1
|
Schaloske RH, Blaesius D, Schlatterer C, Lusche DF. Arachidonic acid is a chemoattractant for Dictyostelium discoideum cells. J Biosci 2008; 32:1281-9. [PMID: 18202452 DOI: 10.1007/s12038-007-0137-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cyclic AMP (cAMP)is a natural chemoattractant of the social amoeba Dictyostelium discoideum. It is detected by cell surface cAMP receptors. Besides a signalling cascade involving phosphatidylinositol 3,4,5-trisphosphate (PIP3), Ca2+ signalling has been shown to have a major role in chemotaxis. Previously, we have shown that arachidonic acid (AA) induces an increase in the cytosolic Ca2+ concentration by causing the release of Ca2+ from intracellular stores and activating influx of extracellular Ca2+. Here we report that AA is a chemoattractant for D. discoideum cells differentiated for 8-9 h. Motility towards a glass capillary filled with an AA solution was dose-dependent and qualitatively comparable to cAMP-induced chemotaxis. Ca2+ played an important role in AA chemotaxis of wild-type Ax2 as ethyleneglycol-bis(b-aminoethyl)-N,N,N',N'-tetraacetic acid (EGTA) added to the extracellular buffer strongly inhibited motility. In the HM1049 mutant whose iplA gene encoding a putative Ins(1,4,5)P3 -receptor had been knocked out, chemotaxis was only slightly affected by EGTA. Chemotaxis in the presence of extracellular Ca2+ was similar in both strains. Unlike cAMP, addition of AA to a cell suspension did not change cAMP or cGMP levels. A model for AA chemotaxis based on the findings in this and previous work is presented.
Collapse
Affiliation(s)
- Ralph H Schaloske
- Department of Chemistry and Biochemistry, University of California at San Diego,9500 Gilman Drive, La Jolla, CA 92093-0601, USA
| | | | | | | |
Collapse
|
2
|
Schaloske RH, Blaesius D, Schlatterer C, Lusche DF. Arachidonic acid is a chemoattractant for Dictyostelium discoideum cells. J Biosci 2007. [DOI: 10.1007/s12038-007-0126-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
3
|
Egelhoff TT, Croft D, Steimle PA. Actin Activation of Myosin Heavy Chain Kinase A in Dictyostelium. J Biol Chem 2005; 280:2879-87. [PMID: 15545285 DOI: 10.1074/jbc.m410803200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Studies in Dictyostelium discoideum have established that the cycle of myosin II bipolar filament assembly and disassembly controls the temporal and spatial localization of myosin II during critical cellular processes, such as cytokinesis and cell locomotion. Myosin heavy chain kinase A (MHCK A) is a key enzyme regulating myosin II filament disassembly through myosin heavy chain phosphorylation in Dictyostelium. Under various cellular conditions, MHCK A is recruited to actin-rich cortical sites and is preferentially enriched at sites of pseudopod formation, and thus MHCK A is proposed to play a role in regulating localized disassembly of myosin II filaments in the cell. MHCK A possesses an aminoterminal coiled-coil domain that participates in the oligomerization, cellular localization, and actin binding activities of the kinase. In the current study, we show that the interaction between the coiled-coil domain of MHCK A and filamentous actin leads to an approximately 40-fold increase in the initial rate of kinase catalytic activity. Actin-mediated activation of MHCK A involves increased rates of kinase autophosphorylation and requires the presence of the coiled-coil domain. Structure-function analyses revealed that the coiled-coil domain alone binds to actin filaments (apparent K(D) = 0.9 microm) and thus mediates the direct interaction with F-actin required for MHCK A activation. Collectively, these results indicate that MHCK A recruitment to actin-rich sites could lead to localized activation of the kinase via direct interaction with actin filaments, and thus this mode of kinase regulation may represent an important mechanism by which the cell achieves localized disassembly of myosin II filaments required for specific changes in cell shape.
