1
|
Tsuchiya J, Mino S, Fujiwara F, Okuma N, Ichihashi Y, Morris RM, Nunn BL, Timmins-Schiffman E, Sawabe T. Time course transcriptomic profiling suggests Crp/Fnr transcriptional regulation of nosZ gene in a N 2O-reducing thermophile. iScience 2024; 27:111074. [PMID: 39507244 PMCID: PMC11539149 DOI: 10.1016/j.isci.2024.111074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/31/2024] [Accepted: 09/26/2024] [Indexed: 11/08/2024] Open
Abstract
Nitrosophilus labii HRV44T is a thermophilic chemolithoautotroph possessing clade II type nitrous oxide (N2O) reductase (NosZ) that has an outstanding activity in reducing N2O to dinitrogen gas. Here, we attempt to understand molecular responses of HRV44T to N2O. Time course transcriptome and proteomic mass spectrometry analyses under anaerobic conditions revealed that most of transcripts and peptides related to denitrification were constitutively detected, even in the absence of any nitrogen oxides as electron acceptors. Gene expressions involved in electron transport to NosZ were upregulated within 3 h in response to N2O, rather than upregulation of nos genes. Two genes encoding Crp/Fnr transcriptional regulators observed upstream of nap and nor gene clusters had significant negative correlations with nosZ expression. Statistical path analysis further inferred a significant causal relationship between the gene expression of nosZ and that of one Crp/Fnr regulators. Our findings contribute to understanding the transcriptional regulation in clade II type N2O-reducers.
Collapse
Affiliation(s)
- Jiro Tsuchiya
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido, Japan
| | - Sayaka Mino
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido, Japan
| | - Fuki Fujiwara
- RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Nao Okuma
- RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | | | - Robert M. Morris
- School of Oceanography, University of Washington, Seattle, WA, USA
| | - Brook L. Nunn
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | | | - Tomoo Sawabe
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido, Japan
| |
Collapse
|
2
|
Rnf and Fix Have Specific Roles during Aerobic Nitrogen Fixation in Azotobacter vinelandii. Appl Environ Microbiol 2022; 88:e0104922. [PMID: 36000884 PMCID: PMC9469703 DOI: 10.1128/aem.01049-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Biological nitrogen fixation requires large amounts of energy in the form of ATP and low potential electrons to overcome the high activation barrier for cleavage of the dinitrogen triple bond. The model aerobic nitrogen-fixing bacteria, Azotobacter vinelandii, generates low potential electrons in the form of reduced ferredoxin (Fd) and flavodoxin (Fld) using two distinct mechanisms via the enzyme complexes Rnf and Fix. Both Rnf and Fix are expressed during nitrogen fixation, but deleting either rnf1 or fix genes has little effect on diazotrophic growth. However, deleting both rnf1 and fix eliminates the ability to grow diazotrophically. Rnf and Fix both use NADH as a source of electrons, but overcoming the energetics of NADH's endergonic reduction of Fd/Fld is accomplished through different mechanisms. Rnf harnesses free energy from the chemiosmotic potential, whereas Fix uses electron bifurcation to effectively couple the endergonic reduction of Fd/Fld to the exergonic reduction of quinone. Different reaction stoichiometries and condition-specific differential gene expression indicate specific roles for the two reactions. This work's complementary physiological studies and thermodynamic modeling reveal how Rnf and Fix balance redox homeostasis in various conditions. Specifically, the Fix complex is required for efficient growth under low oxygen concentrations, while Rnf is presumed to maintain reduced Fd/Fld production for nitrogenase under standard conditions. This work provides a framework for understanding how the production of low potential electrons sustains robust nitrogen fixation in various conditions. IMPORTANCE The availability of fixed nitrogen is critical for life in many ecosystems, from extreme environments to agriculture. Due to the energy demands of biological nitrogen fixation, organisms must tailor their metabolism during diazotrophic growth to deliver the energy requirements to nitrogenase in the form of ATP and low potential electrons. Therefore, a complete understanding of diazotrophic energy metabolism and redox homeostasis is required to understand the impact on ecological communities or to promote crop growth in agriculture through engineered diazotrophs.
Collapse
|
3
|
Rain-Franco A, Mouquet N, Gougat-Barbera C, Bouvier T, Beier S. Niche breadth affects bacterial transcription patterns along a salinity gradient. Mol Ecol 2021; 31:1216-1233. [PMID: 34878694 DOI: 10.1111/mec.16316] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 11/04/2021] [Accepted: 11/12/2021] [Indexed: 11/29/2022]
Abstract
Understanding the molecular mechanisms that determine a species' life history is important for predicting their susceptibility to environmental change. While specialist species with a narrow niche breadth (NB) maximize their fitness in their optimum habitat, generalists with broad NB adapt to multiple environments. The main objective of this study was to identify general transcriptional patterns that would distinguish bacterial strains characterized by contrasted NBs along a salinity gradient. More specifically, we hypothesized that genes encoding fitness-related traits, such as biomass production, have a higher degree of transcriptional regulation in specialists than in generalists, because the fitness of specialists is more variable under environmental change. By contrast, we expected that generalists would exhibit enhanced transcriptional regulation of genes encoding traits that protect them against cellular damage. To test these hypotheses, we assessed the transcriptional regulation of fitness-related and adaptation-related genes of 11 bacterial strains in relation to their NB and stress exposure under changing salinity conditions. The results suggested that transcriptional regulation levels of fitness- and adaptation-related genes correlated with the NB and/or the stress exposure of the inspected strains. We further identified a shortlist of candidate stress marker genes that could be used in future studies to monitor the susceptibility of bacterial populations or communities to environmental changes.
