1
|
Thabet MA, Penadés JR, Haag AF. The ClpX protease is essential for inactivating the CI master repressor and completing prophage induction in Staphylococcus aureus. Nat Commun 2023; 14:6599. [PMID: 37852980 PMCID: PMC10584840 DOI: 10.1038/s41467-023-42413-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/10/2023] [Indexed: 10/20/2023] Open
Abstract
Bacteriophages (phages) are the most abundant biological entities on Earth, exerting a significant influence on the dissemination of bacterial virulence, pathogenicity, and antimicrobial resistance. Temperate phages integrate into the bacterial chromosome in a dormant state through intricate regulatory mechanisms. These mechanisms repress lytic genes while facilitating the expression of integrase and the CI master repressor. Upon bacterial SOS response activation, the CI repressor undergoes auto-cleavage, producing two fragments with the N-terminal domain (NTD) retaining significant DNA-binding ability. The process of relieving CI NTD repression, essential for prophage induction, remains unknown. Here we show a specific interaction between the ClpX protease and CI NTD repressor fragment of phages Ф11 and 80α in Staphylococcus aureus. This interaction is necessary and sufficient for prophage activation after SOS-mediated CI auto-cleavage, defining the final stage in the prophage induction cascade. Our findings unveil unexpected roles of bacterial protease ClpX in phage biology.
Collapse
Affiliation(s)
- Mohammed A Thabet
- School of Infection & Immunity, University of Glasgow, G12 8TA, Glasgow, UK
- Department of Biology, Faculty of Science, Al-Baha University, Al-Baha city, Al Aqiq, 65779, Kingdom of Saudi Arabia
| | - José R Penadés
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, SW7 2AZ, UK
| | - Andreas F Haag
- School of Infection & Immunity, University of Glasgow, G12 8TA, Glasgow, UK.
- School of Medicine, University of St Andrews, North Haugh, St Andrews, KY16 9TF, UK.
| |
Collapse
|
2
|
Duhaime MB, Solonenko N, Roux S, Verberkmoes NC, Wichels A, Sullivan MB. Comparative Omics and Trait Analyses of Marine Pseudoalteromonas Phages Advance the Phage OTU Concept. Front Microbiol 2017; 8:1241. [PMID: 28729861 PMCID: PMC5498523 DOI: 10.3389/fmicb.2017.01241] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 06/20/2017] [Indexed: 11/25/2022] Open
Abstract
Viruses influence the ecology and evolutionary trajectory of microbial communities. Yet our understanding of their roles in ecosystems is limited by the paucity of model systems available for hypothesis generation and testing. Further, virology is limited by the lack of a broadly accepted conceptual framework to classify viral diversity into evolutionary and ecologically cohesive units. Here, we introduce genomes, structural proteomes, and quantitative host range data for eight Pseudoalteromonas phages isolated from Helgoland (North Sea, Germany) and use these data to advance a genome-based viral operational taxonomic unit (OTU) definition. These viruses represent five new genera and inform 498 unaffiliated or unannotated protein clusters (PCs) from global virus metagenomes. In a comparison of previously sequenced Pseudoalteromonas phage isolates (n = 7) and predicted prophages (n = 31), the eight phages are unique. They share a genus with only one other isolate, Pseudoalteromonas podophage RIO-1 (East Sea, South Korea) and two Pseudoalteromonas prophages. Mass-spectrometry of purified viral particles identified 12–20 structural proteins per phage. When combined with 3-D structural predictions, these data led to the functional characterization of five previously unidentified major capsid proteins. Protein functional predictions revealed mechanisms for hijacking host metabolism and resources. Further, they uncovered a hybrid sipho-myovirus that encodes genes for Mu-like infection rarely described in ocean systems. Finally, we used these data to evaluate a recently introduced definition for virus populations that requires members of the same population to have >95% average nucleotide identity across at least 80% of their genes. Using physiological traits and genomics, we proposed a conceptual model for a viral OTU definition that captures evolutionarily cohesive and ecologically distinct units. In this trait-based framework, sensitive hosts are considered viral niches, while host ranges and infection efficiencies are tracked as viral traits. Quantitative host range assays revealed conserved traits within virus OTUs that break down between OTUs, suggesting the defined units capture niche and fitness differentiation. Together these analyses provide a foundation for model system-based hypothesis testing that will improve our understanding of marine copiotrophs, as well as phage–host interactions on the ocean particles and aggregates where Pseudoalteromonas thrive.
