1
|
Vallesi A, Sjödin A, Petrelli D, Luporini P, Taddei AR, Thelaus J, Öhrman C, Nilsson E, Di Giuseppe G, Gutiérrez G, Villalobo E. A New Species of the γ-Proteobacterium Francisella, F. adeliensis Sp. Nov., Endocytobiont in an Antarctic Marine Ciliate and Potential Evolutionary Forerunner of Pathogenic Species. MICROBIAL ECOLOGY 2019; 77:587-596. [PMID: 30187088 DOI: 10.1007/s00248-018-1256-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 08/29/2018] [Indexed: 06/08/2023]
Abstract
The study of the draft genome of an Antarctic marine ciliate, Euplotes petzi, revealed foreign sequences of bacterial origin belonging to the γ-proteobacterium Francisella that includes pathogenic and environmental species. TEM and FISH analyses confirmed the presence of a Francisella endocytobiont in E. petzi. This endocytobiont was isolated and found to be a new species, named F. adeliensis sp. nov.. F. adeliensis grows well at wide ranges of temperature, salinity, and carbon dioxide concentrations implying that it may colonize new organisms living in deeply diversified habitats. The F. adeliensis genome includes the igl and pdp gene sets (pdpC and pdpE excepted) of the Francisella pathogenicity island needed for intracellular growth. Consistently with an F. adeliensis ancient symbiotic lifestyle, it also contains a single insertion-sequence element. Instead, it lacks genes for the biosynthesis of essential amino acids such as cysteine, lysine, methionine, and tyrosine. In a genome-based phylogenetic tree, F. adeliensis forms a new early branching clade, basal to the evolution of pathogenic species. The correlations of this clade with the other clades raise doubts about a genuine free-living nature of the environmental Francisella species isolated from natural and man-made environments, and suggest to look at F. adeliensis as a pioneer in the Francisella colonization of eukaryotic organisms.
Collapse
Affiliation(s)
- Adriana Vallesi
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032, Camerino, MC, Italy.
| | - Andreas Sjödin
- Department of Chemistry, Computational Life Science Cluster (CLiC), Umeå University, Umeå, Sweden
- Division of CBRN Defence and Security, Swedish Defence Research Agency, FOI, Umeå, Sweden
| | - Dezemona Petrelli
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032, Camerino, MC, Italy
| | - Pierangelo Luporini
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032, Camerino, MC, Italy
| | - Anna Rita Taddei
- Center of Large Equipment-section of Electron Microscopy, University of Tuscia, Largo dell'Università, snc, Viterbo, Italy
| | - Johanna Thelaus
- Division of CBRN Defence and Security, Swedish Defence Research Agency, FOI, Umeå, Sweden
| | - Caroline Öhrman
- Division of CBRN Defence and Security, Swedish Defence Research Agency, FOI, Umeå, Sweden
| | - Elin Nilsson
- Division of CBRN Defence and Security, Swedish Defence Research Agency, FOI, Umeå, Sweden
| | | | - Gabriel Gutiérrez
- Departamento de Genética, Universidad de Sevilla, Av Reina Mercedes 6, 41012, Seville, Spain
| | - Eduardo Villalobo
- Departamento de Microbiología, Universidad de Sevilla, Av Reina Mercedes 6, 41012, Seville, Spain.
| |
Collapse
|
2
|
The two chorismate mutases from both Mycobacterium tuberculosis and Mycobacterium smegmatis: biochemical analysis and limited regulation of promoter activity by aromatic amino acids. J Bacteriol 2007; 190:122-34. [PMID: 17965159 DOI: 10.1128/jb.01332-07] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chorismate mutase (CM) catalyzes the rearrangement of chorismate to prephenate in the biosynthetic pathway that forms phenylalanine and tyrosine in bacteria, fungi, plants, and apicomplexan parasites. Since this enzyme is absent from mammals, it represents a promising target for the development of new antimycobacterial drugs, which are needed to combat Mycobacterium tuberculosis, the causative agent of tuberculosis. Until recently, two putative open reading frames (ORFs), Rv0948c and Rv1885c, showing low sequence similarity to CMs have been described as "conserved hypothetical proteins" in the M. tuberculosis genome. However, we and others demonstrated that these ORFs are in fact monofunctional CMs of the AroQ structural class and that they are differentially localized in the mycobacterial cell. Since homologues to the M. tuberculosis enzymes are also present in Mycobacterium smegmatis, we cloned the coding sequences corresponding to ORFs MSMEG5513 and MSMEG2114 from the latter. The CM activities of both ORFs was determined, as well as their translational start sites. In addition, we analyzed the promoter activities of three M. tuberculosis loci related to phenylalanine and tyrosine biosynthesis under a variety of conditions using M. smegmatis as a surrogate host. Our results indicate that the aroQ (Rv0948c), *aroQ (Rv1885c), and fbpB (Rv1886c) genes from M. tuberculosis are constitutively expressed or subjected to minor regulation by aromatic amino acids levels, especially tryptophan.
