1
|
Abstract
Changes in gene copy number are among the most frequent mutational events in all genomes and were among the mutations for which a physical basis was first known. Yet mechanisms of gene duplication remain uncertain because formation rates are difficult to measure and mechanisms may vary with position in a genome. Duplications are compared here to deletions, which seem formally similar but can arise at very different rates by distinct mechanisms. Methods of assessing duplication rates and dependencies are described with several proposed formation mechanisms. Emphasis is placed on duplications formed in extensively studied experimental situations. Duplications studied in microbes are compared with those observed in metazoan cells, specifically those in genomes of cancer cells. Duplications, and especially their derived amplifications, are suggested to form by multistep processes often under positive selection for increased copy number.
Collapse
Affiliation(s)
- Andrew B Reams
- Department of Biological Sciences, California State University, Sacramento, California 95819-6077
| | - John R Roth
- Department of Microbiology and Molecular Genetics, University of California, Davis, California 95616
| |
Collapse
|
2
|
Kitada K, Aikawa S, Aida S. Alu-Alu fusion sequences identified at junction sites of copy number amplified regions in cancer cell lines. Cytogenet Genome Res 2012; 139:1-8. [PMID: 22986581 DOI: 10.1159/000342885] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2012] [Indexed: 12/13/2022] Open
Abstract
Alu elements are short, ∼300-bp stretches of DNA and are the most abundant repetitive elements in the human genome. A large number of chromosomal rearrangements mediated by Alu-Alu recombination have been reported in germline cells, but only a few in somatic cells. Cancer development is frequently accompanied by various chromosomal rearrangements including gene amplification. To explore an involvement of Alu-Alu fusion in gene amplification events, we determined 20 junction site sequences of 5 highly amplified regions in 4 cancer cell lines. The amplified regions exhibited a common copy number profile: a stair-like increase with multiple segments, which is implicated in the breakage-fusion-bridge (BFB) cycle-mediated amplification. All of the sequences determined were characterized as head-to-head or tail-to-tail fusion of sequences separated by 1-5 kb in the genome sequence. Of these, 4 junction site sequences were identified as Alu-Alu fusions between inverted, paired Alu elements with relatively long overlapping sequences of 17, 21, 22, and 24 bp. Together with genome mapping data of Alu elements, these findings suggest that when breakages occur at or near inverted, paired Alu elements in the process of BFB cycle-mediated amplification, sequence homology of Alu elements is frequently used to repair the broken ends.
Collapse
Affiliation(s)
- K Kitada
- Kamakura Research Laboratories, Chugai Pharmaceutical Co. Ltd., Kamakura, Japan.
| | | | | |
Collapse
|
3
|
Kitada K, Yamasaki T, Aikawa S. Amplification of the ABCB1 region accompanied by a short sequence of 200bp from chromosome 2 in lung cancer cells. ACTA ACUST UNITED AC 2009; 194:4-11. [PMID: 19737648 DOI: 10.1016/j.cancergencyto.2009.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Revised: 04/28/2009] [Accepted: 05/04/2009] [Indexed: 10/20/2022]
Abstract
Lung cancer sublines No15-80-1 and No15-80-6 were selected by treatment of cell line NCI-H460 with paclitaxel at stepwise increasing concentrations from 50 nmol/L to 800 nmol/L. The two sublines exhibited amplifications of the ABCB1 region (previously MDR1) with different copy number profiles, but shared a common amplification pattern, which has been observed in amplification mediated by the breakage-fusion-bridge (BFB) cycle. Sequence analysis of the distal ends of the amplified regions, which were probably generated in a break-and-fusion of the initial round of the BFB cycle, revealed a head-to-head fused sequence of chromosome 7. The sequence was identical in the two sublines. A short sequence of 200bp derived from chromosome 2 was incorporated, suggesting translocation between chromosomes 2 and 7. The copy number of the short sequence was comparable to that of the neighboring sequence, suggesting coamplification. The timing of the occurrence of the putative translocation and the initiation of BFB-cycle-driven amplification during the stepwise selection were determined by using the unique junction sequences specific to these events as indicators. The results demonstrated that the translocation occurred at the step of 100 nmol/L treatment and the BFB cycle initiated in the step of 400 nmol/L-treatment. It is likely that the translocation, preceding amplification by several selection steps, activated ABCB1 gene expression. The diversity in amplification profiles between the two sublines was generated by the separately operating BFB cycles, after an initial break-and-fusion that probably occurred in a single cell.