Collapse
Affiliation(s)
- Melissa B Duhaime
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann ArborMI, United States
| | - Natalie Solonenko
- Department of Microbiology, The Ohio State University, ColumbusOH, United States
| | - Simon Roux
- Department of Microbiology, The Ohio State University, ColumbusOH, United States
| | - Nathan C Verberkmoes
- Department of Biological Sciences, Border Biomedical Research Center, University of Texas at El Paso, El PasoTX, United States
| | - Antje Wichels
- Biologische Anstalt Helgoland, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine ResearchHelgoland, Germany
| | - Matthew B Sullivan
- Department of Microbiology, The Ohio State University, ColumbusOH, United States.,Department of Civil, Environmental, and Geodetic Engineering, The Ohio State University, ColumbusOH, United States
| |
Collapse
|
3
|
Smith ML, Avanigadda LN, Liddell PW, Kenwright KM, Howe MM. Identification of the J and K genes in the bacteriophage Mu genome sequence. FEMS Microbiol Lett 2010; 313:29-32. [DOI: 10.1111/j.1574-6968.2010.02128.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
4
|
Paul JH. Prophages in marine bacteria: dangerous molecular time bombs or the key to survival in the seas? ISME JOURNAL 2008; 2:579-89. [PMID: 18521076 DOI: 10.1038/ismej.2008.35] [Citation(s) in RCA: 277] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bacteriophages are realized to be numerous and important components of oceanic food webs principally because of their lytic capabilities. The subtle changes that temperate phages impart to their hosts in the oceans are far less understood. Occurrences of lysogeny in the oceans correlate well with conditions unfavorable for rapid host growth. In coliphage lambda, phage encoded repressors have been shown to modulate host metabolic gene expression and phenotype, resulting in economizing host energy expenditure. Comparison of lysogenized marine bacteria to the uninfected hosts indicated that prophage acquisition is correlated with host metabolic gene suppression. Screening 113 marine bacterial genomes for prophages yielded 64 prophage-like elements, 21 of which strongly resembled gene transfer agents (GTAs). The remaining 39 putative prophages had a relatively high incidence of transcriptional regulatory and repressor-like proteins (approximately 2/40 kb prophage sequence) compared to lytic marine phages (approximately 0.25/40 kb phage sequence). Here, it has been hypothesized that marine prophages directly contribute to host survival in unfavorable environments by suppression of unneeded metabolic activities. It has been further suggested that such metabolic downshifts are the result of phage-encoded repressors and transcriptional regulators acting directly on host genes. Finally, the widespread occurrence of GTAs may be an efficient mechanism for horizontal gene transfer in the oceans.
Collapse
Affiliation(s)
- John H Paul
- College of Marine Science, University of South Florida, St Petersburg, FL 33701, USA.