Collapse
Affiliation(s)
- Thomas T Egelhoff
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106
| | | | | |
Collapse
|
4
|
Décave E, Rieu D, Dalous J, Fache S, Brechet Y, Fourcade B, Satre M, Bruckert F. Shear flow-induced motility of Dictyostelium discoideum cells on solid substrate. J Cell Sci 2003; 116:4331-43. [PMID: 12966168 DOI: 10.1242/jcs.00726] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Application of a mild hydrodynamic shear stress to Dicytostelium discoideum cells, unable to detach cells passively from the substrate, triggers a cellular response consisting of steady membrane peeling at the rear edge of the cell and periodic cell contact extensions at its front edge. Both processes require an active actin cytoskeleton. The cell movement induced by the hydrodynamic forces is very similar to amoeboid cell motion during chemotaxis, as for its kinematic parameters and for the involvement of phosphatidylinositol(3,4,5)-trisphosphate internal gradient to maintain cell polarity. Inhibition of phosphoinositide 3-kinases by LY294002 randomizes the orientation of cell movement with respect to the flow without modifying cell speed. Two independent signaling pathways are, therefore, induced in D. discoideum in response to external forces. The first increases the frequency of pseudopodium extension, whereas the second redirects the actin cytoskeleton polymerization machinery to the edge opposite to the stressed side of the cell.
Collapse
Affiliation(s)
- Emmanuel Décave
- Laboratoire de Biochimie et Biophysique des Systèmes Intégrés, Département Réponse et Dynamique Cellulaires, CEA-Grenoble, DRDC/BBSI, 17 rue des Martyrs, 38054 Grenoble Cedex 09, France
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Gomer R, Gao T, Tang Y, Knecht D, Titus MA. Cell motility mediates tissue size regulation in Dictyostelium. J Muscle Res Cell Motil 2003; 23:809-15. [PMID: 12952079 DOI: 10.1023/a:1024487930787] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Little is known about how organisms regulate the size of multicellular structures. This review condenses some of the observations about how Dictyostelium regulates the size of fruiting bodies. Very large fruiting bodies tend to fall over, and one of the ways Dictyostelium cells prevent this is by breaking up the aggregation streams when there is an excessive number of cells in the stream. Developing cells simultaneously secrete and sense counting factor (CF), a 450 kDa complex of proteins. Diffusion calculations showed that as the number of cells in a stream or group increases, the local concentration of CF will increase, allowing the cells to sense the number of cells in the stream or group. Computer simulations predicted that a high level of CF could trigger stream breakup by decreasing cell-cell adhesion and/or increasing cell motility, effectively causing the stream to dissipate and begin to fall apart. The prediction that adhesion and motility affect group size is supported by observations that decreasing adhesion by adding antibodies that bind to adhesion protein causes the formation of smaller groups, while increasing adhesion by overexpressing adhesion proteins, or decreasing motility with drugs that disrupt actin function both cause the formation of larger groups. CF both decreases adhesion and increases motility. CF increases motility in part by increasing actin polymerization and myosin phosphorylation, and decreasing myosin polymerization. New observations using a fusion of a green fluorescent protein to a protein fragment that binds polymerized actin show that in live cells CF does not affect the distribution of polymerized actin. CF increases the levels of ABP-120, an actin-bundling protein, and new observations indicate that very low levels of CF cause an increase in levels of myoB, an unconventional myosin. Our current understanding of group size regulation in Dictyostelium is thus that motility plays a key role, and that to regulate group size cells regulate the expression of at least two proteins, as well as regulating the polymerization of both actin and myosin.