Collapse
|
3
|
Bonvin J, Aponte RA, Marcantonio M, Singh S, Christendat D, Turnbull JL. Biochemical characterization of prephenate dehydrogenase from the hyperthermophilic bacterium Aquifex aeolicus. Protein Sci 2006; 15:1417-32. [PMID: 16731976 PMCID: PMC2265095 DOI: 10.1110/ps.051942206] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2005] [Revised: 03/01/2006] [Accepted: 03/01/2006] [Indexed: 10/24/2022]
Abstract
A monofunctional prephenate dehydrogenase (PD) from Aquifex aeolicus was expressed as a His-tagged protein in Escherichia coli and was purified by nickel affinity chromatography allowing the first biochemical and biophysical characterization of a thermostable PD. A. aeolicus PD is susceptible to proteolysis. In this report, the properties of the full-length PD are compared with one of these products, an N-terminally truncated protein variant (Delta19PD) also expressed recombinantly in E. coli. Both forms are dimeric and show maximum activity at 95 degrees C or higher. Delta19PD is more sensitive to temperature effects yielding a half-life of 55 min at 95 degrees C versus 2 h for PD, and values of kcat and Km for prephenate, which are twice those determined for PD at 80 degrees C. Low concentrations of guanidine-HCl activate enzyme activity, but at higher concentrations activity is lost concomitant with a multi-state pathway of denaturation that proceeds through unfolding of the dimer, oligomerization, then unfolding of monomers. Measurements of steady-state fluorescence intensity and its quenching by acrylamide in the presence of Gdn-HCl suggest that, of the two tryptophan residues per monomer, one is buried in a hydrophobic pocket and does not become solvent exposed until the protein unfolds, while the less buried tryptophan is at the active site. Tyrosine is a feedback inhibitor of PD activity over a wide temperature range and enhances the cooperativity between subunits in the binding of prephenate. Properties of this thermostable PD are compared and contrasted with those of E. coli chorismate mutase-prephenate dehydrogenase and other mesophilic homologs.
Collapse
Affiliation(s)
- Julie Bonvin
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | | | | | | | | | | |
Collapse
|
4
|
Porat I, Waters BW, Teng Q, Whitman WB. Two biosynthetic pathways for aromatic amino acids in the archaeon Methanococcus maripaludis. J Bacteriol 2004; 186:4940-50. [PMID: 15262931 PMCID: PMC451642 DOI: 10.1128/jb.186.15.4940-4950.2004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Methanococcus maripaludis is a strictly anaerobic, methane-producing archaeon. Aromatic amino acids (AroAAs) are biosynthesized in this autotroph either by the de novo pathway, with chorismate as an intermediate, or by the incorporation of exogenous aryl acids via indolepyruvate oxidoreductase (IOR). In order to evaluate the roles of these pathways, the gene that encodes the third step in the de novo pathway, 3-dehydroquinate dehydratase (DHQ), was deleted. This mutant required all three AroAAs for growth, and no DHQ activity was detectible in cell extracts, compared to 6.0 +/- 0.2 mU mg(-1) in the wild-type extract. The growth requirement for the AroAAs could be fulfilled by the corresponding aryl acids phenylacetate, indoleacetate, and p-hydroxyphenylacetate. The specific incorporation of phenylacetate into phenylalanine by the IOR pathway was demonstrated in vivo by labeling with [1-(13)C]phenylacetate. M. maripaludis has two IOR homologs. A deletion mutant for one of these homologs contained 76, 74, and 42% lower activity for phenylpyruvate, p-hydoxyphenylpyruvate, and indolepyruvate oxidation, respectively, than the wild type. Growth of this mutant in minimal medium was inhibited by the aryl acids, but the AroAAs partially restored growth. Genetic complementation of the IOR mutant also restored much of the wild-type phenotype. Thus, aryl acids appear to regulate the expression or activity of the de novo pathway. The aryl acids did not significantly inhibit the activity of the biosynthetic enzymes chorismate mutase, prephenate dehydratase, and prephenate dehydrogenase in cell extracts, so the inhibition of growth was probably not due to an effect on these enzymes.
