1
|
Abstract
The RAS/MAPK signaling pathway plays key roles in development, cell survival and proliferation, as well as in cancer pathogenesis. Molecular genetic studies have identified a group of developmental syndromes, the RASopathies, caused by germ line mutations in this pathway. The syndromes included within this classification are neurofibromatosis type 1 (NF1), Noonan syndrome (NS), Noonan syndrome with multiple lentigines (NS-ML, formerly known as LEOPARD syndrome), Costello syndrome (CS), cardio-facio-cutaneous syndrome (CFC), Legius syndrome (LS, NF1-like syndrome), capillary malformation-arteriovenous malformation syndrome (CM-AVM), and hereditary gingival fibromatosis (HGF) type 1. Although these syndromes present specific molecular alterations, they are characterized by a large spectrum of functional and morphological abnormalities, which include heart defects, short stature, neurocognitive impairment, craniofacial malformations, and, in some cases, cancer predisposition. The development of genetically modified animals, such as mice (Mus musculus), flies (Drosophila melanogaster), and zebrafish (Danio rerio), has been instrumental in elucidating the molecular and cellular bases of these syndromes. Moreover, these models can also be used to determine tumor predisposition, the impact of different genetic backgrounds on the variable phenotypes found among the patients and to evaluate preventative and therapeutic strategies. Here, we review a wide range of genetically modified mouse models used in the study of RASopathies and the potential application of novel technologies, which hopefully will help us resolve open questions in the field.
Collapse
|
2
|
Misic V, El-Mogy M, Geng S, Haj-Ahmad Y. Effect of endonuclease G depletion on plasmid DNA uptake and levels of homologous recombination in hela cells. Mol Biol 2016. [DOI: 10.1134/s0026893316020175] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
3
|
Abstract
This Perspectives is a review of the breathtaking history of mammalian genetics in the past century and, in particular, of the ways in which genetic thinking has illuminated aspects of mouse development. To illustrate the power of that thinking, selected hypothesis-driven experiments and technical advances are discussed. Also included in this account are the beginnings of mouse genetics at the Bussey Institute, Columbia University, and The Jackson Laboratory and a retrospective discussion of one of the classic problems in developmental genetics, the T/t complex and its genetic enigmas.
Collapse
|
4
|
Takizawa T, Ishikawa T, Kosuge T, Mizuguchi Y, Sato Y, Koji T, Araki Y, Takizawa T. Gene suppression of mouse testis in vivo using small interfering RNA derived from plasmid vectors. Acta Histochem Cytochem 2012; 45:77-81. [PMID: 22489107 PMCID: PMC3317496 DOI: 10.1267/ahc.11024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 10/24/2011] [Indexed: 11/22/2022] Open
Abstract
We evaluated whether inhibiting gene expression by small interfering RNA (siRNA) can be used for an in vivo model using a germ cell-specific gene (Tex101) as a model target in mouse testis. We generated plasmid-based expression vectors of siRNA targeting the Tex101 gene and transfected them into postnatal day 10 mouse testes by in vivo electroporation. After optimizing the electroporation conditions using a vector transfected into the mouse testis, a combination of high- and low-voltage pulses showed excellent transfection efficiency for the vectors with minimal tissue damage, but gene suppression was transient. Gene suppression by in vivo electroporation may be helpful as an alternative approach when designing experiments to unravel the basic role of testicular molecules.
Collapse
Affiliation(s)
- Takami Takizawa
- Department of Molecular Medicine and Anatomy, Nippon Medical School
| | - Tomoko Ishikawa
- Department of Molecular Medicine and Anatomy, Nippon Medical School
| | - Takuji Kosuge
- Department of Molecular Medicine and Anatomy, Nippon Medical School
| | - Yoshiaki Mizuguchi
- Department of Surgery for Organ Function and Biological Regulation, Nippon Medical School
| | - Yoko Sato
- Department of Histology and Cell Biology, Nagasaki University Graduate School of Biomedical Sciences
| | - Takehiko Koji
- Department of Histology and Cell Biology, Nagasaki University Graduate School of Biomedical Sciences
| | - Yoshihiko Araki
- Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine
| | | |
Collapse
|
5
|
Grandjean M, Girod PA, Calabrese D, Kostyrko K, Wicht M, Yerly F, Mazza C, Beckmann JS, Martinet D, Mermod N. High-level transgene expression by homologous recombination-mediated gene transfer. Nucleic Acids Res 2011; 39:e104. [PMID: 21652640 PMCID: PMC3159483 DOI: 10.1093/nar/gkr436] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Gene transfer and expression in eukaryotes is often limited by a number of stably maintained gene copies and by epigenetic silencing effects. Silencing may be limited by the use of epigenetic regulatory sequences such as matrix attachment regions (MAR). Here, we show that successive transfections of MAR-containing vectors allow a synergistic increase of transgene expression. This finding is partly explained by an increased entry into the cell nuclei and genomic integration of the DNA, an effect that requires both the MAR element and iterative transfections. Fluorescence in situ hybridization analysis often showed single integration events, indicating that DNAs introduced in successive transfections could recombine. High expression was also linked to the cell division cycle, so that nuclear transport of the DNA occurs when homologous recombination is most active. Use of cells deficient in either non-homologous end-joining or homologous recombination suggested that efficient integration and expression may require homologous recombination-based genomic integration of MAR-containing plasmids and the lack of epigenetic silencing events associated with tandem gene copies. We conclude that MAR elements may promote homologous recombination, and that cells and vectors can be engineered to take advantage of this property to mediate highly efficient gene transfer and expression.
