1
|
Kasprowicz M, Hendler M, Ziółkowski A, Nasr N, Czosnyka M. Analysis of phase shift between pulse oscillations of macro- and microvascular cerebral blood flow in patients with traumatic brain injury. Acta Neurochir (Wien) 2024; 166:321. [PMID: 39093519 PMCID: PMC11297107 DOI: 10.1007/s00701-024-06209-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024]
Abstract
PURPOSE After a traumatic brain injury (TBI), monitoring of both macrovascular and microvascular blood circulation can potentially yield a better understanding of pathophysiology of potential secondary brain lesions. We investigated the changes in phase shift (PS) between cardiac-induced oscillations of cerebral blood flow (CBF) measured at macro (ultrasound Doppler) and microvascular (laser Doppler) level. Further we assessed the impact of intracranial pressure (ICP) on PS in TBI patients. A secondary aim was to compare PS to TCD-derived cerebral arterial time constant (τ), a parameter that reflects the circulatory transit time. METHODS TCD blood flow velocities (FV) in the middle cerebral artery, laser Doppler blood microcirculation flux (LDF), arterial blood pressure (ABP), and ICP were monitored in 29 consecutive patients with TBI. Eight patients were excluded because of poor-quality signals. For the remaining 21 patients (median age = 23 (Q1: 20-Q3: 33); men:16,) data were retrospectively analysed. PS between the fundamental harmonics of FV and LDF signals was determined using spectral analysis. τ was estimated as a product of cerebrovascular resistance and compliance, based on the mathematical transformation of FV and ABP, ICP pulse waveforms. RESULTS PS was negative (median: -26 (Q1: -38-Q3: -15) degrees) indicating that pulse LDF at a heart rate frequency lagged behind TCD pulse. With rising mean ICP, PS became more negative (R = -0.51, p < 0.019) indicating that delay of LDF pulse increases. There was a significant correlation between PS and cerebrovascular time constant (R = -0.47, p = 0.03). CONCLUSIONS Pulse divergence between FV and LDF became greater with elevated ICP, likely reflecting prolonged circulatory travel time.
Collapse
Affiliation(s)
- Magdalena Kasprowicz
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wroclaw, Poland.
| | - Marta Hendler
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Arkadiusz Ziółkowski
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Nathalie Nasr
- Department of Neurology, Poitiers University Hospital, Poitiers, France
- Laboratoire de Neurosciences Expérimentales Et Cliniques, INSERM U-1084, University of Poitiers, Poitiers, France
| | - Marek Czosnyka
- Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
- Institute of Electronic Systems, Faculty of Electronics and Information Technology, Warsaw University of Technology, Warsaw, Poland
| |
Collapse
|
2
|
Sommonte F, Arduino I, Racaniello GF, Lopalco A, Lopedota AA, Denora N. The Complexity of the Blood-Brain Barrier and the Concept of Age-Related Brain Targeting: Challenges and Potential of Novel Solid Lipid-Based Formulations. J Pharm Sci 2021; 111:577-592. [PMID: 34469749 DOI: 10.1016/j.xphs.2021.08.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 11/17/2022]
Abstract
Diseases that affect the Central Nervous System (CNS) are one of the most exciting challenges of recent years, as they are ubiquitous and affect all ages. Although these disorders show different etiologies, all treatments share the same difficulty represented by the Blood-Brain Barrier (BBB). This barrier acts as a protective system of the delicate cerebral microenvironment, isolating it and making extremely arduous delivering drugs to the brain. To overtake the obstacles provided by the BBB it is essential to explore the changes that affect it, to understand how to exploit these findings in the study and design of innovative brain targeted formulations. Interestingly, the concept of age-related targeting could prove to be a winning choice, as it allows to consider the type of treatment according to the different needs and peculiarities depending on the disease and the age of onset. In this review was considered the prospective contribution of lipid-based formulations, namely Solid Lipid Nanoparticles (SLNs) and Nanostructured Lipid Carriers (NLCs), which have been highlighted as able to overcome some limitations of other innovative approaches, thus representing a promising strategy for the non-invasive specific treatment of CNS-related diseases.