Collapse
Affiliation(s)
- Kunio Kitada
- Kamakura Research Laboratories, Chugai Pharmaceutical Company, 200-Kajiwara, Kamakura, Kanagawa, Japan
| | | | | |
Collapse
|
4
|
Kuo MT. Redox regulation of multidrug resistance in cancer chemotherapy: molecular mechanisms and therapeutic opportunities. Antioxid Redox Signal 2009; 11:99-133. [PMID: 18699730 PMCID: PMC2577715 DOI: 10.1089/ars.2008.2095] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The development of multidrug resistance to cancer chemotherapy is a major obstacle to the effective treatment of human malignancies. It has been established that membrane proteins, notably multidrug resistance (MDR), multidrug resistance protein (MRP), and breast cancer resistance protein (BCRP) of the ATP binding cassette (ABC) transporter family encoding efflux pumps, play important roles in the development of multidrug resistance. Overexpression of these transporters has been observed frequently in many types of human malignancies and correlated with poor responses to chemotherapeutic agents. Evidence has accumulated showing that redox signals are activated in response to drug treatments that affect the expression and activity of these transporters by multiple mechanisms, including (a) conformational changes in the transporters, (b) regulation of the biosynthesis cofactors required for the transporter's function, (c) regulation of the expression of transporters at transcriptional, posttranscriptional, and epigenetic levels, and (d) amplification of the copy number of genes encoding these transporters. This review describes various specific factors and their relevant signaling pathways that are involved in the regulation. Finally, the roles of redox signaling in the maintenance and evolution of cancer stem cells and their implications in the development of intrinsic and acquired multidrug resistance in cancer chemotherapy are discussed.
Collapse
Affiliation(s)
- Macus Tien Kuo
- Department of Molecular Pathology (Unit 951), The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA.
| |
Collapse
|
5
|
Kitada K, Yamasaki T. The MDR1/ABCB1 regional amplification in large inverted repeats with asymmetric sequences and microhomologies at the junction sites. ACTA ACUST UNITED AC 2007; 178:120-7. [PMID: 17954267 DOI: 10.1016/j.cancergencyto.2007.06.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2007] [Revised: 06/18/2007] [Accepted: 06/25/2007] [Indexed: 11/26/2022]
Abstract
A multidrug-resistant lung cancer cell line PTX250, established by treatment with the anti-cancer drug paclitaxel, has been demonstrated to have an increased copy number in the 7q21.12 region including the MDR1/ABCB1 gene. The amplicon is 2.7 megabases in size, and the copy number increase is 11-fold compared with the parental cell line. Here, we examined the amplicon structure and determined nucleotide sequences at both junctions of the amplicon. Fluorescence in situ hybridization analysis using an MDR1 probe demonstrated a cluster of fluorescent signals at the chromosomal end, suggesting an intra-chromosomal amplification. DNA fragments of both junctions were cloned and sequenced. The distal junction was a head-to-head fusion with a 4-base pair (bp) overlap separated by an asymmetric sequence of 1,265 bp, and the proximal junction was a tail-to-tail fusion with a 2-bp overlap intervened by an asymmetric sequence of 2,203 bp. These results suggest that the amplicon has a large palindromic structure with an asymmetric sequence and has been amplified through the breakage-fusion-bridge cycle. Specific sequences, which might be related to the occurrence of double-strand-breakages, were found at or near the junctions of the amplicon -- an inverted repeat in the distal junction and a highly AT-rich region near the proximal junction.
Collapse
Affiliation(s)
- Kunio Kitada
- Kamakura Research Laboratories, Chugai Pharmaceutical Co Ltd, 200-Kajiwara, Kamakura, Kanagawa, Japan.
| | | |
Collapse
|
6
|
Okuno Y, Hahn PJ, Gilbert DM. Structure of a palindromic amplicon junction implicates microhomology-mediated end joining as a mechanism of sister chromatid fusion during gene amplification. Nucleic Acids Res 2004; 32:749-56. [PMID: 14757839 PMCID: PMC373360 DOI: 10.1093/nar/gkh244] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Amplification of the copy number of oncogenes is frequently associated with tumor progression. Often, the amplified DNA consists of large (tens to hundreds of kilobases) 'head-to-head' inverted repeat palindromes (amplicons). Several mechanisms have been proposed to explain palindrome formation but their relative contributions in nature have been difficult to assess without precise knowledge of the sequences involved at the junction of natural amplicons. Here, we have sequenced one such junction and compared this sequence to the un-rearranged structure, allowing us to pinpoint the site of sister chromatid fusion. Our results support a novel model, consistent with all described sister chromatid fusions, in which sister chromatid fusion is initiated by microhomology-mediated end joining of double strand breaks.