Collapse
Affiliation(s)
- Richard Gomer
- Howard Hughes Medical Institute, Department of Biochemistry and Cell Biology, MS-140, Rice University, 6100 S. Main Street, Houston, TX 77005-1892, USA.
| | | | | | | | | |
Collapse
|
6
|
Brock DA, Ehrenman K, Ammann R, Tang Y, Gomer RH. Two components of a secreted cell number-counting factor bind to cells and have opposing effects on cAMP signal transduction in Dictyostelium. J Biol Chem 2003; 278:52262-72. [PMID: 14557265 DOI: 10.1074/jbc.m309101200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A secreted 450-kDa complex of proteins called counting factor (CF) is part of a negative feedback loop that regulates the size of the groups formed by developing Dictyostelium cells. Two components of CF are countin and CF50. Both recombinant countin and recombinant CF50 decrease group size in Dictyostelium. countin- cells have a decreased cAMP-stimulated cAMP pulse, whereas recombinant countin potentiates the cAMP pulse. We find that CF50 cells have an increased cAMP pulse, whereas recombinant CF50 decreases the cAMP pulse, suggesting that countin and CF50 have opposite effects on cAMP signal transduction. In addition, countin and CF50 have opposite effects on cAMP-stimulated Erk2 activation. However, like recombinant countin, recombinant CF50 increases cell motility. We previously found that cells bind recombinant countin with a Hill coefficient of approximately 2, a KH of 60 pm, and approximately 53 sites/cell. We find here that cells also bind 125I-recombinant CF50, with a Hill coefficient of approximately 2, a KH of approximately 15 ng/ml (490 pm), and approximately 56 sites/cell. Countin and CF50 require each other's presence to affect group size, but the presence of countin is not necessary for CF50 to bind to cells, and CF50 is not necessary for countin to bind to cells. Our working hypothesis is that a signal transduction pathway activated by countin binding to cells modulates a signal transduction pathway activated by CF50 binding to cells and vice versa and that these two pathways can be distinguished by their effects on cAMP signal transduction.
Collapse
Affiliation(s)
- Debra A Brock
- Howard Hughes Medical Institute, Rice University, Houston, Texas 77005-1892, USA
| | | | | | | | | |
Collapse
|
7
|
Ehrenman K, Yang G, Hong WP, Gao T, Jang W, Brock DA, Hatton RD, Shoemaker JD, Gomer RH. Disruption of aldehyde reductase increases group size in dictyostelium. J Biol Chem 2003; 279:837-47. [PMID: 14551196 DOI: 10.1074/jbc.m310539200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Developing Dictyostelium cells form structures containing approximately 20,000 cells. The size regulation mechanism involves a secreted counting factor (CF) repressing cytosolic glucose levels. Glucose or a glucose metabolite affects cell-cell adhesion and motility; these in turn affect whether a group stays together, loses cells, or even breaks up. NADPH-coupled aldehyde reductase reduces a wide variety of aldehydes to the corresponding alcohols, including converting glucose to sorbitol. The levels of this enzyme previously appeared to be regulated by CF. We find that disrupting alrA, the gene encoding aldehyde reductase, results in the loss of alrA mRNA and AlrA protein and a decrease in the ability of cell lysates to reduce both glyceraldehyde and glucose in an NADPH-coupled reaction. Counterintuitively, alrA- cells grow normally and have decreased glucose levels compared with parental cells. The alrA- cells form long unbroken streams and huge groups. Expression of AlrA in alrA- cells causes cells to form normal fruiting bodies, indicating that AlrA affects group size. alrA- cells have normal adhesion but a reduced motility, and computer simulations suggest that this could indeed result in the formation of large groups. alrA- cells secrete low levels of countin and CF50, two components of CF, and this could partially account for why alrA- cells form large groups. alrA- cells are responsive to CF and are partially responsive to recombinant countin and CF50, suggesting that disrupting alrA inhibits but does not completely block the CF signal transduction pathway. Gas chromatography/mass spectroscopy indicates that the concentrations of several metabolites are altered in alrA- cells, suggesting that the Dictyostelium aldehyde reductase affects several metabolic pathways in addition to converting glucose to sorbitol. Together, our data suggest that disrupting alrA affects CF secretion, causes many effects on cellular metabolism, and has a major effect on group size.