Collapse
Affiliation(s)
- Mélanie Grandjean
- Laboratory of Molecular Biotechnology, Center for Biotechnology UNIL-EPFL, University of Lausanne, Lausanne, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Affiliation(s)
- Mario R Capecchi
- Howard Hughes Medical Institute, University of Utah School of Medicine, 15 North 2030 East, Room 5440, Salt Lake City, UT 84112-5331, USA
| |
Collapse
|
7
|
Capecchi MR. Gene targeting in mice: functional analysis of the mammalian genome for the twenty-first century. Nat Rev Genet 2005; 6:507-12. [PMID: 15931173 DOI: 10.1038/nrg1619] [Citation(s) in RCA: 469] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Gene targeting in mouse embryonic stem cells has become the 'gold standard' for determining gene function in mammals. Since its inception, this technology has revolutionized the study of mammalian biology and human medicine. Here I provide a personal account of the work that led to the generation of gene targeting which now lies at the centre of functional genomic analysis.
Collapse
Affiliation(s)
- Mario R Capecchi
- Howard Hughes Medical Institute, Department of Human Genetics, University of Utah School of Medicine, 15 North 2030 East, Room 5100, Salt Lake City, Utah 84112-5331, USA.
| |
Collapse
|
8
|
Würtele H, Gusew N, Lussier R, Chartrand P. Characterization of in vivo recombination activities in the mouse embryo. Mol Genet Genomics 2005; 273:252-63. [PMID: 15902491 DOI: 10.1007/s00438-005-1112-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2004] [Accepted: 12/20/2004] [Indexed: 10/25/2022]
Abstract
Homologous recombination makes use of sequence homology to repair DNA and to rearrange genetic material. In mammals, these processes have mainly been characterized using cultured cell systems. We have developed an assay that allows us to quantitatively analyze homologous recombination in vivo in the mouse embryo. Transgenic mouse lines were generated by microinjection into a fertilized mouse ovum of a vector containing two homologous LINE-1 (L1) sequences arranged as a direct repeat: these sequences can recombine with each other and with endogenous L1 sequences before, during or after integration of the vector into the genome. Using a plasmid rescue procedure, we determined the composition of the integrated vector array in several transgenic mice and their descendants. Homologous recombination frequencies were found to be strikingly high, involving 70% of integrated vectors in some arrays, with homologous deletions being five times more frequent than gene conversion without crossing-over. Interestingly, non-homologous recombination was found to be much less frequent. We also found that endogenous L1 sequences could be involved in homologous recombination events in the mouse embryo, and that the integrated arrays could be modified from generation to generation by homologous recombination between the integrated L1 sequences.
Collapse
Affiliation(s)
- Hugo Würtele
- Institute of Research in Immunology and Cancer, Université de Montréal, Pavillon Roger-Gaudry, 2900 Edouard-Montpetit, Montreal, Quebec, Canada H3T 1J4
| | | | | | | |
Collapse
|
9
|
Domínguez-Bendala J, Klein D, Ribeiro M, Ricordi C, Inverardi L, Pastori R, Edlund H. TAT-mediated neurogenin 3 protein transduction stimulates pancreatic endocrine differentiation in vitro. Diabetes 2005; 54:720-6. [PMID: 15734848 DOI: 10.2337/diabetes.54.3.720] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Stem cell technologies hold great potential for the treatment of type 1 diabetes, provided that functional transplantable beta-cells can be selectively generated in an efficient manner. Such a process should recapitulate, at least to a certain extent, the embryonic development of beta-cells in vitro. However, progress at identifying the transcription factors involved in beta-cell development has not been accompanied by a parallel success at unraveling the pattern of their instructive extracellular signals. Here we present proof of principle of a novel approach to circumvent this problem, based on the use of the HIV/TAT protein transduction domain. Neurogenin 3 (ngn3), a factor whose expression is essential for pancreatic endocrine differentiation, was fused to the TAT domain. Administration of TAT/ngn3 to cultured pancreatic explants results in efficient uptake, nuclear translocation, and stimulation of downstream reporter and endogenous genes. Consistent with the predicted activity of the protein, e9.5 and e13.5 mouse pancreatic explants cultured in the presence of TAT/ngn3 show an increased level of endocrine differentiation compared with control samples. Our results raise the possibility of sequentially specifying stem/progenitor cells toward the beta-cell lineage, by using the appropriate sequence and combination of TAT-fused transcription factors.