| |
Collapse
|
5
|
Shapiro JA. Bacteria are small but not stupid: cognition, natural genetic engineering and socio-bacteriology. STUDIES IN HISTORY AND PHILOSOPHY OF BIOLOGICAL AND BIOMEDICAL SCIENCES 2007; 38:807-819. [PMID: 18053935 DOI: 10.1016/j.shpsc.2007.09.010] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Forty years' experience as a bacterial geneticist has taught me that bacteria possess many cognitive, computational and evolutionary capabilities unimaginable in the first six decades of the twentieth century. Analysis of cellular processes such as metabolism, regulation of protein synthesis, and DNA repair established that bacteria continually monitor their external and internal environments and compute functional outputs based on information provided by their sensory apparatus. Studies of genetic recombination, lysogeny, antibiotic resistance and my own work on transposable elements revealed multiple widespread bacterial systems for mobilizing and engineering DNA molecules. Examination of colony development and organization led me to appreciate how extensive multicellular collaboration is among the majority of bacterial species. Contemporary research in many laboratories on cell-cell signaling, symbiosis and pathogenesis show that bacteria utilise sophisticated mechanisms for intercellular communication and even have the ability to commandeer the basic cell biology of 'higher' plants and animals to meet their own needs. This remarkable series of observations requires us to revise basic ideas about biological information processing and recognise that even the smallest cells are sentient beings.
Collapse
Affiliation(s)
- J A Shapiro
- Department of Biochemistry and Molecular Biology, University of Chicago, 929 E. 57th Street, Chicago IL 60637, USA.
| |
Collapse
|
6
|
Ranquet C, Toussaint A, de Jong H, Maenhaut-Michel G, Geiselmann J. Control of Bacteriophage Mu Lysogenic Repression. J Mol Biol 2005; 353:186-95. [PMID: 16154589 DOI: 10.1016/j.jmb.2005.08.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2005] [Revised: 07/24/2005] [Accepted: 08/10/2005] [Indexed: 10/25/2022]
Abstract
The transposable and temperate phage Mu infects Escherichia coli where it can enter the lytic life-cycle or reside as a repressed and integrated prophage. The repressor protein Rep is the key element in the lysis-lysogeny decision. We have analyzed the fate of Rep in different mutants by Western blotting under two conditions that can induce a lysogen: high temperature and stationary phase. We show that, unexpectedly, Rep accumulates under all conditions where the prophage is completely derepressed, and that this accumulation is ClpX-dependent. An analysis of the degradation kinetics shows that Rep is a target of two protease systems: inactivation of either the clpP or lon gene results in a stabilization of Rep. Such a reaction scheme explains the counterintuitive observation that derepression is correlated with high repressor concentration. We conclude that under all conditions of phage induction the repressor is sequestered in a non-active form. A quantitative simulation accounts for our experimental data. It provides a model that captures the essential features of Mu induction and explains some of the mechanisms by which the physiological signals affecting the lysis-lysogeny decision converge onto Rep.
Collapse
Affiliation(s)
- Caroline Ranquet
- Laboratoire du Contrôle de l'Expression Génique, Institut Jean Roget-Faculté de Médecine-Pharmacie, Domaine de la Merci, F-38700 La Tronche, France.
| | | | | | | | | |
Collapse
|
7
|
Wang PW, Chu L, Guttman DS. Complete sequence and evolutionary genomic analysis of the Pseudomonas aeruginosa transposable bacteriophage D3112. J Bacteriol 2004; 186:400-10. [PMID: 14702309 PMCID: PMC305741 DOI: 10.1128/jb.186.2.400-410.2004] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2003] [Accepted: 10/08/2003] [Indexed: 11/20/2022] Open
Abstract
Bacteriophage D3112 represents one of two distinct groups of transposable phage found in the clinically relevant, opportunistic pathogen Pseudomonas aeruginosa. To further our understanding of transposable phage in P. aeruginosa, we have sequenced the complete genome of D3112. The genome is 37,611 bp, with an overall G+C content of 65%. We have identified 53 potential open reading frames, including three genes (the c repressor gene and early genes A and B) that have been previously characterized and sequenced. The organization of the putative coding regions corresponds to published genetic and transcriptional maps and is very similar to that of enterobacteriophage Mu. In contrast, the International Committee on Taxonomy of Viruses has classified D3112 as a lambda-like phage on the basis of its morphology. Similarity-based analyses identified 27 open reading frames with significant matches to proteins in the NCBI databases. Forty-eight percent of these were similar to Mu-like phage and prophage sequences, including proteins responsible for transposition, transcriptional regulation, virion morphogenesis, and capsid formation. The tail proteins were highly similar to prophage sequences in Escherichia coli and phage Phi12 from Staphylococcus aureus, while proteins at the right end were highly similar to proteins in Xylella fastidiosa. We performed phylogenetic analyses to understand the evolutionary relationships of D3112 with respect to Mu-like versus lambda-like bacteriophages. Different results were obtained from similarity-based versus phylogenetic analyses in some instances. Overall, our findings reveal a highly mosaic structure and suggest that extensive horizontal exchange of genetic material played an important role in the evolution of D3112.
