/chemokine arrays, phenotypic markers of mφ activation by flow cytometry, cytokine profile by means of an ELISA and Bioplex assay, and oxidative/nitrosative stress and mitotoxicity by means of colorimetric and fluorometric assays. RESULTS Tc- and LPS-induced MPs stimulated proliferation, inflammatory gene expression profile, and nitric oxide (∙NO) release in human THP-1 mφs. LPS-MPs were more immunostimulatory than Tc-MPs. Endothelial cells, T lymphocytes, and mφs were the major source of MPs shed in the plasma of chagasic humans and experimentally infected mice. The CS and CA (vs. NH) MPs elicited >2-fold increase in NO and mitochondrial oxidative stress in THP-1 mφs; however, CS (vs. CA) MPs elicited a more pronounced and disease-state-specific inflammatory gene expression profile (IKBKB, NR3C1, and TIRAP vs. CCR4, EGR2, and CCL3), cytokine release (IL-2 + IFN-γ > GCSF), and surface markers of mφ activation (CD14 and CD16). The circulatory MPs of nonvaccinated/infected mice induced 7.5-fold and 40% increases in ∙NO and IFN-γ production, respectively, while these responses were abolished when RAW264.7 mφs were incubated with circulatory MPs of vaccinated/infected mice. CONCLUSION Circulating MPs reflect in vivo levels of an oxidative, nitrosative, and inflammatory state, and have potential utility in evaluating disease severity and the efficacy of vaccines and drug therapies against CCM.
Collapse
Affiliation(s)
- Imran H Chowdhury
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), Galveston, TX, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Aoki MP, Carrera-Silva EA, Cuervo H, Fresno M, Gironès N, Gea S. Nonimmune Cells Contribute to Crosstalk between Immune Cells and Inflammatory Mediators in the Innate Response to Trypanosoma cruzi Infection. J Parasitol Res 2011; 2012:737324. [PMID: 21869919 PMCID: PMC3159004 DOI: 10.1155/2012/737324] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 06/19/2011] [Indexed: 01/22/2023] Open
Abstract
Chagas myocarditis, which is caused by infection with the intracellular parasite Trypanosoma cruzi, remains the major infectious heart disease worldwide. Innate recognition through toll-like receptors (TLRs) on immune cells has not only been revealed to be critical for defense against T. cruzi but has also been involved in triggering the pathology. Subsequent studies revealed that this parasite activates nucleotide-binding oligomerization domain- (NOD-)like receptors and several particular transcription factors in TLR-independent manner. In addition to professional immune cells, T. cruzi infects and resides in different parenchyma cells. The innate receptors in nonimmune target tissues could also have an impact on host response. Thus, the outcome of the myocarditis or the inflamed liver relies on an intricate network of inflammatory mediators and signals given by immune and nonimmune cells. In this paper, we discuss the evidence of innate immunity to the parasite developed by the host, with emphasis on the crosstalk between immune and nonimmune cell responses.
Collapse
Affiliation(s)
- Maria Pilar Aoki
- Departamento de Bioquímica Clínica, Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| | - Eugenio Antonio Carrera-Silva
- Departamento de Bioquímica Clínica, Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT 06520, USA
| | - Henar Cuervo
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Cantoblanco, Madrid 28049, Spain
| | - Manuel Fresno
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Cantoblanco, Madrid 28049, Spain
| | - Núria Gironès
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Cantoblanco, Madrid 28049, Spain
| | - Susana Gea
- Departamento de Bioquímica Clínica, Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| |
Collapse
|
3
|
Fabrino DL, Leon LL, Parreira GG, Genestra M, Almeida PE, Melo RCN. Peripheral blood monocytes show morphological pattern of activation and decreased nitric oxide production during acute Chagas' disease in rats. Nitric Oxide 2005; 11:166-74. [PMID: 15491849 DOI: 10.1016/j.niox.2004.07.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2004] [Revised: 07/14/2004] [Indexed: 11/26/2022]
Abstract
Peripheral blood monocytes (PBM) recruitment is a rapid and remarkable phenomenon during acute infection with the intracellular protozoan parasite Trypanosoma cruzi, the causative agent of Chagas' disease. The functional capabilities of these cells during the infection, however, are poorly understood. The purpose of the present study was to determine whether PBM are morphologically activated and produce nitric oxide (NO), a mediator of host cell defense when challenged with the parasite at different time points of acute disease. In parallel, the parasite load was monitored in the blood and heart, a target organ of the disease, as well as the PBM numbers. The infection did not induce NO release by PBM, although these cells exhibited a clear morphological pattern of activation characterized by irregular surface, increase of organelle amount, especially Golgi complex, and cell size. On the contrary, there was significant inhibition of NO production by PBM at the beginning (day 6) and end of acute disease (day 20). At this time, the levels of NO were inversely related to the arginase activity, an enzyme that affects the NO synthesis. The mobilization process of PBM occurred in parallel to parasite load and was associated with the resolution mechanism of parasitemia and heart parasitism. Our results showed that activated PBM are notably involved in the host response to the acute T. cruzi infection in rats. However, the in vivo NO production by these cells seems to be inhibited during the acute Chagas' disease through a mechanism involving the arginase pathway.