Collapse
Affiliation(s)
- Angel Rain-Franco
- CNRS, Laboratoire d'Océanographie Microbienne, LOMIC, Sorbonne Université, Banyuls/mer, France
| | - Nicolas Mouquet
- MARBEC, CNRS, Ifremer, IRD, Université de Montpellier, Montpellier, France
| | | | - Thierry Bouvier
- MARBEC, CNRS, Ifremer, IRD, Université de Montpellier, Montpellier, France
| | - Sara Beier
- CNRS, Laboratoire d'Océanographie Microbienne, LOMIC, Sorbonne Université, Banyuls/mer, France.,Leibniz Institute for Baltic Sea Research, Warnemünde, Germany
| |
Collapse
|
4
|
Abstract
By analyzing successive lifestyle stages of a model Rhizobium-legume symbiosis using mariner-based transposon insertion sequencing (INSeq), we have defined the genes required for rhizosphere growth, root colonization, bacterial infection, N2-fixing bacteroids, and release from legume (pea) nodules. While only 27 genes are annotated as nif and fix in Rhizobium leguminosarum, we show 603 genetic regions (593 genes, 5 transfer RNAs, and 5 RNA features) are required for the competitive ability to nodulate pea and fix N2 Of these, 146 are common to rhizosphere growth through to bacteroids. This large number of genes, defined as rhizosphere-progressive, highlights how critical successful competition in the rhizosphere is to subsequent infection and nodulation. As expected, there is also a large group (211) specific for nodule bacteria and bacteroid function. Nodule infection and bacteroid formation require genes for motility, cell envelope restructuring, nodulation signaling, N2 fixation, and metabolic adaptation. Metabolic adaptation includes urea, erythritol and aldehyde metabolism, glycogen synthesis, dicarboxylate metabolism, and glutamine synthesis (GlnII). There are 17 separate lifestyle adaptations specific to rhizosphere growth and 23 to root colonization, distinct from infection and nodule formation. These results dramatically highlight the importance of competition at multiple stages of a Rhizobium-legume symbiosis.
Collapse
|
5
|
Toplak M, Brunner J, Tabib CR, Macheroux P. Closing the gap: yeast electron-transferring flavoprotein links the oxidation of d-lactate and d-α-hydroxyglutarate to energy production via the respiratory chain. FEBS J 2019; 286:3611-3628. [PMID: 31081204 PMCID: PMC6771786 DOI: 10.1111/febs.14924] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/19/2019] [Accepted: 05/10/2019] [Indexed: 01/07/2023]
Abstract
Electron-transferring flavoproteins (ETFs) have been found in all kingdoms of life, mostly assisting in shuttling electrons to the respiratory chain for ATP production. While the human (h) ETF has been studied in great detail, very little is known about the biochemical properties of the homologous protein in the model organism Saccharomyces cerevisiae (yETF). In view of the absence of client dehydrogenases, for example, the acyl-CoA dehydrogenases involved in the β-oxidation of fatty acids, d-lactate dehydrogenase 2 (Dld2) appeared to be the only relevant enzyme that is serviced by yETF for electron transfer to the mitochondrial electron transport chain. However, this hypothesis was never tested experimentally. Here, we report the biochemical properties of yETF and Dld2 as well as the electron transfer reaction between the two proteins. Our study revealed that Dld2 oxidizes d-α-hydroxyglutarate more efficiently than d-lactate exhibiting kcatapp /KMapp values of 1200 ± 300 m-1 ·s-1 and 11 ± 2 m-1 ·s-1 , respectively. As expected, substrate-reduced Dld2 very slowly reacted with oxygen or the artificial electron acceptor 2,6-dichlorophenol indophenol. However, photoreduced Dld2 was rapidly reoxidized by oxygen, suggesting that the reaction products, that is, α-ketoglutarate and pyruvate, 'lock' the reduced enzyme in an unreactive state. Interestingly, however, we could demonstrate that substrate-reduced Dld2 rapidly transfers electrons to yETF. Therefore, we conclude that the formation of a product-reduced Dld2 complex suppresses electron transfer to dioxygen but favors the rapid reduction in yETF, thus preventing the loss of electrons and the generation of reactive oxygen species.
