1
|
Understanding Oxidation Propensity in GCSF and Assessment of its Safety and Efficacy. Pharm Res 2020; 37:207. [PMID: 32996003 DOI: 10.1007/s11095-020-02928-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/11/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE To understand the impact of methionine oxidation in GCSF on efficacy (neutrophil production/activation) and safety (biochemical and histopathological changes). METHODS Nine GCSF biosimilars were analyzed for the levels of residual iron and copper content. Oxidation in GCSF was induced by H2O2 treatment and four samples were prepared: wtGCSF (no oxidation), MetO (1138), MetO (1,138,127) and MetO (1138,127,122). These samples were used to evaluate binding affinity with the GCSF receptor (GCSFR) using biolayer interferometry, thermal stability using circular dichroism and in vitro potency using a relevant cell-based assay. In vivo pharmacodynamics examined changes in neutrophil production upon GCSF methionine oxidation, with the outcome correlated with the differential expression of genes implicated in the GCSF mediated neutrophil activation/ maturation. Pre-clinical safety studies including biochemical and histopathological changes were also performed. RESULTS Met 122 and Met 127 have the most deleterious effect on the potency. Lower binding affinity with GCSFR was identified as the underlying cause for lower efficacy and potency. Role of Asp 110 in GCSF as the critical residue having adverse impact on efficacy in context of methionine oxidation has been elucidated. Impairment of in vitro binding affinity with GCSF manifests as in vivo pharmacodynamic differences via differential expression of downstream genes required for neutrophil maturation. CONCLUSION The data from the present study suggests that methionine oxidation in GCSF is a critical quality attribute that needs careful monitoring and control during commercial manufacturing and subsequent supply chain stages.
Collapse
|
2
|
Shibuya R, Miyafusa T, Honda S. Stabilization of backbone-circularized protein is attained by synergistic gains in enthalpy of folded structure and entropy of unfolded structure. FEBS J 2019; 287:1554-1575. [PMID: 31605655 DOI: 10.1111/febs.15092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/22/2019] [Accepted: 10/10/2019] [Indexed: 11/30/2022]
Abstract
Backbone circularization is an effective technique for protein stabilization. Here, we investigated the effect of a connector, an engineered segment that connects two protein termini, on the conformational stability of previously designed circularized variants of granulocyte colony-stimulating factor (G-CSF). Heat tolerance and chemical denaturation analyses revealed that aggregation resistance and thermodynamic stability of the circularized variants were superior to those of linear G-CSF. Crystal structure and molecular dynamics (MD) simulation of the most thermodynamically stable variant (C166) revealed a high number of intramolecular hydrogen bonds in both the connector region and Helix D adjacent to the connector region in the folded structure. MD simulations and theoretical calculations involving different force fields indicated a reduction in the main chain entropy of C166 in the unfolded state and increase in the intramolecular hydrogen bond energy of C166 in the folded structure. Although backbone circularization is usually considered to alter chain entropy of the unfolded state, the data indicated that it could also improve the conformational enthalpy of the folded state. Further structural examination of the connector region confirmed that protein design based on a statistical analysis of local structures is an effective approach for predicting an optimum connector length to improve the conformational stability of backbone-circularized proteins. Protein design using backbone circularization with an optimum connector length will be useful for the development of effective and safe protein therapeutics. DATABASE: Structural data are available in Protein Data Bank under the accession number 5ZO6.
Collapse
Affiliation(s)
- Risa Shibuya
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan.,Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Takamitsu Miyafusa
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Shinya Honda
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan.,Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| |
Collapse
|
3
|
Periyasamy P, Shinohara T. Age-related cataracts: Role of unfolded protein response, Ca 2+ mobilization, epigenetic DNA modifications, and loss of Nrf2/Keap1 dependent cytoprotection. Prog Retin Eye Res 2017; 60:1-19. [PMID: 28864287 PMCID: PMC5600869 DOI: 10.1016/j.preteyeres.2017.08.003] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 08/26/2017] [Accepted: 08/28/2017] [Indexed: 12/11/2022]
Abstract
Age-related cataracts are closely associated with lens chronological aging, oxidation, calcium imbalance, hydration and crystallin modifications. Accumulating evidence indicates that misfolded proteins are generated in the endoplasmic reticulum (ER) by most cataractogenic stresses. To eliminate misfolded proteins from cells before they can induce senescence, the cells activate a clean-up machinery called the ER stress/unfolded protein response (UPR). The UPR also activates the nuclear factor-erythroid-2-related factor 2 (Nrf2), a central transcriptional factor for cytoprotection against stress. Nrf2 activates nearly 600 cytoprotective target genes. However, if ER stress reaches critically high levels, the UPR activates destructive outputs to trigger programmed cell death. The UPR activates mobilization of ER-Ca2+ to the cytoplasm and results in activation of Ca2+-dependent proteases to cleave various enzymes and proteins which cause the loss of normal lens function. The UPR also enhances the overproduction of reactive oxygen species (ROS), which damage lens constituents and induce failure of the Nrf2 dependent cytoprotection. Kelch-like ECH-associated protein 1 (Keap1) is an oxygen sensor protein and regulates the levels of Nrf2 by the proteasomal degradation. A significant loss of DNA methylation in diabetic cataracts was found in the Keap1 promoter, which overexpresses the Keap1 protein. Overexpressed Keap1 significantly decreases the levels of Nrf2. Lower levels of Nrf2 induces loss of the redox balance toward to oxidative stress thereby leading to failure of lens cytoprotection. Here, this review summarizes the overall view of ER stress, increases in Ca2+ levels, protein cleavage, and loss of the well-established stress protection in somatic lens cells.