Collapse
Affiliation(s)
- Daniela L Fabrino
- Laboratory of Cellular Biology, Department of Biology, Federal University of Juiz de Fora (UFJF), 36036-330, Juiz de Fora, MG, Brazil
| | | | | | | | | | | |
Collapse
|
4
|
Mulenga A, Macaluso KR, Simser JA, Azad AF. Dynamics of Rickettsia-tick interactions: identification and characterization of differentially expressed mRNAs in uninfected and infected Dermacentor variabilis. INSECT MOLECULAR BIOLOGY 2003; 12:185-193. [PMID: 12653940 DOI: 10.1046/j.1365-2583.2003.00400.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
To begin to explore the molecular dynamics of rickettsial tick interaction, subtractive hybridization was used to screen mRNAs in Rickettsia montanensis-infected and uninfected Dermacentor variabilis. We isolated 30 cDNA fragments, 22 of which were up-regulated and eight were down-regulated in response to rickettsial infection. Based on a putative identity of 11 cDNA fragments with similarity to known protein families, the tick genetic factors have been assigned into three groups including, the tick immune response factors (alpha-2 macroglobulin and IgE-dependent histamine release factor), the receptor/adhesion molecules (the signal transducer and activator of transcription-1/3 protein inhibitor, the clathrin adaptor protein and tetraspanin) and the stress response proteins (aldose reductase, glutathione-S transferase, ferritin, nucleosome assembly protein and cyclin A protein). Density analyses of semiquantitative RT-PCR amplified products demonstrated differential expression for 18 of the 23 tested genetic factors, apparently representing a 78% agreement with results obtained by subtractive hybridization. Additionally, mRNA transcripts of 17 of the 23 tested genetic factors were amplified from tick haemocytes/circulatory cells demonstrating that their expression is not restricted to the ovaries and suggesting a potential involvement in the immune response.
Collapse
Affiliation(s)
- A Mulenga
- Department of Microbiology, School of Medicine, University of Maryland, 655 West Baltimore Street, Baltimore, MD 21201, USA.
| | | | | | | |
Collapse
|
5
|
Olivares Fontt E, Beschin A, Van Dijck E, Vercruysse V, Bilej M, Lucas R, De Baetselier P, Vray B. Trypanosoma cruzi is lysed by coelomic cytolytic factor-1, an invertebrate analogue of tumor necrosis factor, and induces phenoloxidase activity in the coelomic fluid of Eisenia foetida foetida. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2002; 26:27-34. [PMID: 11687260 DOI: 10.1016/s0145-305x(01)00048-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A cytolytic protein named Coelomic Cytolytic Factor-1 (CCF-1) was isolated from the coelomic fluid of the earthworm Eisenia foetida foetida. Despite the absence of any gene homology, CCF-1 showed functional analogy with the mammalian cytokine tumour necrosis factor (TNF), particularly based on similar lectin-like activity. Indeed, both CCF-1 and TNF recognise N,N'-diacetylchitobiose and exert lytic activity on African Trypanosoma brucei brucei. In this report, we show that South-American Trypanosoma cruzi trypomastigotes, but not epimastigotes, were lysed by earthworm coelomic fluid or purified CCF-1. However, T. cruzi was less susceptible to lysis than T. brucei brucei. This lytic effect of coelomic fluid and CCF-1 on T. cruzi trypomastigotes was partially inhibited in the presence of anti-CCF-1 monoclonal antibody, antibody neutralising the lectin-like activity of TNF or N,N'-diacetylchitobiose. In contrast, this lytic effect was completely inhibited when using T. b. brucei. In addition, T. cruzi components, upon recognition by CCF-1 in E. f. foetida coelomic fluid, triggered the prophenoloxidase cascade, an invertebrate defence mechanism. These results further extend the functional analogies of CCF-1 and TNF, suggesting that both molecules share a similar lectin-like activity that has been conserved as an innate recognition mechanism in invertebrates and vertebrates. They also establish a link between stercorarian (T. cruzi) and salivarian (T. brucei) trypanosomatids having divergent phylogenetic origins and patterns of evolution, but possessing closely related cell surface sugar moieties.