Collapse
Affiliation(s)
- Marina Toplak
- Institute of BiochemistryGraz University of TechnologyAustria
| | - Julia Brunner
- Institute of BiochemistryGraz University of TechnologyAustria
| | | | - Peter Macheroux
- Institute of BiochemistryGraz University of TechnologyAustria
| |
Collapse
|
6
|
6-Hydroxypseudooxynicotine Dehydrogenase Delivers Electrons to Electron Transfer Flavoprotein during Nicotine Degradation by Agrobacterium tumefaciens S33. Appl Environ Microbiol 2019; 85:AEM.00454-19. [PMID: 30926728 DOI: 10.1128/aem.00454-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 03/22/2019] [Indexed: 11/20/2022] Open
Abstract
Agrobacterium tumefaciens S33 degrades nicotine via a novel hybrid of the pyridine and the pyrrolidine pathways. The hybrid pathway consists of at least six steps involved in oxidoreductive reactions before the N-heterocycle can be broken down. Collectively, the six steps allow electron transfer from nicotine and its intermediates to the final acceptor O2 via the electron transport chain (ETC). 6-Hydroxypseudooxynicotine oxidase, renamed 6-hydroxypseudooxynicotine dehydrogenase in this study, has been characterized as catalyzing the fourth step using the artificial electron acceptor 2,6-dichlorophenolindophenol. Here, we used biochemical, genetic, and liquid chromatography-mass spectrometry (LC-MS) analyses to determine that 6-hydroxypseudooxynicotine dehydrogenase utilizes the electron transfer flavoprotein (EtfAB) as the physiological electron acceptor to catalyze the dehydrogenation of pseudooxynicotine, an analogue of the true substrate 6-hydroxypseudooxynicotine, in vivo, into 3-succinoyl-semialdehyde-pyridine. NAD(P)+, O2, and ferredoxin could not function as electron acceptors. The oxygen atom in the aldehyde group of the product 3-succinoyl-semialdehyde-pyridine was verified to be derived from H2O. Disruption of the etfAB genes in the nicotine-degrading gene cluster decreased the growth rate of A. tumefaciens S33 on nicotine but not on 6-hydroxy-3-succinoylpyridine, an intermediate downstream of the hybrid pathway, indicating the requirement of EtfAB for efficient nicotine degradation. The electrons were found to be further transferred from the reduced EtfAB to coenzyme Q by the catalysis of electron transfer flavoprotein:ubiquinone oxidoreductase. These results aid in an in-depth understanding of the electron transfer process and energy metabolism involved in the nicotine oxidation and provide novel insights into nicotine catabolism in bacteria.IMPORTANCE Nicotine has been studied as a model for toxic N-heterocyclic aromatic compounds. Microorganisms can catabolize nicotine via various pathways and conserve energy from its oxidation. Although several oxidoreductases have been characterized to participate in nicotine degradation, the electron transfer involved in these processes is poorly understood. In this study, we found that 6-hydroxypseudooxynicotine dehydrogenase, a key enzyme in the hybrid pyridine and pyrrolidine pathway for nicotine degradation in Agrobacterium tumefaciens S33, utilizes EtfAB as a physiological electron acceptor. Catalyzed by the membrane-associated electron transfer flavoprotein:ubiquinone oxidoreductase, the electrons are transferred from the reduced EtfAB to coenzyme Q, which then could enter into the classic ETC. Thus, the route for electron transport from the substrate to O2 could be constructed, by which ATP can be further sythesized via chemiosmosis to support the baterial growth. These findings provide new knowledge regarding the catabolism of N-heterocyclic aromatic compounds in microorganisms.
Collapse
|
7
|
Dörries M, Wöhlbrand L, Kube M, Reinhardt R, Rabus R. Genome and catabolic subproteomes of the marine, nutritionally versatile, sulfate-reducing bacterium Desulfococcus multivorans DSM 2059. BMC Genomics 2016; 17:918. [PMID: 27846794 PMCID: PMC5109826 DOI: 10.1186/s12864-016-3236-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 11/01/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Sulfate-reducing bacteria (SRB) are key players of the carbon- and sulfur-cycles in the sediments of the world's oceans. Habitat relevant SRBs are often members of the Desulfosarcina-Desulfococcus clade belonging to the deltaproteobacterial family of Desulfobacteraceae. Despite this environmental recognition, their molecular (genome-based) physiology and their potential to contribute to organic carbon mineralization as well as to adapt to changing environmental conditions have been scarcely investigated. A metabolically versatile representative of this family is Desulfococcus multivorans that is able to completely oxidize (to CO2) a variety of organic acids, including fatty acids up to C14, as well as aromatic compounds. RESULTS In this study the complete 4.46 Mbp and manually annotated genome of metabolically versatile Desulfococcus multivorans DSM 2059 is presented with particular emphasis on a proteomics-driven metabolic reconstruction. Proteomic profiling covered 17 substrate adaptation conditions (6 aromatic and 11 aliphatic compounds) and comprised 2D DIGE, shotgun proteomics and analysis of the membrane protein-enriched fractions. This comprehensive proteogenomic dataset allowed for reconstructing a metabolic network of degradation pathways and energy metabolism that consists of 170 proteins (154 detected; ~91 % coverage). Peripheral degradation routes feed via central benzoyl-CoA, (modified) β-oxidation or methylmalonyl-CoA pathways into the Wood-Ljungdahl pathway for complete oxidation of acetyl-CoA to CO2. Dissimilatory sulfate reduction is fueled by a complex electron transfer network composed of cytoplasmic components (e.g., electron transfer flavoproteins) and diverse membrane redox complexes (Dsr, Qmo, Hmc, Tmc, Qrc, Nuo and Rnf). Overall, a high degree of substrate-specific formation of catabolic enzymes was observed, while most complexes involved in electron transfer appeared to be constitutively formed. CONCLUSIONS A highly dynamic genome structure in combination with substrate-specifically formed catabolic subproteomes and a constitutive subproteome for energy metabolism and electron transfer appears to be a common trait of Desulfobacteraceae members.
