1
|
Bloux H, Dahiya A, Hébert A, Fabis F, Schoenebeck F, Cailly T. Base-Mediated Radio-Iodination of Arenes by Using Organosilane and Organogermane as Radiolabelling Precursors. Chemistry 2023; 29:e202203366. [PMID: 36607172 DOI: 10.1002/chem.202203366] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/07/2023]
Abstract
The radio-iodination of arenes is investigated from organosilane and organogermane precursors using ipso-electrophilic halogenation (IEH). Discovery of a mild base mediated process allows radio-iodination in HFIP (1,1,1,3,3,3-hexafluoro-2-propanol) of either aryl silane or germane, with germanes being more reactive. Clinical potential of arylgermanes as radio-iodination precursors is demonstrated through the labelling of [125 I]IMTO (iodometomidate) and [125 I]MIBG (meta-iodobenzylguanidine) thus offering an alternative to radio-iododestannylation processes using non-toxic precursors.
Collapse
Affiliation(s)
- Hugo Bloux
- Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN), Normandie Univ, UNICAEN, 14000, Caen, France
| | - Amit Dahiya
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Alexandra Hébert
- Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN), Normandie Univ, UNICAEN, 14000, Caen, France
| | - Frédéric Fabis
- Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN), Normandie Univ, UNICAEN, 14000, Caen, France
| | - Franziska Schoenebeck
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Thomas Cailly
- Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN), Normandie Univ, UNICAEN, 14000, Caen, France.,IMOGERE, Normandie Univ, UNICAEN, 14000, Caen, France.,Department of Nuclear Medicine, CHU Côte de Nacre, 14000, Caen, France.,Institut Blood and Brain @Caen-Normandie (BB@C), Boulevard Henri Becquerel, 14074, Caen, France
| |
Collapse
|
2
|
Abstract
Abstract
The halogens bromine and iodine have similar chemical properties and undergo similar reactions due to their closeness in Group 17 of the periodic chart. There are a number of bromine and iodine radionuclides that have properties useful for diagnosis and therapy of human diseases. The emission properties of radiobromine and radioiodine nuclides with half-lives longer than 1 h are summarized along with properties that make radionuclides useful in PET/SPECT imaging and β/Auger therapy, such that the reader can assess which of the radionuclides might be useful for medical applications. An overview of chemical approaches that have been used to radiolabel molecules with radiobromine and radioiodine nuclides is provided with examples. Further, references to a large variety of different organ/cancer-targeting agents utilizing the radiolabeling approaches described are provided.
Collapse
Affiliation(s)
- D. Scott Wilbur
- Department of Radiation Oncology, Box 355016 , University of Washington , 616 N.E. Northlake Place , Seattle, WA 98105 , USA
| | | |
Collapse
|
3
|
Rosecker V, Denk C, Maurer M, Wilkovitsch M, Mairinger S, Wanek T, Mikula H. Cross-Isotopic Bioorthogonal Tools as Molecular Twins for Radiotheranostic Applications. Chembiochem 2019; 20:1530-1535. [PMID: 30742739 PMCID: PMC6617999 DOI: 10.1002/cbic.201900042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Indexed: 11/08/2022]
Abstract
Radiotheranostics are designed by labeling targeting (bio)molecules with radionuclides for diagnostic or therapeutic application. Because the pharmacokinetics of therapeutic compounds play a pivotal role, chemically closely related imaging agents are used to evaluate the overall feasibility of the therapeutic approach. "Theranostic relatives" that utilize different elements are frequently used in clinical practice. However, variations in pharmacokinetics, biodistribution, and target affinity due to different chemical properties of the radioisotopes remain as hurdles to the design of optimized clinical tools. Herein, the design and synthesis of structurally identical compounds, either for diagnostic (18 F and a stable metal isotope) or therapeutic application (radiometal and stable 19 F), are reported. Such "molecular twins" have been prepared by applying a modular strategy based on click chemistry that enables efficient radiolabeling of compounds containing a metal complex and a tetrazine moiety. This additional bioorthogonal functionality can be used for subsequent radiolabeling of (bio)molecules or pretargeting approaches, which is demonstrated in vitro.