Collapse
Affiliation(s)
- Pauline W Wang
- Department of Botany, University of Toronto, Toronto, Ontario M5S3B2 Canada
| | | | | |
Collapse
|
8
|
Defenbaugh DA, Nakai H. A context-dependent ClpX recognition determinant located at the C terminus of phage Mu repressor. J Biol Chem 2003; 278:52333-9. [PMID: 14559921 DOI: 10.1074/jbc.m308724200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The bacteriophage Mu immunity repressor is a conformationally sensitive sensor that can be interconverted between forms resistant to and sensitive to degradation by ClpXP protease. Protease-sensitive repressor molecules with an altered C-terminal sequence promote rapid degradation of the wild-type repressor by inducing its C-terminal end to become exposed. Here we determined that the last 5 C-terminal residues (CTD5) of the wild-type repressor contain the motif required for recognition by the ClpX molecular chaperone, a motif that is strongly dependent upon the context in which it is presented. Although attachment of the 11-residue ssrA degradation tag to the C terminus of green fluorescent protein (GFP) promoted its rapid degradation by ClpXP, attachment of 5-27 C-terminal residues of the repressor failed to promote degradation. Disordered peptides derived from 41 and 35 C-terminal residues of CcdA (CcdA41) and thioredoxin (TrxA35), respectively, activated CTD5 when placed as linkers between GFP and repressor C-terminal sequences. However, when the entire thioredoxin sequence was included as a linker to promote an ordered configuration of the TrxA35 peptide, the resulting substrate was not degraded. In addition, a hybrid tag, in which CTD5 replaced the 3-residue recognition motif of the ssrA tag, was inactive when attached directly to GFP but active when attached through the CcdA41 peptide. Thus, CTD5 is sufficient to act as a recognition motif but has requirements for its presentation not shared by the ssrA tag. We suggest that activation of CTD5 may require presentation on a disordered or flexible domain that confers ligand flexibility.
Collapse
Affiliation(s)
- Dawn A Defenbaugh
- Department of Biochemistry and Molecular Biology, Georgetown University Medical Center, Washington, D.C. 20057, USA
| | | |
Collapse
|
9
|
Demongeot J, Thuderoz F, Baum TP, Berger F, Cohen O. Bio-array images processing and genetic networks modelling. C R Biol 2003; 326:487-500. [PMID: 12886876 DOI: 10.1016/s1631-0691(03)00114-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The new tools available for gene expression studies are essentially the bio-array methods using a large variety of physical detectors (isotopes, fluorescent markers, ultrasounds...). Here we present first rapidly an image-processing method independent of the detector type, dealing with the noise and with the peaks overlapping, the peaks revealing the detector activity (isotopic in the presented example), correlated with the gene expression. After this primary step of bio-array image processing, we can extract information about causal influence (activation or inhibition) a gene can exert on other genes, leading to clusters of genes co-expression in which we extract an interaction matrix M and an associated interaction graph G explaining the genetic regulatory dynamics correlated to the studied tissue function. We give two examples of such interaction matrices and graphs (the flowering genetic regulatory network of Arabidopsis thaliana and the lytic/lysogenic operon of the phage Mu) and after some theoretical rigorous results recently obtained concerning the asymptotic states generated by the genetic networks having a given interaction matrix and reciprocally concerning the minimal (in the sense of having a minimal number of non-zero coefficients) matrices having given stationary stable states.