Collapse
Affiliation(s)
- Marvin Dörries
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Lars Wöhlbrand
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Michael Kube
- Institute of Forest Genetics, Johann Heinrich von Thünen Institute, Waldsieversdorf, Germany
| | | | - Ralf Rabus
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University Oldenburg, Oldenburg, Germany
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| |
Collapse
|
8
|
Davis-Richardson AG, Russell JT, Dias R, McKinlay AJ, Canepa R, Fagen JR, Rusoff KT, Drew JC, Kolaczkowski B, Emerich DW, Triplett EW. Integrating DNA Methylation and Gene Expression Data in the Development of the Soybean-Bradyrhizobium N2-Fixing Symbiosis. Front Microbiol 2016; 7:518. [PMID: 27148207 PMCID: PMC4840208 DOI: 10.3389/fmicb.2016.00518] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 03/29/2016] [Indexed: 11/16/2022] Open
Abstract
Very little is known about the role of epigenetics in the differentiation of a bacterium from the free-living to the symbiotic state. Here genome-wide analysis of DNA methylation changes between these states is described using the model of symbiosis between soybean and its root nodule-forming, nitrogen-fixing symbiont, Bradyrhizobium diazoefficiens. PacBio resequencing of the B. diazoefficiens genome from both states revealed 43,061 sites recognized by five motifs with the potential to be methylated genome-wide. Of those sites, 3276 changed methylation states in 2921 genes or 35.5% of all genes in the genome. Over 10% of the methylation changes occurred within the symbiosis island that comprises 7.4% of the genome. The CCTTGAG motif was methylated only during symbiosis with 1361 adenosines methylated among the 1700 possible sites. Another 89 genes within the symbiotic island and 768 genes throughout the genome were found to have methylation and significant expression changes during symbiotic development. Of those, nine known symbiosis genes involved in all phases of symbiotic development including early infection events, nodule development, and nitrogenase production. These associations between methylation and expression changes in many B. diazoefficiens genes suggest an important role of the epigenome in bacterial differentiation to the symbiotic state.
Collapse
Affiliation(s)
- Austin G Davis-Richardson
- Microbiology and Cell Science Department, Institute of Food and Agricultural Sciences, University of Florida Gainesville, FL, USA
| | - Jordan T Russell
- Microbiology and Cell Science Department, Institute of Food and Agricultural Sciences, University of Florida Gainesville, FL, USA
| | - Raquel Dias
- Microbiology and Cell Science Department, Institute of Food and Agricultural Sciences, University of Florida Gainesville, FL, USA
| | - Andrew J McKinlay
- Microbiology and Cell Science Department, Institute of Food and Agricultural Sciences, University of Florida Gainesville, FL, USA
| | - Ronald Canepa
- Microbiology and Cell Science Department, Institute of Food and Agricultural Sciences, University of Florida Gainesville, FL, USA
| | - Jennie R Fagen
- Microbiology and Cell Science Department, Institute of Food and Agricultural Sciences, University of Florida Gainesville, FL, USA
| | - Kristin T Rusoff
- Microbiology and Cell Science Department, Institute of Food and Agricultural Sciences, University of Florida Gainesville, FL, USA
| | - Jennifer C Drew
- Microbiology and Cell Science Department, Institute of Food and Agricultural Sciences, University of Florida Gainesville, FL, USA
| | - Bryan Kolaczkowski
- Microbiology and Cell Science Department, Institute of Food and Agricultural Sciences, University of Florida Gainesville, FL, USA
| | - David W Emerich
- Biochemistry Department, University of Missouri Columbia, MO, USA
| | - Eric W Triplett
- Microbiology and Cell Science Department, Institute of Food and Agricultural Sciences, University of Florida Gainesville, FL, USA
| |
Collapse
|
9
|
Understanding the Heat Shock Response in the Sea Cucumber Apostichopus japonicus, Using iTRAQ-Based Proteomics. Int J Mol Sci 2016; 17:150. [PMID: 26861288 PMCID: PMC4783884 DOI: 10.3390/ijms17020150] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 01/13/2016] [Accepted: 01/20/2016] [Indexed: 12/22/2022] Open
Abstract
The sea cucumber Apostichopus japonicus is exploited as a commercial species owing to their high nutritive and medicinal value. Recent high summer temperatures have caused high mortality rates in A. japonicus. In this study, we applied the isobaric tag for relative and absolute quantitation (iTRAQ) technique to investigate the global protein expression profile under an acute short-term (48 h) heat stress. In total, 3432 proteins were identified, and 127 proteins showed significant heat stress responses, with 61 upregulated proteins and 66 downregulated proteins. Our results suggest that heat stress influenced the expression of proteins involved in various biological processes, such as tissue protection and detoxification, lipid and amino acid metabolism, energy production and usage, transcription and translation, cell apoptosis, and cell proliferation. These findings provide a better understanding about the response and thermo-tolerance mechanisms of A. japonicus under heat stress.