Collapse
Affiliation(s)
- Yukiko Okuno
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | | | | |
Collapse
|
7
|
Moore IK, Martin MP, Dorsey MJ, Paquin CE. Formation of circular amplifications in Saccharomyces cerevisiae by a breakage-fusion-bridge mechanism. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2000; 36:113-120. [PMID: 11013409 DOI: 10.1002/1098-2280(2000)36:2<113::aid-em5>3.0.co;2-t] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Primary gene amplification, the mutation from one gene copy per genome to two or more copies per genome, is a major mechanism of oncogene overexpression in human cancers. Analysis of the structures of amplifications can provide important evidence about the mechanism of amplification formation. We report here the analysis of the structures of four independent spontaneous circular amplifications of ADH4:CUP1 in the yeast Saccharomyces cerevisiae. The structures of all four amplifications are consistent with their formation by a breakage-fusion-bridge (BFB) mechanism. All four of these amplifications include a centromere as predicted by the BFB model. All four of the amplifications have a novel joint located between the amplified DNA and the telomere, which results in a dicentric chromosome, and is adjacent to all the copies of the amplified DNA as predicted by the BFB model. In addition we demonstrated that two of the amplifications contain most of chromosome VII in an unrearranged form in a 1:1 ratio with the normal copy of chromosome VII, again consistent with the predictions of the BFB model. Finally, all four amplifications are circular, one stable endpoint for molecules after breakage- fusion-bridge.
Collapse
Affiliation(s)
- I K Moore
- Yale University, New Haven, Connecticut, USA
| | | | | | | |
Collapse
|
8
|
|
9
|
Amplification of the multidrug resistance gene pfmdr1 in Plasmodium falciparum has arisen as multiple independent events. Mol Cell Biol 1991. [PMID: 1922044 DOI: 10.1128/mcb.11.10.5244] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The multidrug resistance (MDR) phenotype in mammalian tumor cells can involve amplification of mdr genes that results in overexpression of the protein product termed P-glycoprotein. Chloroquine resistance (CQR) in Plasmodium falciparum has similarities with the MDR phenotype in tumor cells, and some isolates of P. falciparum have amplified levels of the pfmdr1 gene. To investigate the nature and origin of pfmdr1 amplicons, we have cloned large regions of a 110-kb amplicon from the CQR cloned isolate B8 by using the yeast artificial chromosome system. We have identified and sequenced the breakpoints of the amplicon by a novel method employing inverted polymerase chain reaction that is applicable to analysis of any large-scale repeat. We show that the five copies of the amplicon in this isolate are in a head to tail configuration. A string of 30 A's flank the breakpoints on each side of the amplified segment, suggesting a mechanism for the origin of the tandem amplification. Polymerase chain reaction analysis with oligonucleotides that cross the B8 breakpoint has shown in 26 independent CQR isolates, 16 of which contain amplified copies of pfmdr1, that amplification of the pfmdr1 gene in P. falciparum has arisen as multiple independent events. These results suggest that this region of the genome is under strong selective pressure.