Collapse
Affiliation(s)
- Juan Domínguez-Bendala
- Diabetes Research Institute, University of Miami School of Medicine, 1450 NW 10th Ave., Miami, FL 33136, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
The lung is a complex organ consisting of numerous cell types that function to ensure sufficient gas exchange to oxygenate the blood. In order to accomplish this function, the lung must be exposed to the external environment and at the same time maintain a homeostatic balance between its function in gas exchange and the maintenance of inflammatory balance. During the past two decades, as molecular methodologies have evolved with the sequencing of entire genomes, the use of in vivo models to elucidate the molecular mechanisms involved in pulmonary physiology and disease have increased. The mouse has emerged as a potent model to investigate pulmonary physiology due to the explosion in molecular methods that now allow for the developmental and tissue-specific regulation of gene transcription. Initial efforts to manipulate gene expression in the mouse genome resulted in the generation of transgenic mice characterized by the constitutive expression of a specific gene and knockout mice characterized by the ablation of a specific gene. The utility of these original mouse models was limited, in many cases, by phenotypes resulting in embryonic or neonatal lethality that prevented analysis of the impact of the genetic manipulation on pulmonary biology. Second-generation transgenic mouse models employ multiple strategies that can either activate or silence gene expression thereby providing extensive temporal and spatial control of the experimental parameters of gene expression. These highly regulated mouse models are intended to serve as a foundation for further investigation of the molecular basis of human disease such as tumorigenesis. This review describes the principles, progress, and application of systems that are currently employed in the conditional regulation of gene expression in the investigation of lung cancer.
Collapse
Affiliation(s)
- I Kwak
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | |
Collapse
|
11
|
Abstract
Foreign DNA integration is one of the most widely exploited cellular processes in molecular biology. Its technical use permits us to alter a cellular genome by incorporating a fragment of foreign DNA into the chromosomal DNA. This process employs the cell's own endogenous DNA modification and repair machinery. Two main classes of integration mechanisms exist: those that draw on sequence similarity between the foreign and genomic sequences to carry out homology-directed modifications, and the nonhomologous or 'illegitimate' insertion of foreign DNA into the genome. Gene therapy procedures can result in illegitimate integration of introduced sequences and thus pose a risk of unforeseeable genomic alterations. The choice of insertion site, the degree to which the foreign DNA and endogenous locus are modified before or during integration, and the resulting impact on structure, expression, and stability of the genome are all factors of illegitimate DNA integration that must be considered, in particular when designing genetic therapies.
Collapse
Affiliation(s)
- H Würtele
- Programme de Biologie Moléculaire, Université de Montréal, Montréal, Canada
| | | | | |
Collapse
|
12
|
Domínguez-Bendala J, Priddle H, Clarke A, McWhir J. Elevated expression of exogenous Rad51 leads to identical increases in gene-targeting frequency in murine embryonic stem (ES) cells with both functional and dysfunctional p53 genes. Exp Cell Res 2003; 286:298-307. [PMID: 12749858 DOI: 10.1016/s0014-4827(03)00111-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The Rad51 gene is the mammalian homologue of the bacterial RecA gene and catalyses homologous recombination in mammalian cells. In some cell types Rad51 has been shown to interact with p53, leading to inhibition of Rad51 activity. Here, we show a two- to four-fold increase in gene-targeting frequency at the HPRT locus using murine ES clones preengineered to overexpress Rad51, and a twofold increase in targeting frequency when a Rad51 expression cassette was cointroduced to wild-type ES cells with the targeting construct. In addition to its effect on homologous recombination, we show that Rad51 may down-regulate illegitimate recombination. We investigated the dependence of these phenomena upon p53 and found no evidence that the Rad 51-mediated increase is affected by the functional status of p53, a conclusion supported by the observed cytoplasmic localisation of p53 in ES cells following electroporation. Furthermore, in the absence of additional Rad51, p53-deficient ES cells do not have elevated rates of homologous recombination with extrachromosomal DNA. These findings demonstrate that Rad51 levels modify both homologous and illegitimate recombination, but that these phenomena are independent of p53 status.