Collapse
|
10
|
Cierniak P, Jübner M, Müller S, Bender K. Insights into mechanisms and proteomic characterisation of Pseudomonas aeruginosa adaptation to a novel antimicrobial substance. PLoS One 2013; 8:e66862. [PMID: 23869205 PMCID: PMC3711899 DOI: 10.1371/journal.pone.0066862] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 05/11/2013] [Indexed: 11/22/2022] Open
Abstract
Antibiotic resistance has been reported since the introduction of synthetic antibiotics. Bacteria, such as one of the most common nosocomial pathogens P. aeruginosa, adapt quickly to changing environmental conditions, due to their short generation time. Thus microevolutional changes can be monitored in situ. In this study, the microevolutional process of Pseudomonas aeruginosa PAO1 resistance against a recently developed novel antibacterial zinc Schiff-base (ZSB) was investigated at the proteome level. After extended exposure to ZSB the passaged strain differed in tolerance against ZSB, with the adapted P. aeruginosa PAO1 exhibiting 1.6 times higher minimal inhibitory concentration. Using Two-dimensional Difference Gel Electrophoresis, the changes in the proteome of ZSB adapted P. aeruginosa PAO1 were examined by comparison with the non-adapted P. aeruginosa PAO1. The proteome of the adapted P. aeruginosa PAO1 strain differed significantly from the non-adapted in the abundance of two proteins when both strains were grown under stressing conditions. One protein could be identified as the outer membrane protein D that plays a role in uptake of basic amino acids as well as in carbapeneme resistance. The second protein has been identified as alkyl peroxide reductase subunit F. Our data indicated a slight increase in abundance of alkyl peroxide reductase F (AhpF) in the case of ZSB passaged P. aeruginosa PAO1. Higher abundance of Ahp has been discussed in the literature as a promoter of accelerated detoxification of benzene derivatives. The observed up-regulated AhpF thus appears to be connected to an increased tolerance against ZSB. Changes in the abundance of proteins connected to oxidative stress were also found after short-time exposure of P. aeruginosa PAO1 to the ZSB. Furthermore, adapted P. aeruginosa PAO1 showed increased tolerance against hydrogen peroxide and, in addition, showed accelerated degradation of ZSB, as determined by HPLC measurements.
Collapse
Affiliation(s)
- Peter Cierniak
- Institute of Legal Medicine, Medical Faculty, University of Cologne, Cologne, Germany
| | - Martin Jübner
- Institute of Legal Medicine, Medical Faculty, University of Cologne, Cologne, Germany
| | - Stefan Müller
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Katja Bender
- Institute of Legal Medicine, Medical Faculty, University of Cologne, Cologne, Germany
| |
Collapse
|
11
|
Bartossek R, Spang A, Weidler G, Lanzen A, Schleper C. Metagenomic analysis of ammonia-oxidizing archaea affiliated with the soil group. Front Microbiol 2012; 3:208. [PMID: 22723795 PMCID: PMC3379541 DOI: 10.3389/fmicb.2012.00208] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2012] [Accepted: 05/21/2012] [Indexed: 11/17/2022] Open
Abstract
Ammonia-oxidizing archaea (AOA) have recently been recognized as a significant component of many microbial communities and represent one of the most abundant prokaryotic groups in the biosphere. However, only few AOA have been successfully cultivated so far and information on the physiology and genomic content remains scarce. We have performed a metagenomic analysis to extend the knowledge of the AOA affiliated with group I.1b that is widespread in terrestrial habitats and of which no genome sequences has been described yet. A fosmid library was generated from samples of a radioactive thermal cave (46°C) in the Austrian Central Alps in which AOA had been found as a major part of the microbial community. Out of 16 fosmids that possessed either an amoA or 16S rRNA gene affiliating with AOA, 5 were fully sequenced, 4 of which grouped with the soil/I.1b (Nitrososphaera-) lineage, and 1 with marine/I.1a (Nitrosopumilus-) lineage. Phylogenetic analyses of amoBC and an associated conserved gene were congruent with earlier analyses based on amoA and 16S rRNA genes and supported the separation of the soil and marine group. Several putative genes that did not have homologs in currently available marine Thaumarchaeota genomes indicated that AOA of the soil group contain specific genes that are distinct from their marine relatives. Potential cis-regulatory elements around conserved promoter motifs found upstream of the amo genes in sequenced (meta-) genomes differed in marine and soil group AOA. On one fosmid, a group of genes including amoA and amoB were flanked by identical transposable insertion sequences, indicating that amoAB could potentially be co-mobilized in the form of a composite transposon. This might be one of the mechanisms that caused the greater variation in gene order compared to genomes in the marine counterparts. Our findings highlight the genetic diversity within the two major and widespread lineages of Thaumarchaeota.