Collapse
Affiliation(s)
- Iris Porat
- Department of Microbiology, University of Georgia, Athens, GA 30602-2605, USA
| | | | | | | |
Collapse
|
5
|
Gu W, Williams DS, Aldrich HC, Xie G, Gabriel DW, Jensen RA. The aroQ and pheA domains of the bifunctional P-protein from Xanthomonas campestris in a context of genomic comparison. MICROBIAL & COMPARATIVE GENOMICS 1998; 2:141-58. [PMID: 9689222 DOI: 10.1089/omi.1.1997.2.141] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The gene (denoted aroQp.pheA) encoding the bifunctional P-protein (chorismate mutase-P/prephenate dehydratase) from Xanthomonas campestris was cloned. aroQp.pheA is essential for L-phenylalanine biosynthesis. DNA sequencing of the smallest subclone capable of functional complementation of an Escherichia coli phenylalanine auxotroph revealed a putative open reading frame (ORF) of 1200 bp that would encode a 43,438-Da protein. AroQp.PheA exhibited 51% amino acid identity with a Pseudomonas stutzeri homologoue and greater than 30% identities with AroQp.PheA proteins from Haemophilus influenzae, Neisseria gonorrhoeae, and a number of enteric bacteria. AroQp.PheA from X. campestris, when expressed in E. coli, possesses a 40-residue amino-terminal extension that is lysine-rich and that is absent in all of the AroQp.PheA homologues known at present. About 95% of AroQp.PheA was particulate and readily sedimented by low-speed centrifugation. Soluble preparations of cloned AroQp.PheA exhibited a native molecular mass of 81,000 Da, indicating that the active enzyme species is a homodimer. These preparations were unstable after purification of about 40-fold, even in the presence of glycerol, which was an effective protectant before fractionation. When AroQp.PheA was overproduced by a T7 translation vector, unusual inclusion bodies having a macromolecular structure consisting of protein fibrils were observed by electron microscopy. Insoluble protein collected at low-speed centrifugation possessed high catalytic activity. The single band obtained via SDS-PAGE was used to confirm the translational start via N-terminal amino acid sequencing. A perspective on the evolutionary relationships of monofunctional AroQ and PheA proteins and the AroQp.PheA family of proteins is presented. A serC gene located immediately upstream of X. campestris aroQp.pheA appears to reflect a conserved gene organization, and both may belong to a single transcriptional unit.
Collapse
Affiliation(s)
- W Gu
- Department of Microbiology and Cell Science, University of Florida, Gainesville, USA
| | | | | | | | | | | |
Collapse
|
6
|
Romero R, Roberts M, Phillipson J. Chorismate mutase in microorganisms and plants. PHYTOCHEMISTRY 1995; 40:1015-1025. [PMID: 0 DOI: 10.1016/0031-9422(95)00408-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
|
7
|
Graf R, Dubaquié Y, Braus GH. Modulation of the allosteric equilibrium of yeast chorismate mutase by variation of a single amino acid residue. J Bacteriol 1995; 177:1645-8. [PMID: 7883726 PMCID: PMC176788 DOI: 10.1128/jb.177.6.1645-1648.1995] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Chorismate mutase (EC 5.4.99.5) from the yeast Saccharomyces cerevisiae is an allosteric enzyme which can be locked in its active R (relaxed) state by a single threonine-to-isoleucine exchange at position 226. Seven new replacements of residue 226 reveal that this position is able to direct the enzyme's allosteric equilibrium, without interfering with the catalytic constant or the affinity for the activator.