Collapse
Affiliation(s)
- Palsamy Periyasamy
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA; Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Toshimichi Shinohara
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
4
|
Páez-Pérez ED, De La Cruz-Torres V, Sampedro JG. Nucleotide Binding in an Engineered Recombinant Ca 2+-ATPase N-Domain. Biochemistry 2016; 55:6751-6765. [PMID: 27951662 DOI: 10.1021/acs.biochem.6b00194] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A recombinant Ca2+-ATPase nucleotide binding domain (N-domain) harboring the mutations Trp552Leu and Tyr587Trp was expressed and purified. Chemical modification by N-bromosuccinimide and fluorescence quenching by acrylamide showed that the displaced Trp residue was located at the N-domain surface and slightly exposed to solvent. Guanidine hydrochloride-mediated N-domain unfolding showed the low structural stability of the α6-loop-α7 motif (the new Trp location) located near the nucleotide binding site. The binding of nucleotides (free and in complex with Mg2+) to the engineered N-domain led to significant intrinsic fluorescence quenching (ΔFmax ∼ 30%) displaying a saturable hyperbolic pattern; the calculated affinities decreased in the following order: ATP > ADP = ADP-Mg2+ > ATP-Mg2+. Interestingly, it was found that Ca2+ binds to the N-domain as monitored by intrinsic fluorescence quenching (ΔFmax ∼ 12%) with a dissociation constant (Kd) of 50 μM. Notably, the presence of Ca2+ (200 μM) increased the ATP and ADP affinity but favored the binding of ATP over that of ADP. In addition, binding of ATP to the N-domain generated slight changes in secondary structure as evidenced by circular dichroism spectral changes. Molecular docking of ATP to the N-domain provided different binding modes that potentially might be the binding stages prior to γ-phosphate transfer. Finally, the nucleotide binding site was studied by fluorescein isothiocyanate labeling and molecular docking. The N-domain of Ca2+-ATPase performs structural dynamics upon Ca2+ and nucleotide binding. It is proposed that the increased affinity of the N-domain for ATP mediated by Ca2+ binding may be involved in Ca2+-ATPase activation under normal physiological conditions.
Collapse
Affiliation(s)
- Edgar D Páez-Pérez
- Instituto de Física, Universidad Autónoma de San Luis Potosí , Manuel Nava 6, Zona Universitaria, CP, 78290 San Luis Potosí, SLP, Mexico
| | - Valentín De La Cruz-Torres
- Instituto de Física, Universidad Autónoma de San Luis Potosí , Manuel Nava 6, Zona Universitaria, CP, 78290 San Luis Potosí, SLP, Mexico
| | - José G Sampedro
- Instituto de Física, Universidad Autónoma de San Luis Potosí , Manuel Nava 6, Zona Universitaria, CP, 78290 San Luis Potosí, SLP, Mexico
| |
Collapse
|
5
|
Roessl U, Wiesbauer J, Leitgeb S, Birner-Gruenberger R, Nidetzky B. Non-native aggregation of recombinant human granulocyte-colony stimulating factor under simulated process stress conditions. Biotechnol J 2012; 7:1014-24. [DOI: 10.1002/biot.201100436] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 02/15/2012] [Accepted: 03/13/2012] [Indexed: 01/25/2023]
|
6
|
Comparison of the physicochemical properties of a biosimilar filgrastim with those of reference filgrastim. Biologicals 2010; 38:557-66. [DOI: 10.1016/j.biologicals.2010.05.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Revised: 04/23/2010] [Accepted: 05/26/2010] [Indexed: 11/20/2022] Open
|
7
|
Yamazaki K, Iwura T, Ishikawa R, Ozaki Y. Methanol-Induced Tertiary and Secondary Structure Changes of Granulocyte-Colony Stimulating Factor. ACTA ACUST UNITED AC 2006; 140:49-56. [PMID: 16877768 DOI: 10.1093/jb/mvj133] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
We have studied methanol-induced conformational changes in rmethuG-CSF at pH 2.5 by means of circular dichroism (CD), fluorescence and infrared (IR) spectroscopy, and 8-anilino-1-naphthalene sulfonic acid (ANS) binding. Methanol has little effect on the secondary and tertiary structures of rmethuG-CSF when its concentration is in the range of 0 to 20% (v/v). At 30% (v/v) methanol, rmethuG-CSF has ANS binding ability. In the methanol concentration range of 30 to 70% (v/v) the amount of alpha-helix decreases a little, and the tertiary structure decreases significantly. At methanol concentrations above 70% (v/v), a transition to a more helical state occurs, while there is little change in the tertiary structure, and no ANS binding ability. Thermal denaturation studies involving CD have demonstrated that as the methanol concentration increases the melting temperature and the cooperativity of transition decrease, and the transition covers a much wider range of temperature. It seems that the decreased cooperativity means an increase in the concentration of partially folded intermediate states during the unfolding of rmethuG-CSF.