Collapse
Affiliation(s)
- Rita Bartossek
- Centre for Geobiology, Department of Biology, University of Bergen Bergen, Norway
| | | | | | | | | |
Collapse
|
12
|
Isabella VM, Clark VL. Identification of a conserved protein involved in anaerobic unsaturated fatty acid synthesis in Neiserria gonorrhoeae: implications for facultative and obligate anaerobes that lack FabA. Mol Microbiol 2011; 82:489-501. [PMID: 21895795 DOI: 10.1111/j.1365-2958.2011.07826.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Transcriptome analysis of the facultative anaerobe, Neisseria gonorrhoeae, revealed that many genes of unknown function were induced under anaerobic conditions. Mutation of one such gene, NGO1024, encoding a protein belonging to the 2-nitropropane dioxygenase-like superfamily of proteins, was found to result in an inability of gonococci to grow anaerobically. Anaerobic growth of an NG1024 mutant was restored upon supplementation with unsaturated fatty acids (UFA), but not with the saturated fatty acid palmitate. Gonococcal fatty acid profiles confirmed that NGO1024 was involved in UFA synthesis anaerobically, but not aerobically, demonstrating that gonococci contain two distinct pathways for the production of UFAs, with a yet unidentified aerobic mechanism, and an anaerobic mechanism involving NGO1024. Expression of genes involved in classical anaerobic UFA synthesis, fabA, fabM and fabB, was toxic in gonococci and unable to complement a NGO1024 mutation, suggesting that the chemistry involved in gonococcal anaerobic UFA synthesis is distinct from that of the classical pathway. NGO1024 homologues, which we suggest naming UfaA, form a distinct lineage within the 2-nitropropane dioxygenase-like superfamily, and are found in many facultative and obligate anaerobes that produce UFAs but lack fabA, suggesting that UfaA is part of a widespread pathway involved in UFA synthesis.
Collapse
Affiliation(s)
- Vincent M Isabella
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester, Box 672, 601 Elmwood Ave, Rochester, NY 14642, USA
| | | |
Collapse
|
13
|
Physiological adaptation of Desulfitobacterium hafniense strain TCE1 to tetrachloroethene respiration. Appl Environ Microbiol 2011; 77:3853-9. [PMID: 21478312 DOI: 10.1128/aem.02471-10] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Desulfitobacterium spp. are ubiquitous organisms with a broad metabolic versatility, and some isolates have the ability to use tetrachloroethene (PCE) as terminal electron acceptor. In order to identify proteins involved in this organohalide respiration process, a comparative proteomic analysis was performed. Soluble and membrane-associated proteins obtained from cells of Desulfitobacterium hafniense strain TCE1 that were growing on different combinations of the electron donors lactate and hydrogen and the electron acceptors PCE and fumarate were analyzed. Among proteins increasingly expressed in the presence of PCE compared to fumarate as electron acceptor, a total of 57 proteins were identified by mass spectrometry analysis, revealing proteins involved in stress response and associated regulation pathways, such as PspA, GroEL, and CodY, and also proteins potentially participating in carbon and energy metabolism, such as proteins of the Wood-Ljungdahl pathway and electron transfer flavoproteins. These proteomic results suggest that D. hafniense strain TCE1 adapts its physiology to face the relative unfavorable growth conditions during an apparent opportunistic organohalide respiration.