Collapse
Affiliation(s)
- Karen Ehrenman
- Howard Hughes Medical Institute and Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77005-1892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Yumura S, Uyeda TQP. Myosins and cell dynamics in cellular slime molds. INTERNATIONAL REVIEW OF CYTOLOGY 2003; 224:173-225. [PMID: 12722951 DOI: 10.1016/s0074-7696(05)24005-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Myosin is a mechanochemical transducer and serves as a motor for various motile activities such as cell migration, cytokinesis, maintenance of cell shape, phagocytosis, and morphogenesis. Nonmuscle myosin in vivo does not either stay static at specific subcellular regions or construct highly organized structures, such as sarcomere in skeletal muscle cells. The cellular slime mold Dictyostelium discoideum is an ideal "model organism" for the investigation of cell movement and cytokinesis. The advantages of this organism prompted researchers to carry out pioneering cell biological, biochemical, and molecular genetic studies on myosin II, which resulted in elucidation of many fundamental features of function and regulation of this most abundant molecular motor. Furthermore, recent molecular biological research has revealed that many unconventional myosins play various functions in vivo. In this article, how myosins are organized and regulated in a dynamic manner in Dictyostelium cells is reviewed and discussed.
Collapse
Affiliation(s)
- Shigehiko Yumura
- Department of Biology, Faculty of Science, Yamaguchi University, Yamaguchi 753-8512, Japan
| | | |
Collapse
|
9
|
Wong E, Yang C, Wang J, Fuller D, Loomis WF, Siu CH. Disruption of the gene encoding the cell adhesion molecule DdCAD-1 leads to aberrant cell sorting and cell-type proportioning during Dictyostelium development. Development 2002; 129:3839-50. [PMID: 12135922 DOI: 10.1242/dev.129.16.3839] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The cadA gene in Dictyostelium encodes the Ca2+-dependent cell adhesion molecule DdCAD-1, which is expressed soon after the initiation of development. To investigate the biological role of DdCAD-1, the cadA gene was disrupted by homologous recombination. The cadA-null cells showed a 50% reduction in EDTA-sensitive cell adhesion. The remaining EDTA-sensitive adhesion sites were resistant to dissociation by anti-DdCAD-1 antibody, suggesting that they were distinct adhesion sites. Cells that lacked DdCAD-1 were able to complete development and form fruiting bodies. However, they displayed abnormal slug morphology and culmination was delayed by ∼6 hours. The yield of spores was reduced by ∼50%. The proportion of prestalk cells in cadA– slugs showed a 2.5-fold increase over the parental strain. When cadA– cells were transfected with pcotB::GFP to label prespore cells, aberrant cell-sorting patterns in slugs became apparent. When mutant prestalk cells were mixed with wild-type prespore cells, mutant prestalk cells were unable to return to the anterior position of chimeric slugs, suggesting defects in the sorting mechanism. The wild-type phenotype was restored when cadA– cells were transfected with a cadA-expression vector. These results indicate that, in addition to cell-cell adhesion, DdCAD-1 plays a role in cell type proportioning and pattern formation.
Collapse
Affiliation(s)
- Estella Wong
- Banting and Best Department of Medical Research and Department of Biochemistry, University of Toronto, Toronto, Ontario M5G 1L6, Canada
| | | | | | | | | | | |
Collapse
|
10
|
Silva-Neto MAC, Atella GC, Shahabuddin M. Inhibition of Ca2+/calmodulin-dependent protein kinase blocks morphological differentiation of plasmodium gallinaceum zygotes to ookinetes. J Biol Chem 2002; 277:14085-91. [PMID: 11827960 DOI: 10.1074/jbc.m107903200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Once ingested by mosquitoes, malaria parasites undergo complex cellular changes. These include zygote formation, transformation of zygote to ookinete, and differentiation from ookinete to oocyst. Within the oocyst, the parasite multiplies into numerous sporozoites. Modulators of intracellular calcium homeostasis, MAPTAM, and TMB-8 blocked ookinete development as did the calmodulin (CaM) antagonists W-7 and calmidazolium. Ca(2+)/CaM-dependent protein kinase inhibitor KN-93 also blocked zygote elongation, while its ineffective analog KN-92 did not have such effect. In vitro both zygote and ookinete extracts efficiently phosphorylated autocamtide-2, a classic CaM kinase substrate, which could be blocked by calmodulin antagonists W-7 and calmidazolium and CaM kinase inhibitor KN-93. These results demonstrated the presence of calmodulin-dependent CaM kinase activity in the parasite. KN-93-treated parasites, however, expressed the ookinete-specific enzyme chitinase and the ookinete surface antigen Pgs28 normally, suggesting that the morphologically untransformed parasites are biochemically mature ookinetes. In mosquitoes, KN-93-treated parasites did not develop as oocysts, while KN-92-treated parasites produced similar numbers of oocysts as controls. These data suggested that in Plasmodium gallinaceum morphological development of zygote to ookinete, but not its biochemical maturation, relies on Ca(2+)/CaM-dependent protein kinase activity and demonstrated that the morphological differentiation is essential for the further development of the parasite in infected blood-fed mosquitoes.