Collapse
Affiliation(s)
- Jacques Demongeot
- TIMC-IMAG, CNRS 5525, Faculty of Medicine, 38700 La Tronche, France.
| | | | | | | | | |
Collapse
|
10
|
Rousseau P, Laachouch JE, Chandler M, Toussaint A. Characterization of the cts4 repressor mutation in transposable bacteriophage Mu. Res Microbiol 2002; 153:511-8. [PMID: 12437212 DOI: 10.1016/s0923-2508(02)01363-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mucts4 was isolated more than 30 years ago and was the first available thermoinducible derivative of transposable phage Mu. We have characterized the cts4 mutation and the corresponding mutant protein. Contrary to previously characterized thermoinducible Mu prophages (e.g., Mucts62), Mucts4 lysogenizes at reduced frequency even at 30 degrees C. The cts4 mutation (Leu129Val) was located in this central repressor region. The cts4 protein was thermosensitive for operator DNA binding in vitro. Temperature-dependent changes in protein-protein cross-linking patterns in the absence of DNA were detected for purified wild type, cts62 and cts4 repressor proteins. The cts4 protein exhibited a subtly different electrophoretic profile, which became more marked at higher temperatures, from both the wild type and cts62. In addition the cts4 repressor generated a significantly different pattern of binding to DNA fragments carrying the early operator region. Consistent with the predicted involvement of the central leucine-rich region of the Mu repressor in the formation of multimeric forms, the cts4 mutation thus appeared to affect protein-protein interactions.
Collapse
Affiliation(s)
- Philippe Rousseau
- Laboratoire de Microbiologie et de Génétique Moléculaire, CNRS-université Toulouse III, France
| | | | | | | |
Collapse
|
11
|
Walker JC, Verma NK. Identification of a putative pathogenicity island in Shigella flexneri using subtractive hybridisation of the S. flexneri and Escherichia coli genomes. FEMS Microbiol Lett 2002; 213:257-64. [PMID: 12167547 DOI: 10.1111/j.1574-6968.2002.tb11315.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The genetic differences between the human pathogen, Shigella flexneri, and the non-pathogenic Escherichia coli were investigated in an attempt to identify pathogenicity islands (PAIs) in the S. flexneri genome. Genomic subtraction identified a large unique region of DNA which was present in S. flexneri serotype 2a but absent from E. coli K-12. This 42-kb DNA segment was localised to the S. flexneri chromosome and was found to contain a number of elements often associated with PAIs including: insertion sequence elements, bacteriophage genes, and a previously identified Shigella virulence gene (criR). These findings indicate that this region may form a new PAI in the S. flexneri genome.
Collapse
Affiliation(s)
- John C Walker
- School of Biochemistry and Molecular Biology, Faculty of Science, The Australian National University, Canberra, ACT 0200, Australia
| | | |
Collapse
|
12
|
Morgan GJ, Hatfull GF, Casjens S, Hendrix RW. Bacteriophage Mu genome sequence: analysis and comparison with Mu-like prophages in Haemophilus, Neisseria and Deinococcus. J Mol Biol 2002; 317:337-59. [PMID: 11922669 DOI: 10.1006/jmbi.2002.5437] [Citation(s) in RCA: 152] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We report the complete 36,717 bp genome sequence of bacteriophage Mu and provide an analysis of the sequence, both with regard to the new genes and other genetic features revealed by the sequence itself and by a comparison to eight complete or nearly complete Mu-like prophage genomes found in the genomes of a diverse group of bacteria. The comparative studies confirm that members of the Mu-related family of phage genomes are genetically mosaic with respect to each other, as seen in other groups of phages such as the phage lambda-related group of phages of enteric hosts and the phage L5-related group of mycobacteriophages. Mu also possesses segments of similarity, typically gene-sized, to genomes of otherwise non-Mu-like phages. The comparisons show that some well-known features of the Mu genome, including the invertible segment encoding tail fiber sequences, are not present in most members of the Mu genome sequence family examined here, suggesting that their presence may be relatively volatile over evolutionary time. The head and tail-encoding structural genes of Mu have only very weak similarity to the corresponding genes of other well-studied phage types. However, these weak similarities, and in some cases biochemical data, can be used to establish tentative functional assignments for 12 of the head and tail genes. These assignments are strongly supported by the fact that the order of gene functions assigned in this way conforms to the strongly conserved order of head and tail genes established in a wide variety of other phages. We show that the Mu head assembly scaffolding protein is encoded by a gene nested in-frame within the C-terminal half of another gene that encodes the putative head maturation protease. This is reminiscent of the arrangement established for phage lambda.