Collapse
|
13
|
Bockamp E, Maringer M, Spangenberg C, Fees S, Fraser S, Eshkind L, Oesch F, Zabel B. Of mice and models: improved animal models for biomedical research. Physiol Genomics 2002; 11:115-32. [PMID: 12464688 DOI: 10.1152/physiolgenomics.00067.2002] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The ability to engineer the mouse genome has profoundly transformed biomedical research. During the last decade, conventional transgenic and gene knockout technologies have become invaluable experimental tools for modeling genetic disorders, assigning functions to genes, evaluating drugs and toxins, and by and large helping to answer fundamental questions in basic and applied research. In addition, the growing demand for more sophisticated murine models has also become increasingly evident. Good state-of-principle knowledge about the enormous potential of second-generation conditional mouse technology will be beneficial for any researcher interested in using these experimental tools. In this review we will focus on practice, pivotal principles, and progress in the rapidly expanding area of conditional mouse technology. The review will also present an internet compilation of available tetracycline-inducible mouse models as tools for biomedical research (http://www.zmg.uni-mainz.de/tetmouse/).
Collapse
Affiliation(s)
- Ernesto Bockamp
- Laboratory of Molecular Mouse Genetics, Institute of Toxicology, Johannes Gutenberg-University Mainz, D-55131 Mainz, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Babinet C, Cohen-Tannoudji M. Genome engineering via homologous recombination in mouse embryonic stem (ES) cells: an amazingly versatile tool for the study of mammalian biology. AN ACAD BRAS CIENC 2001; 73:365-83. [PMID: 11600898 DOI: 10.1590/s0001-37652001000300007] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The ability to introduce genetic modifications in the germ line of complex organisms has been a long-standing goal of those who study developmental biology. In this regard, the mouse, a favorite model for the study of the mammals, is unique: indeed not only is it possible since the late seventies, to add genes to the mouse genome like in several other complex organisms but also to perform gene replacement and modification. This has been made possible via two technological breakthroughs: 1) the isolation and culture of embryonic stem cells (ES), which have the unique ability to colonize all the tissues of an host embryo including its germ line; 2) the development of methods allowing homologous recombination between an incoming DNA and its cognate chromosomal sequence (gene "targeting"). As a result, it has become possible to create mice bearing null mutations in any cloned gene (knock-out mice). Such a possibility has revolutionized the genetic approach of almost all aspects of the biology of the mouse. In recent years, the scope of gene targeting has been widened even more, due to the refinement of the knock-out technology: other types of genetic modifications may now be created, including subtle mutations (point mutations, micro deletions or insertions, etc.) and chromosomal rearrangements such as large deletions, duplications and translocations. Finally, methods have been devised which permit the creation of conditional mutations, allowing the study of gene function throughout the life of an animal, when gene inactivation entails embryonic lethality. In this paper, we present an overview of the methods and scenarios used for the programmed modification of mouse genome, and we underline their enormous interest for the study of mammalian biology.
Collapse
Affiliation(s)
- C Babinet
- Unité de Biologie du Développement, Institut Pasteur, CNRS URA 1960, Paris, France.
| | | |
Collapse
|
15
|
Tacken PJ, van der Zee A, Beumer TL, Florijn RJ, Gijpels MJ, Havekes LM, Frants RR, van Dijk KW, Hofker MH. Effective generation of very low density lipoprotein receptor transgenic mice by overlapping genomic DNA fragments: high testis expression and disturbed spermatogenesis. Transgenic Res 2001; 10:211-21. [PMID: 11437278 DOI: 10.1023/a:1016682520887] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The generation of functional transgenes via microinjection of overlapping DNA fragments has previously been reported to be successful, but it is still not a widely applied approach. Here we show that the method is very reliable, and should be considered, in case a single large insert clone of the desired gene is not available. In the present study, two large DNA fragments consisting of overlapping cosmids, together constituting the human very low density lipoprotein receptor (VLDLR) gene (35 kb), were used to generate VLDLR transgenic (VLDLR-Tg) mice. Three transgenic founders were born, of which two (strain #2 and #3) generated transgenic offspring. Using Fiber-FISH analysis, the integration site was shown to contain at least 44 and 64 DNA fragments in mouse strains #2 and #3, respectively. This copy number resulted in integration sites of 1.5 and 2.5 megabase in size. Notably, over 90% of the fragments in both mouse strains #2 and #3 were flanked by their complementary fragment. In line with this observation, Southern blot analysis demonstrated that the correct recombination between fragments predominated in the transgenic insertion. Human VLDLR expression was detected in testis, kidney and brain of both mouse strains. Since this pattern did not parallel the endogenous VLDLR expression, some crucial regulatory elements were probably not present in the cosmid clones. Human VLDLR expression in testis was detected in germ cells up to the meiotic stage by in situ mRNA analysis. Remarkably, in the F1 generation of both VLDLR-Tg mouse strains the testis was atrophic and giant cells were detected in the semineferous tubuli. Furthermore, male VLDLR-Tg mice transmitted the transgene to their progeny with low frequencies. This could imply that VLDLR overexpression in the germ cells disturbed spermatogenesis.
