Graf R, Gossrau R, Merker HJ, Schwabe R, Stahlmann R, Nau H. Enzyme cytochemistry combined with electron microscopy, pharmacokinetics, and clinical chemistry for the evaluation of the effects of steady-state valproic acid concentrations on the mouse.
HISTOCHEMISTRY 1985;
83:347-58. [PMID:
3934114 DOI:
10.1007/bf00684382]
[Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A number of organs from adult female mice were investigated after continuous application of the anticonvulsant drug valproic acid (VPA) by enzyme cytochemistry, light and electron microscopy, pharmacokinetics and clinical chemistry. VPA plasma levels were maintained between 55 micrograms/ml and 67 micrograms/ml for three days following subcutaneous implantation of drug reservoirs. Effects detectable by enzyme cytochemical or electron microscopical means were mainly observed in liver, kidney, thymus and spleen. A strict concentration-dependency of drug effects could not be found. In the liver, the activities of some surface-membrane hydrolases were increased at the biliary pole; the activities of other hydrolases were decreased or unchanged. Electron microscopically, number and length of microvilli of hepatocytes were increased and many of them showed fat inclusions, mitochondrial swellings and autophagic vacuoles. In some of the proximal convoluted tubules of the kidney, the reaction product originating from microvillous and lysosomal hydrolases was diffusely distributed and its amount lowered. This was paralleled by tubular cells with an increased number of fat droplets and swollen mitochondria or destroyed tubular cells, as demonstrated by electron microscopy. Additionally, peritubular endothelial cells were arranged in a garland-like pattern. Alkaline phosphatase was activated in the straight portion of the proximal tubules. Increased glucose, creatinine and total protein concentrations and increased gamma-glutamyl transpeptidase and alkaline phosphatase activities in the urine reflected well the damage of the proximal renal tubules. Cortical and medullary morphology varied considerably in the thymus. In extreme cases, the cortical zone was either reduced in size or the medulla showed a cortex-like structure or vice versa (inverted type of thymus). The thymic cortical reticular cells showed increased aminopeptidase A activity accompanied by a generalized aminopeptidase M and alkaline phosphatase reaction. Our data indicate that--in addition to the liver--also the kidney, thymus and spleen are target organs of VPA-induced toxicity in the mouse.
Collapse