Collapse
Affiliation(s)
- Gregory J Morgan
- Pittsburgh Bacteriophage Institute and Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | | | | |
Collapse
|
13
|
Ranquet C, Geiselmann J, Toussaint A. The tRNA function of SsrA contributes to controlling repression of bacteriophage Mu prophage. Proc Natl Acad Sci U S A 2001; 98:10220-5. [PMID: 11517307 PMCID: PMC56942 DOI: 10.1073/pnas.171620598] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The small regulatory RNA SsrA has both tRNA and mRNA activities. It charges alanine and interacts with stalled ribosomes, allowing for translation to resume on the SsrA mRNA moiety. Hence, unfinished peptides carry a short amino acid tag, which serves as a signal for degradation by energy-dependent proteases. In SsrA-defective Escherichia coli strains, thermoinducible mutants of the transposable bacteriophage Mu (Mucts) are no longer induced at high temperature. Here we show that truncated forms of the key regulator of Mu lysogeny, the repressor Repc, accumulate in the absence of SsrA. These forms resemble C-terminally truncated dominant Mu repressor mutants previously isolated from Mucts, which are no longer thermoinducible and bind operator DNA with a high affinity even at high temperature. Using various ssrA alleles, we demonstrate the importance of SsrA charging on the ribosome for controlling Mu prophage repression. Our results thus substantiate the previous observation that trans-translation is not the only function of the SsrA. The alternative function of SsrA appears to influence the stability of Mu lysogens by controlling the translation of the C-terminal domain of the repressor protein, which modulates the affinity of the protein for DNA and its susceptibility to proteolytic degradation.
Collapse
Affiliation(s)
- C Ranquet
- Laboratoire Plasticité et Expression des Génomes Microbiens, Centre National de la Recherche Scientifique FRE2383, Université J. Fourier, BP 53, F-38041 Grenoble Cedex 9, France.
| | | | | |
Collapse
|
14
|
Howe MM. Bacteriophage Mu. Mol Microbiol 1998. [DOI: 10.1007/978-3-642-72071-0_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
15
|
Desmet L, Gama MJ, Laachouch JE, Petrescu I, Rousseau P, Toussaint A. In vivo mutational analysis of bacteriophage Mu operators. Res Microbiol 1997; 148:101-8. [PMID: 9765791 DOI: 10.1016/s0923-2508(97)87641-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In bacteria lysogenic for bacteriophage Mu, the phage repressor binds to a tripartite operator region, O1,O2,O3, to repress the lytic promoter pE, located in O2, and negatively autoregulate its own synthesis at the pCM promoter located in O3. We isolated and characterized operator mutations which lead to derepression of pE. Their location in the first and third repressor-consensus-binding sequences in O2 confirms the importance of these sites for repressor/operator interactions.
Collapse
Affiliation(s)
- L Desmet
- Laboratoire de Génétique des Procaryotes, Université Libre de Bruxelles, Rhode St Genèse Belgium
| | | | | | | | | | | |
Collapse
|