Collapse
Affiliation(s)
- P J Tacken
- Department of Human and Clinical Genetics, Leiden University Medical Center, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Semionov A, Cournoyer D, Chow TY. Transient expression of Saccharomyces cerevisiae endo-exonuclease NUD1 gene increases the frequency of extrachromosomal homologous recombination in mouse Ltk- fibroblasts. Mutat Res 1999; 435:129-39. [PMID: 10556593 DOI: 10.1016/s0921-8777(99)00038-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Endo-exonucleases (EEs) are nucleolytic enzymes which have been shown to participate in the processes of DNA repair and recombination in eukaryotes. Recently, we have demonstrated that transient expression of Saccharomyces cerevisiae EE NUD1 gene in HeLa cells increased the resistance of the latter to ionizing radiation and cisplatin, suggesting the involvement of the NUD1 gene product in the recombination repair of double-strand breaks (DSB). Here, we report that transient expression of NUD1 results in up to 62% increase in the frequency of homologous recombination between two co-transfected linear plasmids in mouse Ltk- cells.
Collapse
Affiliation(s)
- A Semionov
- Departments of Oncology and Medicine, Faculty of Medicine, McGill University and Montreal General Hospital, 1650 Avenue Cedar, Montreal, Quebec, Canada
| | | | | |
Collapse
|
17
|
Francès V, Bastin M. Gene targeting in rat embryo fibroblasts promoted by the polyomavirus large T antigen. Nucleic Acids Res 1996; 24:1999-2004. [PMID: 8668528 PMCID: PMC145918 DOI: 10.1093/nar/24.11.1999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We used the recombination-promoting activity of the polyomavirus large T antigen (T-ag) to increase the frequency of gene targeting in rat fibroblasts. We constructed a cell line carrying a functional polyomavirus replication origin and a transformation-defective middle T-ag oncogene. The structure of the locus was such that homologous recombination with the targeting DNA reconstituted a functional transforming gene and converted the cells from the normal to the transformed state. Introduction of the large T-ag with the targeting DNA promoted recombinational events that corrected the mutation in either the target locus or the targeting DNA. The frequency of recombination was not substantially influenced by the extent of homology between the recombining sequences. However, it was reduced when the replication origin was inactivated in the targeting DNA, and was reduced further when the origin was inactivated in the target locus.
Collapse
Affiliation(s)
- V Francès
- Department of Biochemistry, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | | |
Collapse
|
18
|
Burke JF, Mogg AE. UV-stimulated recombination in mammalian cells is not dependent upon DNA replication. Mutat Res 1993; 294:309-15. [PMID: 7692270 DOI: 10.1016/0921-8777(93)90013-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The ability of UV light to stimulate recombination between viruses in mammalian cells is well established. Here we provide evidence that UV can also stimulate recombination between irradiated plasmids transfected into mammalian COS-7 cells. As the plasmids used, pSVOcat and pRSVcat(amb38), are incapable of replication in mammalian cells it is likely that the stimulatory effect of UV on recombination is due to a direct effect on the DNA rather than a consequence of the accumulation of nicked and gapped DNA-replication intermediates.