Collapse
Affiliation(s)
- Mário A C Silva-Neto
- Laboratory of Malaria and Vector Research, NIAID, National Institutes of Health, Bethesda, Maryland 20892-0425, USA
| | | | | |
Collapse
|
11
|
Sampath J, Adachi M, Hatse S, Naesens L, Balzarini J, Flatley R, Matherly L, Schuetz J. Role of MRP4 and MRP5 in biology and chemotherapy. AAPS PHARMSCI 2002; 4:E14. [PMID: 12423063 PMCID: PMC2751353 DOI: 10.1208/ps040314] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2002] [Accepted: 04/01/2002] [Indexed: 01/22/2023]
Abstract
Nucleotide efflux (especially cyclic nucleotides) from a variety of mammalian tissues, bacteria, and lower eukaryotes has been studied for several decades. However, the molecular identity of these nucleotide efflux transporters remained elusive, despite extensive knowledge of their kinetic properties and inhibitor profiles. Identification of the subfamily of adenosine triphosphate (ATP) binding cassette transporters, multidrug resistance protein (MRP) subfamily, permitted rapid advances because some recently identified MRP family members transport modified nucleotide analogs (ie, chemotherapeutic agents). We first identified, MRP4, based on its ability to efflux antiretroviral compounds, such as azidothymidine monophosphate (AZT-MP) and 9-(2-phosphonyl methoxyethyl) adenine (PMEA), in drug-resistant and also in transfected cell lines. MRP5, a close structural homologue of MRP4 also transported PMEA. MRP4 and MRP5 confer resistance to cytotoxic thiopurine nucleotides, and we demonstrate MRP4 expression varies among acute lymphoblastic leukemias, suggesting this as a factor in response to chemotherapy with these agents. The ability of MRP4 and MRP5 to transport 3',5'-cyclic adenosine monophosphate (cAMP) and 3',5'-cyclic guanosine monophosphate (cGMP) suggests they may play a biological role in cellular signaling by these nucleotides. Finally, we propose that MRP4 may also play a role in hepatic bile acid homeostasis because loss of the main bile acid efflux transporter, sister of P-glycoprotein (SPGP) aka bile-salt export pump (BSEP), leads to a strong compensatory upregulation in MRP4 expression. Cumulatively, these studies reveal that the ATP-binding cassette (ABC) transporters MRP4 and MRP5 have a unique role in biology and in chemotherapeutic response.