Collapse
Affiliation(s)
- Katsuyoshi Yamazaki
- Product Development Section, CMC R&D Laboratories, Pharmaceutical Division, Kirin Brewery Co., Ltd, Takasaki, Gunma 370-0013
| | | | | | | |
Collapse
|
8
|
Yamazaki K, Iwura T, Ishikawa R, Ozaki Y. Effects of Ionic Strength on the Thermal Unfolding Process of Granulocyte-Colony Stimulating Factor. ACTA ACUST UNITED AC 2006; 139:41-9. [PMID: 16428318 DOI: 10.1093/jb/mvj001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
This paper reports the effect of ionic strength on the process of thermal unfolding of recombinant methionyl human granulocyte-colony stimulating factor (rmethuG-CSF) at acid pH. We previously reported that the protein aggregates were formed at the highest temperature at pD 2.1 in the pD range of 5.5-2.1 and that the aggregation proceeded a little at pD 2.1 because of the strong repulsive interaction between the unordered structures that play the role of a precursor for the aggregation. In the present study temperature-dependent IR spectra and far-UV CD spectra were measured for rmethuG-CSF in aqueous solutions containing various concentrations of NaCl at acid pH. Second derivative and curve-fitting analysis were performed to examine the obtained IR spectra. The results revealed that the structure of rmethuG-CSF becomes less stable with increasing ionic strength at all pDs investigated (pD 2.1, 2.5, and 4.0). We have also demonstrated that, at pD 2.1, the temperature at which the protein aggregation starts becomes lower and that the amount of the aggregates becomes larger with the addition of NaCl. This is probably because the addition of NaCl masks the repulsive electrostatic interaction between the unordered structures.
Collapse
Affiliation(s)
- Katsuyoshi Yamazaki
- Product Development Section, CMC R&D Laboratories, Pharmaceutical Division, Kirin Brewery Co., Ltd, Takasaki, Gunma 370-0013
| | | | | | | |
Collapse
|
9
|
Raso SW, Abel J, Barnes JM, Maloney KM, Pipes G, Treuheit MJ, King J, Brems DN. Aggregation of granulocyte-colony stimulating factor in vitro involves a conformationally altered monomeric state. Protein Sci 2005; 14:2246-57. [PMID: 16131655 PMCID: PMC2253479 DOI: 10.1110/ps.051489405] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2005] [Revised: 03/31/2005] [Accepted: 06/17/2005] [Indexed: 10/25/2022]
Abstract
Aggregation of partially folded intermediates populated during protein folding processes has been described for many proteins. Likewise, partially unfolded chains, generated by perturbation of numerous proteins by heat or chemical denaturants, have also been shown to aggregate readily. However, the process of protein aggregation from native-state conditions is less well understood. Granulocyte-colony stimulating factor (G-CSF), a member of the four-helix bundle class of cytokines, is a therapeutically relevant protein involved in stimulating the growth and maturation of phagocytotic white blood cells. Under native-like conditions (37 degrees C [pH 7.0]), G-CSF shows a significant propensity to aggregate. Our data suggest that under these conditions, native G-CSF exists in equilibrium with an altered conformation, which is highly aggregation prone. This species is enriched in 1-2 M GdmCl, as determined by tryptophan fluorescence and increased aggregation kinetics. In particular, specific changes in Trp58 fluorescence report a local rearrangement in the large loop region between helices A and B. However, circular dichroism, reactivity toward cyanylation, and ANS binding demonstrate that this conformational change is subtle, having no substantial disruption of secondary and tertiary structure, reactivity of the free sulfhydryl at Cys17 or exposure of buried hydrophobic regions. There is no indication that this altered conformation is important to biological activity, making it an attractive target for rational protein stabilization.