Collapse
|
14
|
Edgren T, Nordlund S. The fixABCX genes in Rhodospirillum rubrum encode a putative membrane complex participating in electron transfer to nitrogenase. J Bacteriol 2004; 186:2052-60. [PMID: 15028689 PMCID: PMC374401 DOI: 10.1128/jb.186.7.2052-2060.2004] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In our efforts to identify the components participating in electron transport to nitrogenase in Rhodospirillum rubrum, we used mini-Tn5 mutagenesis followed by metronidazole selection. One of the mutants isolated, SNT-1, exhibited a decreased growth rate and about 25% of the in vivo nitrogenase activity compared to the wild-type values. The in vitro nitrogenase activity was essentially wild type, indicating that the mutation affects electron transport to nitrogenase. Sequencing showed that the Tn5 insertion is located in a region with a high level of similarity to fixC, and extended sequencing revealed additional putative fix genes, in the order fixABCX. Complementation of SNT-1 with the whole fix gene cluster in trans restored wild-type nitrogenase activity and growth. Using Western blotting, we demonstrated that expression of fixA and fixB occurs only under conditions under which nitrogenase also is expressed. SNT-1 was further shown to produce larger amounts of both ribulose 1,5-bisphosphate carboxylase/oxygenase and polyhydroxy alkanoates than the wild type, indicating that the redox status is affected in this mutant. Using Western blotting, we found that FixA and FixB are soluble proteins, whereas FixC most likely is a transmembrane protein. We propose that the fixABCX genes encode a membrane protein complex that plays a central role in electron transfer to nitrogenase in R. rubrum. Furthermore, we suggest that FixC is the link between nitrogen fixation and the proton motive force generated in the photosynthetic reactions.
Collapse
Affiliation(s)
- Tomas Edgren
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden
| | | |
Collapse
|
15
|
Chen CY, Wu KM, Chang YC, Chang CH, Tsai HC, Liao TL, Liu YM, Chen HJ, Shen ABT, Li JC, Su TL, Shao CP, Lee CT, Hor LI, Tsai SF. Comparative genome analysis of Vibrio vulnificus, a marine pathogen. Genome Res 2004; 13:2577-87. [PMID: 14656965 PMCID: PMC403799 DOI: 10.1101/gr.1295503] [Citation(s) in RCA: 310] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The halophile Vibrio vulnificus is an etiologic agent of human mortality from seafood-borne infections. We applied whole-genome sequencing and comparative analysis to investigate the evolution of this pathogen. The genome of biotype 1 strain, V. vulnificus YJ016, was sequenced and includes two chromosomes of estimated 3377 kbp and 1857 kbp in size, and a plasmid of 48,508 bp. A super-integron (SI) was identified, and the SI region spans 139 kbp and contains 188 gene cassettes. In contrast to non-SI sequences, the captured gene cassettes are unique for any given Vibrio species and are highly variable among V. vulnificus strains. Multiple rearrangements were found when comparing the 5.3-Mbp V. vulnificus YJ016 genome and the 4.0-Mbp V. cholerae El Tor N16961 genome. The organization of gene clusters of capsular polysaccharide, iron metabolism, and RTX toxin showed distinct genetic features of V. vulnificus and V. cholerae. The content of the V. vulnificus genome contained gene duplications and evidence of horizontal transfer, allowing for genetic diversity and function in the marine environment. The genomic information obtained in this study can be applied to monitoring vibrio infections and identifying virulence genes in V. vulnificus.
Collapse
Affiliation(s)
- Chung-Yung Chen
- Division of Molecular and Genomic Medicine, National Health Research Institutes, Taipei 115, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Jost BH, Songer JG, Billington SJ. Cloning, expression, and characterization of a neuraminidase gene from Arcanobacterium pyogenes. Infect Immun 2001; 69:4430-7. [PMID: 11401983 PMCID: PMC98516 DOI: 10.1128/iai.69.7.4430-4437.2001] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Arcanobacterium pyogenes is an opportunistic pathogen, associated with suppurative infections in domestic animals. In addition to pyolysin, a pore-forming, cholesterol-binding toxin, A. pyogenes expresses a number of putative virulence factors, including several proteases and neuraminidase activity. A 3,009-bp gene, nanH, was cloned and sequenced and conferred neuraminidase activity on an Escherichia coli host strain. The predicted 107-kDa NanH protein displayed similarity to a number of bacterial neuraminidases and contained the RIP/RLP motif and five copies of the Asp box motif found in all bacterial neuraminidases. Recombinant His-tagged NanH was found to have pH and temperature optima of 5.5 to 6.0 and 55 degrees C, respectively. Insertional deletion of the nanH gene resulted in the reduction, but not absence, of neuraminidase activity, indicating the presence of a second neuraminidase gene in A. pyogenes. NanH was localized to the A. pyogenes cell wall. A. pyogenes adhered to HeLa, CHO, and MDBK cells in a washing-resistant manner. However, the nanH mutant was not defective for adherence to epithelial cells. The role of NanH in host epithelial cell adherence may be masked by the presence of a second neuraminidase in A. pyogenes.