Collapse
Affiliation(s)
- Veronika Rosecker
- Institute of Applied Synthetic ChemistryTU Wien (Vienna University of Technology)Getreidemarkt 91060ViennaAustria
| | - Christoph Denk
- Institute of Applied Synthetic ChemistryTU Wien (Vienna University of Technology)Getreidemarkt 91060ViennaAustria
| | - Melanie Maurer
- Institute of Applied Synthetic ChemistryTU Wien (Vienna University of Technology)Getreidemarkt 91060ViennaAustria
| | - Martin Wilkovitsch
- Institute of Applied Synthetic ChemistryTU Wien (Vienna University of Technology)Getreidemarkt 91060ViennaAustria
| | - Severin Mairinger
- Preclinical Molecular ImagingAIT Austrian Institute of Technology2444SeibersdorfAustria
| | - Thomas Wanek
- Preclinical Molecular ImagingAIT Austrian Institute of Technology2444SeibersdorfAustria
| | - Hannes Mikula
- Institute of Applied Synthetic ChemistryTU Wien (Vienna University of Technology)Getreidemarkt 91060ViennaAustria
| |
Collapse
|
4
|
Wright C, Banerjee A, Yan X, Storms-Miller WK, Pugh C. Synthesis of Functionalized Poly(lactic acid) Using 2-Bromo-3-hydroxypropionic Acid. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b00331] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Colin Wright
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325-3909, United States
| | - Abhishek Banerjee
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325-3909, United States
| | - Xiang Yan
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325-3909, United States
| | | | - Coleen Pugh
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325-3909, United States
| |
Collapse
|
5
|
Johnson LC, Shokouhi S, Peterson TE. Reducing multiplexing artifacts in multi-pinhole SPECT with a stacked silicon-germanium system: a simulation study. IEEE TRANSACTIONS ON MEDICAL IMAGING 2014; 33:2342-2351. [PMID: 25055382 PMCID: PMC4565520 DOI: 10.1109/tmi.2014.2340251] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In pinhole single photon emission computed tomography (SPECT), multi-pinhole collimators can increase sensitivity but may lead to projection overlap, or multiplexing, which can cause image artifacts. In this work, we explore whether a stacked-detector configuration with a germanium and a silicon detector, used with 123I (27-32, 159 keV), where little multiplexing occurs in the Si projections, can reduce image artifacts caused by highly-multiplexed Ge projections. Simulations are first used to determine a reconstruction method that combines the Si and Ge projections to maximize image quality. Next, simulations of different pinhole configurations (varying projection multiplexing) in conjunction with digital phantoms are used to examine whether additional Si projections mitigate artifacts from the multiplexing in the Ge projections. Reconstructed images using both Si and Ge data are compared to those using Ge data alone. Normalized mean-square error and normalized standard deviation provide a quantitative evaluation of reconstructed images' error and noise, respectively, and are used to evaluate the impact of the additional nonmultiplexed data on image quality. For a qualitative comparison, the differential point response function is used to examine multiplexing artifacts. Results show that in cases of highly-multiplexed Ge projections, the addition of low-multiplexed Si projections helps to reduce image artifacts both quantitatively and qualitatively.
Collapse
Affiliation(s)
- Lindsay C. Johnson
- Vanderbilt University Institute of Imaging Science and the Department of Radiology and Radiological Sciences, Nashville, TN 37232 USA
| | - Sepideh Shokouhi
- Vanderbilt University Institute of Imaging Science and the Department of Radiology and Radiological Sciences, Nashville, TN 37232 USA
| | - Todd E Peterson
- Vanderbilt University Institute of Imaging Science, the Department of Physics and Astronomy, and the Department of Radiology and Radiological Sciences Nashville, TN 37232 USA
| |
Collapse
|
6
|
Synthesis and in vitro evaluation of novel nortropane derivatives as potential radiotracers for muscarinic m(2) receptors. INTERNATIONAL JOURNAL OF MOLECULAR IMAGING 2011; 2011:709416. [PMID: 21755053 PMCID: PMC3132655 DOI: 10.1155/2011/709416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 03/03/2011] [Accepted: 03/25/2011] [Indexed: 11/18/2022]
Abstract
Disturbances of the cerebral cholinergic neurotransmitter system are present in neurodegenerative disorders. SPECT or PET imaging, using radiotracers that selectively target muscarinic receptor subtypes, may be of value for in vivo evaluation of such conditions. 6β-acetoxynortropane, a potent muscarinic M(2) receptor agonist, has previously demonstrated nanomolar affinity and high selectivity for this receptor. Based on this compound we synthesized four nortropane derivatives that are potentially suitable for SPECT imaging of the M(2) receptor. 6β-acetoxynortropane and the novel derivatives were tested in vitro for affinity to the muscarinic M(1-3) receptors. The original 6β-acetoxynortropane displayed high affinity (K(i) = 70-90 nM) to M(2) receptors and showed good selectivity ratios to the M(1) (65-fold ratio) and the M(3) (70-fold ratio) receptors. All new derivatives showed reduced affinity to the M(2) subtype and loss of subtype selectivity. It is therefore concluded that the newly synthesized derivatives are not suitable for human SPECT imaging of M(2) receptors.
Collapse
|