Collapse
Affiliation(s)
- Stephen W Raso
- Department of Pharmaceutics, MS 2-2-A, Amgen, Inc., 1 Amgen Center Drive, Thousand Oaks, CA 91320, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Cindrić M, Vuletić M. Characterisation of interferon α-2b by liquid chromatography and mass spectrometry techniques. J Sep Sci 2003. [DOI: 10.1002/jssc.200301419] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
11
|
Kueltzo LA, Middaugh CR. Structural characterization of bovine granulocyte colony stimulating factor: effect of temperature and pH. J Pharm Sci 2003; 92:1793-804. [PMID: 12949998 DOI: 10.1002/jps.10440] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The protein bovine granulocyte colony stimulating factor (bGCSF) was studied in solution as a function of pH (2-7) and temperature (10 degrees -90 degrees C) using fluorescence, circular dichroism, and Fourier transform infrared spectroscopies, as well as differential scanning calorimetry and optical density as a measurement of aggregation. bGCSF possesses significant conformational lability under the solution conditions examined. Under all pH conditions examined, a major conformational change is observed as a function of temperature at 50 degrees -60 degrees C, although the magnitude and precise temperature at which this occurs varies with pH. Three major conformations are adopted with changing pH. One is observed at pH 2 and 3, a second at pH 4, and a third at pH 5-7. At low pH (2-3), bGCSF adopts a molten globule-like conformation at moderate temperatures (25 degrees -45 degrees C), whereas at pH 4 the protein appears to form a non-molten globule extended conformation. The use of this type of study as complementary data for protein phase diagram development as well as the relationship between the conformational lability demonstrated by bGCSF and that observed for recombinant human granulocyte colony stimulating factor and other similar cytokines is discussed.
Collapse
Affiliation(s)
- Lisa A Kueltzo
- Department of Pharmaceutical Chemistry, University of Kansas, 2095 Constant Avenue, Lawrence, Kansas 66047, USA
| | | |
Collapse
|
12
|
Ricci MS, Sarkar CA, Fallon EM, Lauffenburger DA, Brems DN. pH Dependence of structural stability of interleukin-2 and granulocyte colony-stimulating factor. Protein Sci 2003; 12:1030-8. [PMID: 12717025 PMCID: PMC2323873 DOI: 10.1110/ps.0230103] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
After a cytokine binds to its receptor on the cell surface (pH approximately 7), the complex is internalized into acidic endosomal compartments (pH approximately 5-6), where partially unfolded intermediates can form. The nature of these structural transitions was studied for wild-type interleukin-2 (IL-2) and wild-type granulocyte colony-stimulating factor (G-CSF). A noncoincidence of denaturation transitions in the secondary and tertiary structure of IL-2 and tertiary structural perturbations in G-CSF suggest the presence of an intermediate state for each, a common feature of this structural family of four-helical bundle proteins. Unexpectedly, both IL-2 and G-CSF display monotonic increases in stability as the pH is decreased from 7 to 4. We hypothesize that such cytokines with cell-based clearance mechanisms in vivo may have evolved to help stabilize endosomal complexes for sorting to lysosomal degradation. We show that mutants of both IL-2 and G-CSF have differential stabilities to their wild-type counterparts as a function of pH, and that these differences may explain the differences in ligand trafficking and depletion. Further understanding of the structural changes accompanying unfolding may help guide cytokine design with respect to ligand binding, endocytic trafficking, and, consequently, therapeutic efficacy.
Collapse
|
13
|
Abstract
The folding kinetics of G-CSF were determined by trp-fluorescence and far-UV circular dichroism. Folding and unfolding was achieved by rapid dilution and mixing of the denaturant, GdnHCl. G-CSF is a four-helical bundle protein with two long loops between the first and second helices and between the third and fourth helices. The entire conformational change expected by fluorescence was observed by stopped-flow technology, but due to rapid refolding kinetics only a portion was observed by circular dichroism. G-CSF contains two trp residues, and their contribution to the fluorescent-detected kinetics were deciphered through the use of single-site trp mutants. The trp moieties are probes of the local conformation surrounding their environment. One trp at residue 118 is located within the third helix while the other trp at residue 58 is part of the long loop between the first and second helices. The refolding results were most consistent with the following mechanism: U <--> I(1) <--> I(2) <--> N; where U represents the unfolded protein, I(1) represents intermediate state 1, I(2) represents intermediate state 2, and N represents the native state. I(1) is characterized as having approximately one-half of the native-like helical structure and none of the native-like fluorescence. I(2) has 100% of the native helical structure and most of the trp-118 and little of the trp-58 native-like fluorescence. Thus refolding occurs in distinct stages with half of the helix forming first followed by the remaining half of the helix including the third helix and finally the loop between the first and second helices folds.
