1
|
Susta L, He Y, Hutcheson JM, Lu Y, West FD, Stice SL, Yu P, Abdo Z, Afonso CL. Derivation of chicken induced pluripotent stem cells tolerant to Newcastle disease virus-induced lysis through multiple rounds of infection. Virol J 2016; 13:205. [PMID: 27919263 PMCID: PMC5139146 DOI: 10.1186/s12985-016-0659-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 11/25/2016] [Indexed: 12/29/2022] Open
Abstract
Background Newcastle disease (ND), caused by Newcastle disease virus (NDV), is a devastating disease of poultry and wild birds. ND is prevented by rigorous biocontainment and vaccination. One potential approach to prevent spread of the virus is production of birds that show innate resistance to NDV-caused disease. Induced pluripotent stem cell (iPSC) technology allows adult cells to be reprogrammed into an embryonic stem cell-like state capable of contributing to live offspring and passing on unique traits in a number of species. Recently, iPSC approaches have been successfully applied to avian cells. If chicken induced pluripotent stem cells (ciPSCs) are genetically or epigenetically modified to resist NDV infection, it may be possible to generate ND resistant poultry. There is limited information on the potential of ciPSCs to be infected by NDV, or the capacity of these cells to become resistant to infection. The aim of the present work was to assess the characteristics of the interaction between NDV and ciPSCs, and to develop a selection method that would increase tolerance of these cells to NDV-induced cellular damage. Results Results showed that ciPSCs were permissive to infection with NDV, and susceptible to virus-mediated cell death. Since ciPSCs that survived infection demonstrated the ability to recover quickly, we devised a system to select surviving cells through multiple infection rounds with NDV. ciPSCs that sustained 9 consecutive infections had a statistically significant increase in survival (up to 36 times) compared to never-infected ciPSCs upon NDV infection (tolerant cells). Increased survival was not caused by a loss of permissiveness to NDV replication. RNA sequencing followed by enrichment pathway analysis showed that numerous metabolic pathways where differentially regulated between tolerant and never-infected ciPSCs. Conclusions Results demonstrate that ciPSCs are permissive to NDV infection and become increasingly tolerant to NDV under selective pressure, indicating that this system could be applied to study mechanisms of cellular tolerance to NDV. Electronic supplementary material The online version of this article (doi:10.1186/s12985-016-0659-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Leonardo Susta
- US National Poultry Research Center, Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, Athens, GA, 30605, USA. .,Present address: Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2 W1, Canada.
| | - Ying He
- Regenerative Bioscience Center, University of Georgia, Athens, GA, 30602, USA.,Present address: College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, 53004, China
| | - Jessica M Hutcheson
- Regenerative Bioscience Center, University of Georgia, Athens, GA, 30602, USA.,Department of Animal and Dairy Science, University of Georgia, Athens, GA, 30602, USA
| | - Yangqing Lu
- Regenerative Bioscience Center, University of Georgia, Athens, GA, 30602, USA.,Department of Animal and Dairy Science, University of Georgia, Athens, GA, 30602, USA
| | - Franklin D West
- Regenerative Bioscience Center, University of Georgia, Athens, GA, 30602, USA.,Department of Animal and Dairy Science, University of Georgia, Athens, GA, 30602, USA
| | - Steven L Stice
- Regenerative Bioscience Center, University of Georgia, Athens, GA, 30602, USA.,Department of Animal and Dairy Science, University of Georgia, Athens, GA, 30602, USA
| | - Ping Yu
- Regenerative Bioscience Center, University of Georgia, Athens, GA, 30602, USA.,Department of Animal and Dairy Science, University of Georgia, Athens, GA, 30602, USA
| | - Zaid Abdo
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Claudio L Afonso
- US National Poultry Research Center, Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, Athens, GA, 30605, USA
| |
Collapse
|
2
|
Aoki K, Kawakita M. Differential sensitivity of two related viruses, Newcastle disease virus and Sendai virus, to interferon in mouse Had-2 cells: selective inhibition of translation of NDV mRNA. Arch Virol 1996; 141:1847-62. [PMID: 8920820 DOI: 10.1007/bf01718199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Had-2, a mouse mutant cell line derived from FM3A, constitutively releases interferon-alpha and beta and acquires resistance to Newcastle disease virus (NDV) and other viruses. However, Had-2 was found as susceptible to Sendai virus (HVJ) as FM3A. Even when Had-2 cells were infected simultaneously with NDV and HVJ, only the replication of NDV was inhibited, while that of HVJ was not. Northern blot hybridization analysis indicated that accumulation of NDV-specific primary transcripts was somewhat reduced in Had-2, but the reduction was insufficient to critically suppress the viral replication. Moreover, this decrease was not observed in the presence of cycloheximide, and a closely comparable amount of the primary transcripts was detected in both Had-2 and FM3A cells. The mRNA accumulated in the presence of cycloheximide was translated efficiently on removal of the inhibitor in FM3A cells, but not at all in Had-2 cells. Thus the translation of NDV mRNA was the major target of interferon in Had-2 cells. The fact that the synthesis of HVJ proteins was unaffected in Had-2 cells may imply that a host-cell component that distinguishes between NDV and HVJ mRNAs is involved in their translation.
Collapse
Affiliation(s)
- K Aoki
- Department of Physiological Chemistry, Tokyo Metropolitan Institute of Medical Science (Rinshoken), Japan
| | | |
Collapse
|