Collapse
Affiliation(s)
- R Graf
- Institut für Mikrobiologie, Biochemie & Genetik, Friedrich-Alexander Universität, Erlangen-Nürnberg, Germany
| | | | | |
Collapse
|
8
|
Xia T, Song J, Zhao G, Aldrich H, Jensen RA. The aroQ-encoded monofunctional chorismate mutase (CM-F) protein is a periplasmic enzyme in Erwinia herbicola. J Bacteriol 1993; 175:4729-37. [PMID: 8335631 PMCID: PMC204924 DOI: 10.1128/jb.175.15.4729-4737.1993] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Enteric bacteria possess two species of chorismate mutase which exist as catalytic domains on the amino termini of the bifunctional PheA and TyrA proteins. In addition, some of these organisms possess a third chorismate mutase, CM-F, which exists as a small monofunctional protein. The CM-F gene (denoted aroQ) from Erwinia herbicola was cloned and sequenced for the first time. A strategy for selection by functional complementation in a chorismate mutase-free Escherichia coli background was devised by using a recombinant plasmid derivative of pUC18 carrying a Zymomonas mobilis tyrC insert which encodes cyclohexadienyl dehydrogenase. The aroQ gene is 543 bp in length, predicting a 181-residue protein product having a calculated molecular mass of 20,299 Da. The E. herbicola aroQ promoter is recognized by E. coli, and a putative sigma-70 promoter region was identified. N-terminal amino acid sequencing of the purified CM-F protein indicated cleavage of a 20-residue signal peptide. This was consistent with the monomeric molecular mass determined for the enzyme of about 18,000 Da. The native enzyme is a homodimer. The implied translocation of CM-F was confirmed by osmotic shock experiments which demonstrated a periplasmic location. Immunogold electron microscopy indicated a polar localization within the periplasm. Polyclonal antibody raised against E. herbicola CM-F did not cross-react with the CM-F protein from the closely related Serratia rubidaea, as well as from a number of other gram-negative bacteria. Furthermore, when the E. herbicola aroQ gene was used as a probe in Southern blot hybridizations with EcroRI digests of chromosomal DNA from S. rubidaea and other enteric organisms, no hybridization was detected at low stringency. Thus, the aroQ gene appears to be unusually divergent among closely related organisms. The deduced CM-F amino acid sequence did not exhibit compelling evidence for homology with the monofunctional chorismate mutase protein of Bacillus subtilis.
Collapse
Affiliation(s)
- T Xia
- Department of Microbiology and Cell Science, University of Florida, Gainesville 32611-0100
| | | | | | | | | |
Collapse
|
9
|
Xia T, Zhao G, Jensen RA. The pheA/tyrA/aroF region from Erwinia herbicola: an emerging comparative basis for analysis of gene organization and regulation in enteric bacteria. J Mol Evol 1993; 36:107-20. [PMID: 8094464 DOI: 10.1007/bf00166246] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Extensive knowledge exists in Escherichia coli about the contiguous pheA and aroF-tyrA operons which have opposite transcription orientations and are separated by a bidirectional transcription terminator. The corresponding structural genes and individual components of the terminator and attenuator from Erwinia herbicola have been analyzed from an evolutionary vantage point. A 7.5-kb DNA fragment from E. herbicola carrying the linked pheA, tyrA, and aroF genes was cloned by functional complementation of E. coli auxotrophic requirements. A 3,433-bp segment of DNA consisting of more than half of aroF, all of tyrA, and the entire phenylalanine operon (promoter, leader region encoding the leader peptide and containing the phe attenuator, and pheA) was sequenced. A bidirectional transcription terminator was positioned between the divergently transcribed pheA and tyrA. The adjacent aroF and tyrA genes share a common transcription orientation, consistent with their probable coexistence within an operon. However, tyrA can be expressed efficiently from an internal promoter which appears to lie within the 3' portion of aroF. The gene order is pheA tyrA aroF in E. herbicola, with the same tail-to-tail arrangement of transcription known to exist in E. coli. The pheL coding region of the phe operon was dominated by phenylalanine codons, seven of the 15 amino acid residues of the leader peptide being L-phenylalanine. The E. herbicola pheA and tyrA genes were 1,161 bp and 1,119 bp in length, respectively, and corresponded to deduced gene products having subunit molecular weights of 43,182 and 41,847. The deduced amino acid sequences of PheA and TyrA were homologous at their N-termini, consistent with a common evolutionary origin of the chorismate mutase domains present at the amino terminus of both PheA and TyrA. A detailed comparison of the E. coli and E. herbicola sequences