Collapse
Affiliation(s)
- Elizabeth Olivares Fontt
- Laboratoire d'Immunologie Expérimentale (CP 615), Faculté de Médecine, 808 route de Lennik, B-1070, Brussels, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Fournet A, Rojas de Arias A, Ferreira ME, Nakayama H, Torres de Ortiz S, Schinini A, Samudio M, Vera de Bilbao N, Lavault M, Bonté F. Efficacy of the bisbenzylisoquinoline alkaloids in acute and chronic Trypanosoma cruzi murine model. Int J Antimicrob Agents 2000; 13:189-95. [PMID: 10724023 DOI: 10.1016/s0924-8579(99)00117-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have shown previously that daphnoline and cepharanthine are active against Trypanosoma cruzi and inhibited trypanothione reductase. The effects of oral treatments with daphnoline, cepharanthine and benznidazole were examined in Balb/c mice infected with T. cruzi acutely and chronically. In acute infections, parasitaemia was significantly reduced in the daphnoline-treated mice compared with controls and benznidazole-treated mice. The parasitological cure rate was increased in mice treated with daphnoline. Fifty days after infection, the negative serological response in both models was significantly different for the three tested drugs. Daphnoline showed the highest negative serological rate (48%). In chronically infected mice treated with daphnoline, we were unable to detect parasites in 70% of mice. The results obtained of oral treatment of daphnoline suggest that this bisbenzylisoquinoline may be useful in the treatment of acute and chronic Chagas' disease. This was not seen with cepharanthine, an excellent trypanothione reductase inhibitor.
Collapse
Affiliation(s)
- A Fournet
- Institut de Recherche pour le Développement, ex-ORSTOM, UR Sante, Paris, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Chaussabel D, Jacobs F, de Jonge J, de Veerman M, Carlier Y, Thielemans K, Goldman M, Vray B. CD40 ligation prevents Trypanosoma cruzi infection through interleukin-12 upregulation. Infect Immun 1999; 67:1929-34. [PMID: 10085038 PMCID: PMC96548 DOI: 10.1128/iai.67.4.1929-1934.1999] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Because of the critical role of the CD40-CD40 ligand (CD40L) pathway in the induction and effector phases of immune responses, we investigated the effects of CD40 ligation on the control of Trypanosoma cruzi infection. First, we observed that supernatants of murine spleen cells stimulated by CD40L-transfected 3T3 fibroblasts (3T3-CD40L transfectants) prevent the infection of mouse peritoneal macrophages (MPM) by T. cruzi. This phenomenon depends on de novo production of nitric oxide (NO) as it is prevented by the addition of N-nitro-L-arginine methyl ester, a NO synthase inhibitor. NO production requires interleukin (IL)-12-mediated gamma interferon (IFN-gamma) and tumor necrosis factor alpha (TNF-alpha) synthesis as demonstrated by inhibition experiments using neutralizing anti-IL-12, anti-IFN-gamma, and anti-TNF-alpha monoclonal antibodies (MAb). We found that an activating anti-CD40 MAb also directly stimulates IFN-gamma-activated MPM to produce NO and thereby to control T. cruzi infection. To determine the in vivo relevance of these in vitro findings, mice were injected with 3T3-CD40L transfectants or 3T3 control fibroblasts at the time of T. cruzi inoculation. We observed that in vivo CD40 ligation dramatically reduced both parasitemia and the mortality rate of T. cruzi-infected mice. A reduced parasitemia was still observed when the injection of 3T3-CD40L transfectants was delayed 8 days postinfection. It was abolished by injection of anti-IL-12 MAb. Taken together, these data establish that CD40 ligation facilitates the control of T. cruzi infection through a cascade involving IL-12, IFN-gamma, and NO.