Collapse
Affiliation(s)
- J F Burke
- Biochemistry Laboratory, School of Biological Sciences, University of Sussex, Falmer, Brighton, UK
| | | |
Collapse
|
19
|
Aratani Y, Okazaki R, Koyama H. End extension repair of introduced targeting vectors mediated by homologous recombination in mammalian cells. Nucleic Acids Res 1992; 20:4795-801. [PMID: 1408793 PMCID: PMC334234 DOI: 10.1093/nar/20.18.4795] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We have studied the mechanism of targeted recombination in mammalian cells using a hemizygous adenine phosphoribosyltransferase-deficient (APRT-) Chinese hamster ovary (CHO) cell mutant as a recipient. Three structurally different targeting vectors with a 5' or a 3', or both, end-deleted aprt sequence, in either a closed-circular or linear form, were transfected to the cells with a mutated aprt gene by electroporation. APRT-positive (APRT+) recombinant clones were selected and analyzed to study the gene correction events of the deletion mutation. Some half of 58 recombinant clones obtained resulted from corrections of the deleted chromosomal aprt gene by either gene replacement or gene insertion, a mechanism which is currently accepted for homologous recombination in mammalian cells. However, the chromosomal sequence in the remaining half of the recombinants remained uncorrected but their truncated end of the aprt gene in the incoming vectors was corrected by extending the end beyond the region of homology to the target locus; the corrected vector was then randomly integrated into the genome. This extension, termed end extension repair, was observed with all three vectors used and was as far as 4.6-kilobase (kb) or more long. It is evident that the novel repair reaction mediated by homologous recombination, in addition to gene replacement and gene insertion, is also involved in gene correction events in mammalian cells. We discuss the model which may account for this phenomenon.
Collapse
Affiliation(s)
- Y Aratani
- Kihara Institute for Biological Research, Yokohama City University, Japan
| | | | | |
Collapse
|
20
|
Waldren C, Braaton M, Vannais D, Fouladi B, Parker RD. The use of human repetitive DNA to target selectable markers into only the human chromosome of a human-hamster hybrid cell line (AL). SOMATIC CELL AND MOLECULAR GENETICS 1992; 18:417-22. [PMID: 1475708 DOI: 10.1007/bf01233081] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We used the plasmid BLUR-8 that contains an 800-base pair (bp) sequence of human repetitive Alu DNA in a cotransfection protocol to target the plasmids pSV2neo or EBO-pcD-leu-2 (hygro) into a single site of the sole human chromosome, number 11, of a Chinese hamster-human hybrid cell line (AL). The neo and hygro plasmids confer resistance to the antibiotics G418 and hygromycin, respectively. Of the 33 cotransfected clones with single-site insertions, 1/13 without BLUR-8 and 6/20 with BLUR-8 were only in human chromosome 11. A frequency of insertion of 1/13 is not different than expected by chance (rho = 0.3512). On the other hand, the probability that 6/20 insertions, as seen with BLUR-8, occurred by chance is low (rho = 0.0003). We suggest that the human DNA sequences contained in BLUR-8 targeted insertions into only the human chromosome.
Collapse
Affiliation(s)
- C Waldren
- Radiological Health Sciences, Colorado State University, Fort Collins 80523
| | | | | | | | | |
Collapse
|
21
|
Pieper FR, de Wit IC, Pronk AC, Kooiman PM, Strijker R, Krimpenfort PJ, Nuyens JH, de Boer HA. Efficient generation of functional transgenes by homologous recombination in murine zygotes. Nucleic Acids Res 1992; 20:1259-64. [PMID: 1561082 PMCID: PMC312167 DOI: 10.1093/nar/20.6.1259] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
To assess the feasibility of generating functional transgenes directly via homologous recombination between microinjected DNA fragments, three overlapping genomic DNA fragments, together constituting the human serum albumin (hSA) gene, were coinjected into murine zygotes. The resulting transgenic mice were analyzed for structure and expression of the transgene. All transgenic mice carried recombined hSA DNA fragments and 74% contained a reconstituted hSA gene. HSA expression could be detected in liver and serum in most (72%) of these animals. Only correctly sized hSA transcripts were observed. Transgenic hSA could not be distinguished from the human serum-derived protein by radioimmunoassay or Western blotting. The high frequency and accuracy of homologous recombination in murine zygotes reported here allows the efficient generation of relatively large transgenes.
Collapse
Affiliation(s)
- F R Pieper
- GenePharming Europe B.V., Leiden University, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Single-stranded DNA as a recombination substrate in plants as assessed by stable and transient recombination assays. Mol Cell Biol 1992. [PMID: 1729608 DOI: 10.1128/mcb.12.1.329] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two separate assays, one that requires stable integration of recombination products and one that does not, were employed to elucidate the role of single-stranded DNA in extrachromosomal homologous recombination in Nicotiana tabacum. Both assays revealed that single-stranded DNA in linear and in circular forms was an efficient substrate for recombination, provided that the cotransformed recombination substrates were of complementary sequence, so that direct annealing was possible. Recombination was inefficient when both single-stranded recombination partners contained homologous regions of identical sequence and generation of a double-stranded DNA was required prior to heteroduplex formation. These results indicate that direct annealing of single strands is an important initial step for intermolecular recombination in tobacco cells. Annealed cotransformed single-stranded molecules yielded intermediates that could be further processed by either continuous or discontinuous second-strand synthesis. The type of intermediate had no influence on the recombination efficiency. Double-stranded circles were unable to recombine efficiently either with each other or with single-stranded DNA. Our results suggest that a helicase activity is involved in the initial steps of double-stranded DNA recombination which unwinds duplex molecules at the site of double-strand breaks.