Collapse
Affiliation(s)
- Janardhan Sampath
- Department of Pharmaceutical Sciences, St Jude Childrens Research Hospital, 38105 Memphis, TN
| | - Masashi Adachi
- Department of Pharmaceutical Sciences, St Jude Childrens Research Hospital, 38105 Memphis, TN
| | - Sigrid Hatse
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Leuven, Belgium
| | - Lieve Naesens
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Leuven, Belgium
| | - Jan Balzarini
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Leuven, Belgium
| | - Robin Flatley
- Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, 48201 Detroit, MI
| | - Larry Matherly
- Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, 48201 Detroit, MI
| | - John Schuetz
- Department of Pharmaceutical Sciences, St Jude Childrens Research Hospital, 38105 Memphis, TN
| |
Collapse
|
12
|
Steimle PA, Naismith T, Licate L, Egelhoff TT. WD repeat domains target dictyostelium myosin heavy chain kinases by binding directly to myosin filaments. J Biol Chem 2001; 276:6853-60. [PMID: 11106661 DOI: 10.1074/jbc.m008992200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Myosin heavy chain kinase (MHCK) A phosphorylates mapped sites at the C-terminal tail of Dictyostelium myosin II heavy chain, driving disassembly of myosin filaments both in vitro and in vivo. MHCK A is organized into three functional domains that include an N-terminal coiled-coil region, a central kinase catalytic domain unrelated to conventional protein kinases, and a WD repeat domain at the C terminus. MHCK B is a homologue of MHCK A that possesses structurally related catalytic and WD repeat domains. In the current study, we explored the role of the WD repeat domains in defining the activities of both MHCK A and MHCK B using recombinant bacterially expressed truncations of these kinases either with or without their WD repeat domains. We demonstrate that substrate targeting is a conserved function of the WD repeat domains of both MHCK A and MHCK B and that this targeting is specific for Dictyostelium myosin II filaments. We also show that the mechanism of targeting involves direct binding of the WD repeat domains to the myosin substrate. To our knowledge, this is the first report of WD repeat domains physically targeting attached kinase domains to their substrates. The examples presented here may serve as a paradigm for enzyme targeting in other systems.
Collapse
Affiliation(s)
- P A Steimle
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106-4970, USA
| | | | | | | |
Collapse
|
13
|
Abstract
The actin cytoskeleton is an essential structure for most movements at the cellular and intracellular level. Whereas for contraction a muscle cell requires a rather static organisation of cytoskeletal proteins, cell motility of amoeboid cells relies on a tremendously dynamic turnover of filamentous networks in a matter of seconds and at distinct regions inside the cell. The best model system for studying cell motility is Dictyostelium discoideum. The cells live as single amoebae but can also start a developmental program that leads to multicellular stages and differentiation into simple types of tissues. Thus, cell motility can be studied on single cells and on cells in a tissue-like aggregate. The ability to combine protein purification and biochemistry with fairly easy molecular genetics is a unique feature for investigation of the cytoskeleton and cell motility. The actin cytoskeleton in Dictyostelium harbours essentially all classes of actin-binding proteins that have been found throughout eukaryotes. By conventional mutagenesis, gene disruption, antisense approaches, or gene replacements many genes that code for cytoskeletal proteins have been disrupted, and altered phenotypes in transformants that lacked one or more of those cytoskeletal proteins allowed solid conclusions about their in vivo function. In addition, tagging the proteins or selected domains with green fluorescent protein allows the monitoring of protein redistribution during cell movement. Gene tagging by restriction enzyme mediated integration of vectors and the ongoing international genome and cDNA sequencing projects offer the chance to understand the dynamics of the cytoskeleton by identification and functional characterisation of all proteins involved.
Collapse
Affiliation(s)
- L Eichinger
- Adolf-Butenandt-Institut/Zellbiologie, Ludwig-Maximilians-Universität, 80336 München, Germany.