was made. The pheA, tyrA, and aroF genes of E. herbicola exhibited high overall identity with the counterpart E. coli genes. Within the leader region of the phe operon, the leader peptide coding region was highly conserved. Although the 1:2 and 2':3' stems defining the pause structure and the antiterminator, respectively, were also highly conserved, RNA segment 4 of the attenuator terminator exhibited considerable divergence, as did the distal portion of the attenuator region. Within the span of attenuator region encoding the three stem-loop structures of mRNA secondary configuration, hot spots of base-residue divergence were localized to looped-out regions. No changes occurred which would simultaneously disrupt alternative pairing relationships of secondary configuration. The bidirectional terminator between pheA and tyrA has diverged very substantially.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- T Xia
- Department of Microbiology and Cell Science, University of Florida, Gainesville 32611
| | | | | |
Collapse
|
10
|
Loss of allosteric control but retention of the bifunctional catalytic competence of a fusion protein formed by excision of 260 base pairs from the 3' terminus of pheA from Erwinia herbicola. Appl Environ Microbiol 1992; 58:2792-8. [PMID: 1444388 PMCID: PMC183009 DOI: 10.1128/aem.58.9.2792-2798.1992] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A bifunctional protein denoted as the P protein and encoded by pheA is widely present in purple gram-negative bacteria. This P protein carries catalytic domains that specify chorismate mutase (CM-P) and prephenate dehydratase. The instability of a recombinant plasmid carrying a pheA insert cloned from Erwinia herbicola resulted in a loss of 260 bp plus the TAA stop codon from the 3' terminus of pheA. The plasmid carrying the truncated pheA gene (denoted pheA*) was able to complement an Escherichia coli pheA auxotroph. pheA* was shown to be a chimera composed of the residual 5' part of pheA (901 bp) and a 5-bp fragment from the pUC18 vector. The new fusion protein (PheA*) retained both chorismate mutase and prephenate dehydratase activities. PheA* had a calculated subunit molecular weight of 33,574, in comparison to the 43,182-molecular-weight subunit size of PheA. The deletion did not affect the ability of PheA* to assume the native dimeric configuration of PheA. Both the CM-P and prephenate dehydratase components of PheA* were insensitive to L-phenylalanine inhibition, in contrast to the corresponding components of PheA. L-Phenylalanine protected both catalytic activities of PheA from thermal inactivation, and this protective effect of L-phenylalanine upon the PheA* activities was lost. PheA* was more stable than PheA to thermal inactivation; this was more pronounced for prephenate dehydratase than for CM-P. In the presence of dithiothreitol, the differential resistance of PheA* prephenate dehydratase to thermal inactivation was particularly striking.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
11
|
Xia T, Jensen RA. Monofunctional chorismate mutase from Serratia rubidaea: a paradigm system for the three-isozyme gene family of enteric bacteria. Arch Biochem Biophys 1992; 294:147-53. [PMID: 1550340 DOI: 10.1016/0003-9861(92)90149-q] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Serratia rubidaea (ATCC 27614) typifies a substantial number of enteric bacteria which, unlike Escherichia coli, possess a monofunctional species of chorismate mutase (denoted CM-F). CM-F coexists with two additional species of chorismate mutase, each of the latter being one catalytic domain of a bifunctional protein. The two bifunctional proteins are utilized for phenylalanine (CM-P/prephenate dehydratase) and tyrosine (CM-T/cyclohexadienyl dehydrogenase) biosynthesis in all enteric bacteria. S. rubidaea was selected as the organism of choice for purification of CM-F because of the relatively abundant level of expression found for this enzyme. The monofunctional CM-F enzyme was purified about 1600-fold with a yield of about 16%. This is the first monofunctional chorismate mutase to be purified from any gram-negative prokaryote. The CM-F enzyme is a positively charged homodimer made up of 20-kDa subunits. It has a pH optimum of 5.5, exhibits a Km value of 0.33 mM for chorismate, and is sensitive to product inhibition by prephenate that is competitive with respect to chorismate. It is insensitive to feedback inhibition by any of the aromatic amino acids. Partial purification of the bifunctional P-protein and the bifunctional T-protein was also carried out in order to compare the properties of CM-F, CM-P, and CM-T in a common organism. The most striking differential properties of the three isozymes were those of pH optimum and degree of protection conferred by dithiothreitol.