Collapse
|
23
|
Bilang R, Peterhans A, Bogucki A, Paszkowski J. Single-stranded DNA as a recombination substrate in plants as assessed by stable and transient recombination assays. Mol Cell Biol 1992; 12:329-36. [PMID: 1729608 PMCID: PMC364113 DOI: 10.1128/mcb.12.1.329-336.1992] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Two separate assays, one that requires stable integration of recombination products and one that does not, were employed to elucidate the role of single-stranded DNA in extrachromosomal homologous recombination in Nicotiana tabacum. Both assays revealed that single-stranded DNA in linear and in circular forms was an efficient substrate for recombination, provided that the cotransformed recombination substrates were of complementary sequence, so that direct annealing was possible. Recombination was inefficient when both single-stranded recombination partners contained homologous regions of identical sequence and generation of a double-stranded DNA was required prior to heteroduplex formation. These results indicate that direct annealing of single strands is an important initial step for intermolecular recombination in tobacco cells. Annealed cotransformed single-stranded molecules yielded intermediates that could be further processed by either continuous or discontinuous second-strand synthesis. The type of intermediate had no influence on the recombination efficiency. Double-stranded circles were unable to recombine efficiently either with each other or with single-stranded DNA. Our results suggest that a helicase activity is involved in the initial steps of double-stranded DNA recombination which unwinds duplex molecules at the site of double-strand breaks.
Collapse
Affiliation(s)
- R Bilang
- Institute of Plant Sciences, Swiss Federal Institute of Technology, ETH Zentrum, Zürich
| | | | | | | |
Collapse
|
24
|
Target frequency and integration pattern for insertion and replacement vectors in embryonic stem cells. Mol Cell Biol 1991. [PMID: 1875936 DOI: 10.1128/mcb.11.9.4509] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gene targeting has been used to direct mutations into specific chromosomal loci in murine embryonic stem (ES) cells. The altered locus can be studied in vivo with chimeras and, if the mutated cells contribute to the germ line, in their offspring. Although homologous recombination is the basis for the widely used gene targeting techniques, to date, the mechanism of homologous recombination between a vector and the chromosomal target in mammalian cells is essentially unknown. Here we look at the nature of gene targeting in ES cells by comparing an insertion vector with replacement vectors that target hprt. We found that the insertion vector targeted up to ninefold more frequently than a replacement vector with the same length of homologous sequence. We also observed that the majority of clones targeted with replacement vectors did not recombine as predicted. Analysis of the recombinant structures showed that the external heterologous sequences were often incorporated into the target locus. This observation can be explained by either single reciprocal recombination (vector insertion) of a recircularized vector or double reciprocal recombination/gene conversion (gene replacement) of a vector concatemer. Thus, single reciprocal recombination of an insertion vector occurs 92-fold more frequently than double reciprocal recombination of a replacement vector with crossover junctions on both the long and short arms.
Collapse
|
25
|
Hasty P, Rivera-Pérez J, Chang C, Bradley A. Target frequency and integration pattern for insertion and replacement vectors in embryonic stem cells. Mol Cell Biol 1991; 11:4509-17. [PMID: 1875936 PMCID: PMC361323 DOI: 10.1128/mcb.11.9.4509-4517.1991] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Gene targeting has been used to direct mutations into specific chromosomal loci in murine embryonic stem (ES) cells. The altered locus can be studied in vivo with chimeras and, if the mutated cells contribute to the germ line, in their offspring. Although homologous recombination is the basis for the widely used gene targeting techniques, to date, the mechanism of homologous recombination between a vector and the chromosomal target in mammalian cells is essentially unknown. Here we look at the nature of gene targeting in ES cells by comparing an insertion vector with replacement vectors that target hprt. We found that the insertion vector targeted up to ninefold more frequently than a replacement vector with the same length of homologous sequence. We also observed that the majority of clones targeted with replacement vectors did not recombine as predicted. Analysis of the recombinant structures showed that the external heterologous sequences were often incorporated into the target locus. This observation can be explained by either single reciprocal recombination (vector insertion) of a recircularized vector or double reciprocal recombination/gene conversion (gene replacement) of a vector concatemer. Thus, single reciprocal recombination of an insertion vector occurs 92-fold more frequently than double reciprocal recombination of a replacement vector with crossover junctions on both the long and short arms.