Collapse
Affiliation(s)
- B H Jost
- Department of Veterinary Science and Microbiology, The University of Arizona, Tucson, Arizona 85721, USA.
| | | | | |
Collapse
|
17
|
Fales L, Kryszak L, Zeilstra-Ryalls J. Control of hemA expression in Rhodobacter sphaeroides 2.4.1: effect of a transposon insertion in the hbdA gene. J Bacteriol 2001; 183:1568-76. [PMID: 11160087 PMCID: PMC95041 DOI: 10.1128/jb.183.5.1568-1576.2001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The common precursor to all tetrapyrroles is 5-aminolevulinic acid (ALA), and in Rhodobacter sphaeroides its formation occurs via the Shemin pathway. ALA synthase activity is encoded by two differentially regulated genes in R. sphaeroides 2.4.1: hemA and hemT. In our investigations of hemA regulation, we applied transposon mutagenesis under aerobic conditions, followed by a selection that identified transposon insertion mutants in which hemA expression is elevated. One of these mutants has been characterized previously (J. Zeilstra-Ryalls and S. Kaplan, J. Bacteriol. 178:985-993, 1996), and here we describe our analysis of a second mutant strain. The transposon inserted into the coding sequences of hbdA, coding for S-(+)-beta-hydroxybutyryl-coenzyme A dehydrogenase and catalyzing an NAD-dependent reaction. We provide evidence that the hbdA gene product participates in polyhydroxybutyrate (PHB) metabolism and, based on our findings, we discuss possibilities as to how defective PHB metabolism might alter the level of hemA expression.
Collapse
Affiliation(s)
- L Fales
- Department of Biological Sciences, Oakland University, Rochester, Michigan 48309, USA
| | | | | |
Collapse
|
18
|
Beck C, Marty R, Kläusli S, Hennecke H, Göttfert M. Dissection of the transcription machinery for housekeeping genes of Bradyrhizobium japonicum. J Bacteriol 1997; 179:364-9. [PMID: 8990287 PMCID: PMC178705 DOI: 10.1128/jb.179.2.364-369.1997] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
By using a PCR approach, the Bradyrhizobium japonicum sigA gene, which encodes the primary RNA polymerase sigma factor, sigma80, was cloned and its nucleotide sequence was established. The deduced protein is highly homologous to the SigA protein of Rhizobium meliloti (72% amino acid sequence identity) but less so to RpoD of Escherichia coli (51% identity). Well conserved is the C-terminal end of the protein, which is probably involved in promoter recognition and binding of the RNA polymerase core enzyme. A remarkable feature of the primary sequence is an alanine- and proline-rich segment of 24 amino acids between conserved regions 1 and 2, which might function as an interdomain linker. We purified the B. japonicum RNA polymerase holoenzyme. One of the subunits had an apparent molecular mass of 90 kDa and corresponded to the sigA gene product, as judged by N-terminal amino acid sequencing. The purified RNA polymerase was used in an in vitro transcription system to determine the transcription start sites of the rrn and groESL4 operons. They were identical to those previously identified in vivo. The rrn promoter was cloned upstream of a rho-independent terminator, yielding a transcript of about 240 bases. This served as a suitable template to analyze promoter activity. Then mutant derivatives of the rrn promoter were constructed and tested in in vitro transcription experiments. Several base pairs essential for promoter activity were thus identified. The results suggest that the well-characterized -35/-10 promoter class is predominantly used in B. japonicum for the expression of "housekeeping" genes.
Collapse
Affiliation(s)
- C Beck
- Mikrobiologisches Institut, Eidgenössische Technische Hochschule, ETH-Zentrum, Zürich, Switzerland
| | | | | | | | | |
Collapse
|
19
|
LeVier K, Guerinot ML. The Bradyrhizobium japonicum fegA gene encodes an iron-regulated outer membrane protein with similarity to hydroxamate-type siderophore receptors. J Bacteriol 1996; 178:7265-75. [PMID: 8955412 PMCID: PMC178643 DOI: 10.1128/jb.178.24.7265-7275.1996] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Iron is important in the symbiosis between soybean and its nitrogen-fixing endosymbiont Bradyrhizobium japonicum, yet little is known about rhizobial iron acquisition strategies. Analysis of outer membrane proteins (OMPs) from B. japonicum 61A152 identified three iron-regulated OMPs in the size range of several known receptors for Fe(III)-scavenging siderophores. One of the iron-regulated proteins, FegA, was purified and microsequenced, and a reverse genetics approach was used to clone a fegA-containing DNA fragment. Sequencing of this fragment revealed a single open reading frame of 750 amino acids. A putative N-terminal signal sequence of 14 amino acids which would result in a mature protein of 736 amino acids with a molecular mass of 80,851 Da was predicted. FegA shares significant amino acid similarity with several Fe(III)-siderophore receptors from gram-negative bacteria and has greater than 50% amino acid similarity and 33% amino acid identity with two [corrected] bacterial receptors for hydroxamate-type Fe(III)-siderophores. A dendrogram describing total inferred sequence similarity among 36 TonB-dependent OMPs was constructed; FegA grouped with Fe(III)-hydroxamate receptors. The transcriptional start site of fegA was mapped by primer extension analysis, and a putative Fur-binding site was found in the promoter. Primer extension and RNA slot blot analysis demonstrated that fegA was expressed only in cells grown under iron-limiting conditions. This is the first report of the cloning of a gene encoding a putative Fe(III)-siderophore receptor from nitrogen-fixing rhizobia.
Collapse
Affiliation(s)
- K LeVier
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755, USA
| | | |
Collapse
|