| | | | | |
Collapse
|
14
|
Murphy MB, Egelhoff TT. Biochemical characterization of a Dictyostelium myosin II heavy-chain phosphatase that promotes filament assembly. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 264:582-90. [PMID: 10491107 DOI: 10.1046/j.1432-1327.1999.00670.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In Dictyostelium cells, myosin II is found as cytosolic nonassembled monomers and cytoskeletal bipolar filaments. It is thought that the phosphorylation state of three threonine residues in the tail of myosin II heavy chain regulates the molecular motor's assembly state and localization. Phosphorylation of the myosin heavy chain at threonine residues 1823, 1833 and 2029 is responsible for maintaining myosin in the nonassembled state, and subsequent dephosphorylation of these residues is a prerequisite for assembly into the cytoskeleton. We report here the characterization of myosin heavy-chain phosphatase activities in Dictyostelium utilizing myosin II phosphorylated by myosin heavy-chain kinase A as a substrate. One of the myosin heavy-chain phosphatase activities was identified as protein phosphatase 2A and the purified holoenzyme was composed of a 37-kDa catalytic subunit, a 65-kDa A subunit and a 55-kDa B subunit. The protein phosphatase 2A holoenzyme displays two orders of magnitude higher activity towards myosin phosphorylated on the heavy chains than it does towards myosin phosphorylated on the regulatory light chains, consistent with a role in the control of filament assembly. The purified myosin heavy-chain phosphatase activity promotes bipolar filament assembly in vitro via dephosphorylation of the myosin heavy chain. This system should provide a valuable model for studying the regulation and localization of protein phosphatase 2A in the context of cytoskeletal reorganization.
Collapse
Affiliation(s)
- M B Murphy
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106-4970, USA
| | | |
Collapse
|
15
|
Meili R, Ellsworth C, Lee S, Reddy TB, Ma H, Firtel RA. Chemoattractant-mediated transient activation and membrane localization of Akt/PKB is required for efficient chemotaxis to cAMP in Dictyostelium. EMBO J 1999; 18:2092-105. [PMID: 10205164 PMCID: PMC1171294 DOI: 10.1093/emboj/18.8.2092] [Citation(s) in RCA: 368] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Chemotaxis-competent cells respond to a variety of ligands by activating second messenger pathways leading to changes in the actin/myosin cytoskeleton and directed cell movement. We demonstrate that Dictyostelium Akt/PKB, a homologue of mammalian Akt/PKB, is very rapidly and transiently activated by the chemoattractant cAMP. This activation takes place through G protein-coupled chemoattractant receptors via a pathway that requires homologues of mammalian p110 phosphoinositide-3 kinase. pkbA null cells exhibit aggregation-stage defects that include aberrant chemotaxis, a failure to polarize properly in a chemoattractant gradient and aggregation at low densities. Mechanistically, we demonstrate that the PH domain of Akt/PKB fused to GFP transiently translocates to the plasma membrane in response to cAMP with kinetics similar to those of Akt/PKB kinase activation and is localized to the leading edge of chemotaxing cells in vivo. Our results indicate Akt/PKB is part of the regulatory network required for sensing and responding to the chemoattractant gradient that mediates chemotaxis and aggregation.
Collapse
Affiliation(s)
- R Meili
- Department of Biology, Center for Molecular Genetics, Room 225, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0634, USA
| | | | | | | | | | | |
Collapse
|
16
|
Cell-Cell Communication in Dictyostelium. Development 1999. [DOI: 10.1007/978-3-642-59828-9_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
17
|
Pettit EJ, Fay FS. Cytosolic free calcium and the cytoskeleton in the control of leukocyte chemotaxis. Physiol Rev 1998; 78:949-67. [PMID: 9790567 DOI: 10.1152/physrev.1998.78.4.949] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In response to a chemotactic gradient, leukocytes extravasate and chemotax toward the site of pathogen invasion. Although fundamental in the control of many leukocyte functions, the role of cytosolic free Ca2+ in chemotaxis is unclear and has been the subject of debate. Before becoming motile, the cell assumes a polarized morphology, as a result of modulation of the cytoskeleton by G protein and kinase activation. This morphology may be reinforced during chemotaxis by the intracellular redistribution of Ca2+ stores, cytoskeletal constituents, and chemoattractant receptors. Restricted subcellular distributions of signaling molecules, such as Ca2+, Ca2+/calmodulin, diacylglycerol, and protein kinase C, may also play a role in some types of leukocyte. Chemotaxis is an essential function of most cells at some stage during their development, and a deeper understanding of the molecular signaling and structural components involved will enable rational design of therapeutic strategies in a wide variety of diseases.
Collapse
Affiliation(s)
- E J Pettit
- Biomedical Imaging Group, University of Massachusetts Medical Center, Worcester, USA
| | | |
Collapse
|