Collapse
Affiliation(s)
- P Hasty
- Institute for Molecular Genetics, Baylor College of Medicine, Houston, Texas 77030
| | | | | | | |
Collapse
|
26
|
Puchta H, Hohn B. A transient assay in plant cells reveals a positive correlation between extrachromosomal recombination rates and length of homologous overlap. Nucleic Acids Res 1991; 19:2693-700. [PMID: 2041745 PMCID: PMC328188 DOI: 10.1093/nar/19.10.2693] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
An assay to monitor homologous recombination in plant cells has been established by cotransfecting Nicotiana plumbaginifolia protoplasts with different topological forms of plasmids of various deletion mutants of a non-selectable marker gene, the beta-glucuronidase (GUS) gene. Transient GUS enzyme activities were measured by a sensitive assay. In the nuclear DNA of the cotransfected protoplasts the recombined complete GUS gene could be detected by a specially modified PCR analysis. In comparison to the standard assay, which monitors homologous recombination by integration of a selectable marker, the described assay avoids position effects of gene expression, is fast, easy to handle and large numbers of samples can be processed simultaneously. We were able to demonstrate a positive correlation between the length of overlapping homology (up to 1200 base pairs) of the transfected supercoiled circular or linearized plasmids and the respective GUS activities. We found a significant drop in the recombination rates when the overlap of both substrates was reduced to 456 basepairs or less. The requirement for such a long stretch of homology for efficient recombination might ensure the stability of the rather repetitive plant genome.
Collapse
Affiliation(s)
- H Puchta
- Friedrich Miescher-Institut, Basel, Switzerland
| | | |
Collapse
|
27
|
Boggs SS. Targeted gene modification for gene therapy of stem cells. INTERNATIONAL JOURNAL OF CELL CLONING 1990; 8:80-96. [PMID: 1968938 DOI: 10.1002/stem.5530080202] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Ideally, gene therapy would correct the specific gene defect without adding potentially harmful extraneous DNA sequences. Such correction can be obtained with homologous recombination between input DNA sequences and identical (homologous) sequences in the genomic target gene. The development of techniques for obtaining virtually pure populations of hematopoietic stem cells should permit the use of the highly efficient nuclear microinjection methods for transfer of DNA. These techniques combined with new highly sensitive methods for detecting cells with the specified genetic modification of nonexpressed genes would make homologous recombination-mediated gene therapy feasible for hematopoietic stem cells. These advances are reviewed with particular emphasis on approaches to targeted gene modification of hematopoietic stem cells and speculation on directions for future research.
Collapse
Affiliation(s)
- S S Boggs
- Department of Radiation Oncology, University of Pittsburgh School of Medicine, Pennsylvania
| |
Collapse
|
28
|
Homologous recombination between coinjected DNA sequences peaks in early to mid-S phase. Mol Cell Biol 1987. [PMID: 3600663 DOI: 10.1128/mcb.7.6.2294] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have examined the effect of cell cycle position on homologous recombination between plasmid molecules coinjected into synchronized rat fibroblasts. Recombination activity was found to be low in G1 and to rise 10- to 15-fold, peaking in early to mid-S phase.
Collapse
|
29
|
Wong EA, Capecchi MR. Homologous recombination between coinjected DNA sequences peaks in early to mid-S phase. Mol Cell Biol 1987; 7:2294-5. [PMID: 3600663 PMCID: PMC365354 DOI: 10.1128/mcb.7.6.2294-2295.1987] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
We have examined the effect of cell cycle position on homologous recombination between plasmid molecules coinjected into synchronized rat fibroblasts. Recombination activity was found to be low in G1 and to rise 10- to 15-fold, peaking in early to mid-S phase.
Collapse
|
30
|
Rubnitz J, Subramani S. Correction of deletions in mammalian cells by gene conversion. SOMATIC CELL AND MOLECULAR GENETICS 1987; 13:183-90. [PMID: 3299746 DOI: 10.1007/bf01535201] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We have constructed substrates to study the conversion of deletions in mammalian cells both extrachromosomally and after the stable integration of the substrates into the chromosome. These substrates were designed to study gene conversion without the complication of reciprocal recombination events. The substrates contain insertion or deletion mutations of the neomycin resistance gene (neo) and an internal, homologous fragment of the neo gene (neo-526), such that gene conversion from neo-526 to the mutated neo gene restores a functional neo gene. We have shown that extrachromosomally insertions of 10 bp or deletions of 22 or 167 bp are converted to wild-type at similar frequencies (1-6 X 10(-4)). Chromosomal gene conversion occurred at frequencies of about 10(-6)-10(-7) per cell generation. As expected from the experimental design, all recombination events analyzed in mammalian cells using these substrates appear to be due to gene conversion.
Collapse
|