Collapse
Affiliation(s)
- D Chaussabel
- Laboratoire d'Immunologie Expérimentale, Vrije Universiteit Brussel, Brussels, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Bogdan C, Röllinghoff M. How do protozoan parasites survive inside macrophages? PARASITOLOGY TODAY (PERSONAL ED.) 1999; 15:22-8. [PMID: 10234174 DOI: 10.1016/s0169-4758(98)01362-3] [Citation(s) in RCA: 124] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
During infections with intracellular microbes, macrophages have two roles. On the one hand, they are important effector cells for the control and killing of intracellular bacteria and protozoan parasites by oxidative and non-oxidative mechanisms. On the other hand, macrophages may also serve as long-term host cells that facilitate the replication and survival of the pathogens, for example, by protecting them against toxic components of the extracellular milieu. In this review, Christian Bogdan and Martin Röllinghoff summarize some of the more recently discovered mechanisms by which intracellular protozoan parasites, such as Leishmania spp, Trypanosoma cruzi and Toxoplasma gondii, manage to exploit macrophages as safe target cells.
Collapse
Affiliation(s)
- C Bogdan
- Institut fur Klinische Mikrobiologie, Immunologie und Hygiene, Universität Erlangen, Wasserturmstrasse 3, D-91054 Erlangen, Germany.
| | | |
Collapse
|
9
|
Hrabák A, Sefrioui H, Vercruysse V, Temesi A, Bajor T, Vray B. Action of chloroquine on nitric oxide production and parasite killing by macrophages. Eur J Pharmacol 1998; 354:83-90. [PMID: 9726634 DOI: 10.1016/s0014-2999(98)00427-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Chloroquine is known to inhibit several functions of macrophages, but its effect on the nitric oxide (NO)-dependent parasite killing capacity of macrophages has not been documented. NO synthesis by interferon-gamma-induced mouse and casein-elicited rat macrophages was significantly and irreversibly inhibited by chloroquine. The activity of the inducible NO synthase was not directly altered, but previous incubation of macrophages with chloroquine decreased it. Chloroquine did not alter arginase activity or arginine uptake. NADPH diaphorase activity, an indicator of NO synthase was impaired. Western blotting showed that inducible NO synthase synthesis was blocked by chloroquine. The blocking of NO formation by chloroquine resulted in increased infection of mouse peritoneal macrophages by Trypanosoma cruzi (T. cruzi). This suggests that chloroquine decreases NO formation by macrophages by inhibiting the induction of NO synthase. The findings are further evidence that NO is involved in the anti-parasitic response of macrophages.
Collapse
Affiliation(s)
- A Hrabák
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University of Medicine, Budapest, Hungary.
| | | | | | | | | | | |
Collapse
|
10
|
Fournet A, Ferreira ME, de Arias AR, Schinini A, Nakayama H, Torres S, Sanabria R, Guinaudeau H, Bruneton J. The effect of bisbenzylisoquinoline alkaloids on Trypanosoma cruzi infections in mice. Int J Antimicrob Agents 1997; 8:163-70. [DOI: 10.1016/s0924-8579(97)00373-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/1996] [Indexed: 11/25/2022]
|
11
|
Olivares Fontt E, Vray B. Relationship between granulocyte macrophage-colony stimulating factor, tumour necrosis factor-alpha and Trypanosoma cruzi infection of murine macrophages. Parasite Immunol 1995; 17:135-41. [PMID: 7792097 DOI: 10.1111/j.1365-3024.1995.tb01015.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Gamma interferon (IFN-gamma)-activated macrophages control Trypanosoma cruzi infection via nitric oxide (NO), recently recognized as a major effector molecule. Granulocyte macrophage-colony stimulating factor (GM-CSF) is a multipotent cytokine secreted by macrophages and many other cells. It induces the production of tumour necrosis factor alpha (TNF-alpha), another cytokine also secreted by macrophages and involved in the control of T. cruzi infection. However, no data are available on the relationship between GM-CSF, TNF-alpha and NO produced by macrophages activated by IFN-gamma and infected with T. cruzi. To highlight this relationship, mouse peritoneal macrophages (MPM) and two c-myc retrovirus-induced macrophage cell lines (9.1.1 and BMM8), respectively characterized by a constitutive and an inducible production of GM-CSF, were activated with IFN-gamma and/or GM-CSF and infected with T. cruzi. Our results indicate that T. cruzi upregulates GM-CSF release from MPM and from the two macrophage cell lines, activated (or not) by IFN-gamma. A high autocrine production of GM-CSF or an exogenous supply of GM-CSF is correlated with an enhanced release of TNF-alpha and NO, inducing an improved control of T. cruzi infection by IFN-gamma-activated MPM.
Collapse
Affiliation(s)
- E Olivares Fontt
- Laboratoire d'Immunologie (CP 615), Faculté de Médecine, Université Libre de Bruxelles, Belgium
| | | |
Collapse
|