Collapse
|
10
|
Fried M, Feo S, Heard E. The role of inverted duplication in the generation of gene amplification in mammalian cells. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1090:143-55. [PMID: 1932107 DOI: 10.1016/0167-4781(91)90095-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- M Fried
- Eukaryotic Gene Organization and Expression Laboratory, Imperial Cancer Research Fund, London, U.K
| | | | | |
Collapse
|
11
|
Triglia T, Foote SJ, Kemp DJ, Cowman AF. Amplification of the multidrug resistance gene pfmdr1 in Plasmodium falciparum has arisen as multiple independent events. Mol Cell Biol 1991; 11:5244-50. [PMID: 1922044 PMCID: PMC361573 DOI: 10.1128/mcb.11.10.5244-5250.1991] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The multidrug resistance (MDR) phenotype in mammalian tumor cells can involve amplification of mdr genes that results in overexpression of the protein product termed P-glycoprotein. Chloroquine resistance (CQR) in Plasmodium falciparum has similarities with the MDR phenotype in tumor cells, and some isolates of P. falciparum have amplified levels of the pfmdr1 gene. To investigate the nature and origin of pfmdr1 amplicons, we have cloned large regions of a 110-kb amplicon from the CQR cloned isolate B8 by using the yeast artificial chromosome system. We have identified and sequenced the breakpoints of the amplicon by a novel method employing inverted polymerase chain reaction that is applicable to analysis of any large-scale repeat. We show that the five copies of the amplicon in this isolate are in a head to tail configuration. A string of 30 A's flank the breakpoints on each side of the amplified segment, suggesting a mechanism for the origin of the tandem amplification. Polymerase chain reaction analysis with oligonucleotides that cross the B8 breakpoint has shown in 26 independent CQR isolates, 16 of which contain amplified copies of pfmdr1, that amplification of the pfmdr1 gene in P. falciparum has arisen as multiple independent events. These results suggest that this region of the genome is under strong selective pressure.
Collapse
Affiliation(s)
- T Triglia
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | | | | | | |
Collapse
|
12
|
Heard E, Williams SV, Sheer D, Fried M. Gene amplification accompanied by the loss of a chromosome containing the native allele and the appearance of the amplified DNA at a new chromosomal location. Proc Natl Acad Sci U S A 1991; 88:8242-6. [PMID: 1654562 PMCID: PMC52483 DOI: 10.1073/pnas.88.18.8242] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The organization of amplified DNA in mammalian cells in the form of inverted repeats rather than tandem repeats was first observed and studied in the 3B rat cell line. The structure and chromosomal location of the amplified inverted duplications in this cell line have been further analyzed by cloning, long-range mapping, and fluorescence in situ hybridization. The amplification unit is at least 450 kilobases in size and all of the amplicons are located in a single chromosomal location of approximately 10 or 11 megabases. No heterogeneity in either size or molecular structure is detected between the 3B amplicons, indicating that the 20- to 40-fold amplification occurred in a single event and not through a series of events, which would result in heterogeneity among the amplicons. Thus the amplification in 3B cells may reflect more closely the situation seen in tumors containing amplified oncogenes/protooncogenes than the amplifications present in cell lines after multiple selections with cytotoxic drugs. The progenitor Rat-2 cell line contains three alleles of the region of DNA that is amplified in 3B cells; two are located on the two normal homologues of rat chromosome 2 and the third is at the equivalent position on a marker chromosome, der(3)t(2;3). 3B cells contain only one of the two normal homologues of chromosome 2 in addition to chromosome der(3)t(2;3). All of the amplified DNA is located on a new marker chromosome, M2, whose amplified DNA region does not resemble chromosome 2. These results are consistent with the amplification model proposed by Passananti et al. [Passananti, C., Davies, B., Ford, M. & Fried, M. (1987) EMBO J. 6, 1697-1703], in which the excision from a chromosome of the DNA to be amplified results in the loss of rearrangement of that chromosome. In this model the excised DNA can be amplified extrachromosomally during a single S phase before becoming stabilized by integration into a chromosome, probably at a different location to that of its unamplified allele.
Collapse
Affiliation(s)
- E Heard
- Eukaryotic Gene Organization and Expression Laboratory, Imperial Cancer Research Fund, London, United Kingdom
| | | | | | | |
Collapse
|
13
|
Beitel LK, McArthur JG, Stanners CP. Sequence requirements for the stimulation of gene amplification by a mammalian genomic element. Gene 1991; 102:149-56. [PMID: 1874442 DOI: 10.1016/0378-1119(91)90072-j] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
HSAG-1 is a 3.4-kb genomic element from a human chronic lymphocytic leukemia--Chinese hamster ovary (CHO) hybrid cell line shown to stimulate the amplification of expression vectors in cis when transfected into a variety of cell lines [McArthur and Stanners, J. Biol. Chem. 266 (1991) 6000-6005]. Subfragments of HSAG-1 were tested for amplification activity by insertion into the vector, pSV2DHFR. The results suggest that multiple positive- and negative-acting elements were present that influenced amplification activity. The deletion of regions believed to contain positive-acting elements decreased or abolished the amplification stimulatory activity of the most active 1.45-kb fragment, supporting this hypothesis. The construction of composite sequences containing multiple positive elements and lacking negative elements, however, failed to enhance the activity; maximum activity was obtained only with the original intact configuration of elements. Two of two CHO HSAG-1-like elements tested had an activity equivalent to HSAG-1, while one of 24 random CHO genomic fragments tested had an activity as high as HSAG-1. The combination of sequence and structural features needed to affect the frequency of gene amplification may therefore be quite common in the mammalian genome.