Collapse
Affiliation(s)
- T Xia
- Department of Microbiology and Cell Science, University of Florida, Gainesville 32611
| | | |
Collapse
|
12
|
Cyclohexadienyl dehydratase from Pseudomonas aeruginosa. Molecular cloning of the gene and characterization of the gene product. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)45905-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
13
|
Xia TH, Ahmad S, Zhao GS, Jensen RA. A single cyclohexadienyl dehydratase specifies the prephenate dehydratase and arogenate dehydratase components of one of two independent pathways to L-phenylalanine in Erwinia herbicola. Arch Biochem Biophys 1991; 286:461-5. [PMID: 1897969 DOI: 10.1016/0003-9861(91)90066-r] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Dual biosynthetic pathways diverge from prephenate to L-phenylalanine in Erwinia herbicola, the unique intermediates of these pathways being phenylpyruvate and L-arogenate. After separation from the bifunctional P-protein (one component of which has prephenate dehydratase activity), the remaining prephenate dehydratase activity could not be separated from arogenate dehydratase activity throughout fractionation steps yielding a purification of more than 1200-fold. The ratio of activities was constant after removal of the P-protein, and the two dehydratase activities were stable during purification. Hence, the enzyme is a cyclohexadienyl dehydratase. The native enzyme has a molecular mass of 73 kDa and is a tetramer made up of identical 18-kDa subunits. Km values of 0.17 mM and 0.09 mM were calculated for prephenate and L-arogenate, respectively. L-Arogenate inhibited prephenate dehydratase competitively with respect to prephenate, whereas prephenate inhibited arogenate dehydratase competitively with respect to L-arogenate. Thus, the enzyme has a common catalytic site for utilization of prephenate or L-arogenate as alternative substrates. This is the first characterization of a purified monofunctional cyclohexadienyl dehydratase.
Collapse
Affiliation(s)
- T H Xia
- Department of Microbiology and Cell Science, University of Florida, Gainesville 32611
| | | | | | | |
Collapse
|
14
|
Ahmad S, Weisburg WG, Jensen RA. Evolution of aromatic amino acid biosynthesis and application to the fine-tuned phylogenetic positioning of enteric bacteria. J Bacteriol 1990; 172:1051-61. [PMID: 2298692 PMCID: PMC208536 DOI: 10.1128/jb.172.2.1051-1061.1990] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A comprehensive phylogenetic tree for virtually the entire assemblage of enteric bacteria is presented. Character states of aromatic amino acid biosynthesis are used as criteria, and the results are compared with partial trees based upon sequencing of 16S rRNA, 5S rRNA, and tryptophan leader peptide. Three major clusters are apparent. Enterocluster 1 possesses a gene fusion (trpG-trpD) encoding anthranilate synthase: anthranilate 5-phosphoribosylpyrophosphate phosphoribosyltransferase of tryptophan biosynthesis. This cluster includes the genera Escherichia, Shigella, Citrobacter, Salmonella, Klebsiella, and Enterobacter. The remaining two clusters lack the trpG-trpD gene fusion, but differ in the presence (enterocluster 2) or absence (enterocluster 3) of the three-step overflow pathway to L-phenylalanine. Enterocluster 2 consists of the genera Serratia and Erwinia. Enterocluster 3 includes the genera Cedecea, Kluyvera, Edwardsiella, Hafnia, Yersinia, Proteus, Providencia, and Morganella. Within these three major clusters, a tentative hierarchy of subcluster ordering is formulated on the basis of all data available. This hierarchical framework is proposed as a general working basis for continued refinement of the phylogenetic relationships of enteric bacteria.
Collapse
Affiliation(s)
- S Ahmad
- Department of Microbiology and Cell Science, University of Florida, Gainesville 32611
| | | | | |
Collapse
|
15
|
Affiliation(s)
- R Bentley
- Department of Chemistry, University of Sheffield, U.K
| |
Collapse
|
16
|
The stable phylogenetic distribution of the recently evolvedl-phenylalanine-inhibited isozyme of 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase in enteric bacteria. Curr Microbiol 1989. [DOI: 10.1007/bf01571126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
17
|
Ahmad S, Jensen RA. The stable evolutionary fixation of a bifunctional tyrosine-pathway protein in enteric bacteria. FEMS Microbiol Lett 1988. [DOI: 10.1111/j.1574-6968.1988.tb02580.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|