Collapse
Affiliation(s)
- David N Brems
- Department of Pharmaceutics, Amgen Inc., Thousand Oaks, California 91320, USA.
| |
Collapse
|
14
|
Krishnan S, Chi EY, Webb JN, Chang BS, Shan D, Goldenberg M, Manning MC, Randolph TW, Carpenter JF. Aggregation of granulocyte colony stimulating factor under physiological conditions: characterization and thermodynamic inhibition. Biochemistry 2002; 41:6422-31. [PMID: 12009905 DOI: 10.1021/bi012006m] [Citation(s) in RCA: 154] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have investigated the aggregation of recombinant human granulocyte colony stimulating factor (rhGCSF), a protein that rapidly aggregates and precipitates at pH 6.9 and 37 degrees C. We observed that native monomeric rhGCSF reversibly forms a dimer under physiological conditions and that this dimeric species does not participate in the irreversible aggregation process. Sucrose, a thermodynamic stabilizer, inhibits the aggregation of rhGCSF. We postulate that sucrose acts by reducing the concentration of structurally expanded species, consistent with the hypothesis that preferential exclusion favors most compact species in the native state ensemble. Thermodynamic stability data from unfolding curves and hydrogen-deuterium exchange experimental results support the above hypothesis. Thus, the strategy of stabilizing the native state of the protein under physiological conditions using thermodynamic stabilizers, especially ligands binding with high affinity to the native state, is expected to protect against protein aggregation occurring under such nonperturbing solution conditions.
Collapse
Affiliation(s)
- Sampathkumar Krishnan
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Kolvenbach CG, Narhi LO, Philo JS, Li T, Zhang M, Arakawa T. Granulocyte-colony stimulating factor maintains a thermally stable, compact, partially folded structure at pH2. THE JOURNAL OF PEPTIDE RESEARCH : OFFICIAL JOURNAL OF THE AMERICAN PEPTIDE SOCIETY 1997; 50:310-8. [PMID: 9352469 DOI: 10.1111/j.1399-3011.1997.tb01472.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
At acidic pH many proteins exist in a partially unfolded form, called the "A" state. This is defined as a flexible, expanded structure with well-defined, usually native-like secondary structure, but no unique tertiary structure, and showing no cooperativity during thermal-induced denaturation. Granulocyte-colony stimulating factor (G-CSF), a four-helix bundle cytokine, maintains both thermal stability and tertiary structure at pH 2.0. We therefore examined the conformation and thermal unfolding of G-CSF at pH 2.0, 4.0 and 7.0 using circular dichroism (CD) and Fourier transform infrared spectroscopy (FTIR). The secondary structure of the molecule remains highly helical as the pH is lowered from 7.0 to 2.0. The tertiary structure of the protein is slightly different at each pH value, but even at pH 2.0 G-CSF maintains a regular three-dimensional structure. The structure is hydrodynamically compact at these different pH values, with no increase in Stoke's radius even at pH 2.0. The thermal-induced denaturation of G-CSF was determined by monitoring changes in the CD or FTIR spectra. At pH 2.0 the temperature at which thermal-induced denaturation begins is higher than it is at pH 4.0 or 7.0, the thermal unfolding transition remains cooperative and some alpha-helical structure persists even at 86 degrees C. At pH 4.0 and 7.0, secondary and tertiary structures disappear simultaneously during thermal denaturation, whereas at pH 2.0 small changes in the far-UV CD region begin to occur first, followed by the simultaneous cooperative loss of tertiary structure and much of the remaining secondary structure. The structure of G-CSF at pH 2.0 is thus revealed as compact, with a unique, three-dimensional structure, highly helical secondary structure, and most importantly, a cooperative thermal unfolding transition. G-CSF at acid pH thus does not adopt the "A" state.
Collapse
Affiliation(s)
- C G Kolvenbach
- Amgen Inc., Amgen Center, Thousand Oaks, California, USA.
| | | | | | | | | | | |
Collapse
|