Collapse
Affiliation(s)
- L K Beitel
- Department of Biochemistry and Cancer Centre, McGill University, Montreal, Quebec, Canada
| | | | | |
Collapse
|
14
|
McArthur JG, Beitel LK, Chamberlain JW, Stanners CP. Elements which stimulate gene amplification in mammalian cells: role of recombinogenic sequences/structures and transcriptional activation. Nucleic Acids Res 1991; 19:2477-84. [PMID: 2041783 PMCID: PMC329460 DOI: 10.1093/nar/19.9.2477] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
HSAG-1 is a 3.4 kb mammalian genomic element which has been shown to stimulate the amplification of the pSV2DHFR expression vector in cis when transfected into a variety of cell lines (1). This amplification stimulatory activity requires the interaction of multiple positive acting elements that include sequence features associated with recombination 'hotspots', such as Alu-like repetitive sequences and A/T rich regions (2). We demonstrate here that two other members of the HSAG family of elements, HSAG-2 and HSAG-5, also stimulate vector amplification. By analysis of the HSAG-2 nucleotide sequence and of the amplification activity of HSAG-2 and HSAG-5 subfragments, we show that this activity also involves the interaction of multiple positive acting elements. The autonomous replication of the HSAG containing vectors is not responsible for this effect. We also show that the orientation of HSAG elements in pSV2DHFR has a profound effect on their amplification stimulatory activity, and present evidence that the transcription of these elements in pSV2DHFR is necessary for the effect.
Collapse
Affiliation(s)
- J G McArthur
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
15
|
McArthur JG, Stanners CP. A genetic element that increases the frequency of gene amplification. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(19)67696-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
16
|
Hamlin JL, Leu TH, Vaughn JP, Ma C, Dijkwel PA. Amplification of DNA sequences in mammalian cells. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1991; 41:203-39. [PMID: 1882075 DOI: 10.1016/s0079-6603(08)60010-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- J L Hamlin
- Department of Biochemistry, University of Virginia School of Medicine, Charlottesville 22908
| | | | | | | | | |
Collapse
|
17
|
Hyrien O. Large inverted duplications in amplified DNA of mammalian cells form hairpins in vitro upon DNA extraction but not in vivo. Nucleic Acids Res 1989; 17:9557-69. [PMID: 2602136 PMCID: PMC335197 DOI: 10.1093/nar/17.23.9557] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
I have analysed the duplex-to-hairpin transition of large inverted duplications with a short asymmetric center which are found in the amplified DNA of two mammalian cell lines resistant to cytotoxic drugs. Psoralen crosslinking experiments establish that this transition does not occur in vivo, but takes place in a significant portion of the palindromes during genomic DNA purification, at the phenol-chloroform extraction step. The introduction of single strand nicks in the DNA by gamma irradiation prior to its purification does not prevent hairpin formation but instead facilitates it. These results show that the rate-limiting step of the duplex-to-hairpin transition does not require negative supercoiling, and that transient melting of large segments of cellular DNA occurs during phenol-chloroform extraction. I also show, and discuss the fact, that only cellular DNA, and not cloned palindromic DNA, is able to undergo hairpin formation by this mechanism. These results bear practical implications for the study of inverted repeated DNA sequences in eukaryotic cells.
Collapse
Affiliation(s)
- O Hyrien
- Unité de Génétique Somatique, UA CNRS, Institut Pasteur, Paris, France
| |
Collapse
|
18
|
Stark GR, Debatisse M, Giulotto E, Wahl GM. Recent progress in understanding mechanisms of mammalian DNA amplification. Cell 1989; 57:901-8. [PMID: 2661014 DOI: 10.1016/0092-8674(89)90328-0] [Citation(s) in RCA: 382] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- G R Stark
- Imperial Cancer Research Fund, London, England
| | | | | | | |
Collapse
|