Collapse
Affiliation(s)
- Federica Sommonte
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro", 4 Orabona St., 70125, Bari, Italy
| | - Ilaria Arduino
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro", 4 Orabona St., 70125, Bari, Italy
| | | | - Antonio Lopalco
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro", 4 Orabona St., 70125, Bari, Italy
| | - Angela Assunta Lopedota
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro", 4 Orabona St., 70125, Bari, Italy
| | - Nunzio Denora
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro", 4 Orabona St., 70125, Bari, Italy.
| |
Collapse
|
3
|
Beard K, Meaney DF, Issadore D. Clinical Applications of Extracellular Vesicles in the Diagnosis and Treatment of Traumatic Brain Injury. J Neurotrauma 2020; 37:2045-2056. [PMID: 32312151 PMCID: PMC7502684 DOI: 10.1089/neu.2020.6990] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) have emerged as key mediators of cell-cell communication during homeostasis and in pathology. Central nervous system (CNS)-derived EVs contain cell type-specific surface markers and intralumenal protein, RNA, DNA, and metabolite cargo that can be used to assess the biochemical and molecular state of neurons and glia during neurological injury and disease. The development of EV isolation strategies coupled with analysis of multi-plexed biomarker and clinical data have the potential to improve our ability to classify and treat traumatic brain injury (TBI) and resulting sequelae. Additionally, their ability to cross the blood-brain barrier (BBB) has implications for both EV-based diagnostic strategies and for potential EV-based therapeutics. In the present review, we discuss encouraging data for EV-based diagnostic, prognostic, and therapeutic strategies in the context of TBI monitoring and management.
Collapse
Affiliation(s)
- Kryshawna Beard
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David F. Meaney
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Neurosurgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - David Issadore
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
4
|
Corrigan F, Mander KA, Leonard AV, Vink R. Neurogenic inflammation after traumatic brain injury and its potentiation of classical inflammation. J Neuroinflammation 2016; 13:264. [PMID: 27724914 PMCID: PMC5057243 DOI: 10.1186/s12974-016-0738-9] [Citation(s) in RCA: 224] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 09/28/2016] [Indexed: 01/05/2023] Open
Abstract
Background The neuroinflammatory response following traumatic brain injury (TBI) is known to be a key secondary injury factor that can drive ongoing neuronal injury. Despite this, treatments that have targeted aspects of the inflammatory pathway have not shown significant efficacy in clinical trials. Main body We suggest that this may be because classical inflammation only represents part of the story, with activation of neurogenic inflammation potentially one of the key initiating inflammatory events following TBI. Indeed, evidence suggests that the transient receptor potential cation channels (TRP channels), TRPV1 and TRPA1, are polymodal receptors that are activated by a variety of stimuli associated with TBI, including mechanical shear stress, leading to the release of neuropeptides such as substance P (SP). SP augments many aspects of the classical inflammatory response via activation of microglia and astrocytes, degranulation of mast cells, and promoting leukocyte migration. Furthermore, SP may initiate the earliest changes seen in blood-brain barrier (BBB) permeability, namely the increased transcellular transport of plasma proteins via activation of caveolae. This is in line with reports that alterations in transcellular transport are seen first following TBI, prior to decreases in expression of tight-junction proteins such as claudin-5 and occludin. Indeed, the receptor for SP, the tachykinin NK1 receptor, is found in caveolae and its activation following TBI may allow influx of albumin and other plasma proteins which directly augment the inflammatory response by activating astrocytes and microglia. Conclusions As such, the neurogenic inflammatory response can exacerbate classical inflammation via a positive feedback loop, with classical inflammatory mediators such as bradykinin and prostaglandins then further stimulating TRP receptors. Accordingly, complete inhibition of neuroinflammation following TBI may require the inhibition of both classical and neurogenic inflammatory pathways.
Collapse
Affiliation(s)
- Frances Corrigan
- Adelaide Centre for Neuroscience Research, School of Medicine, The University of Adelaide, Adelaide, South Australia, Australia.
| | - Kimberley A Mander
- Adelaide Centre for Neuroscience Research, School of Medicine, The University of Adelaide, Adelaide, South Australia, Australia
| | - Anna V Leonard
- Adelaide Centre for Neuroscience Research, School of Medicine, The University of Adelaide, Adelaide, South Australia, Australia
| | - Robert Vink
- Sansom Institute for Health Research, The University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
5
|
Abstract
OBJECTIVES Based on evidence supporting a potential relation between posttraumatic brain hypoxia and microcirculatory derangements with cell edema, we investigated the effects of the antiedematous agent mannitol on brain tissue oxygenation in a model of diffuse traumatic brain injury. DESIGN Experimental study. SETTING Neurosciences and physiology laboratories. SUBJECTS Adult male Wistar rats. INTERVENTIONS Thirty minutes after diffuse traumatic brain injury (impact-acceleration model), rats were IV administered with either a saline solution (traumatic brain injury-saline group) or 20% mannitol (1 g/kg) (traumatic brain injury-mannitol group). Sham-saline and sham-mannitol groups received no insult. MEASUREMENTS AND MAIN RESULTS Two series of experiments were conducted 2 hours after traumatic brain injury (or equivalent) to investigate 1) the effect of mannitol on brain edema and oxygenation, using a multiparametric magnetic resonance-based approach (n = 10 rats per group) to measure the apparent diffusion coefficient, tissue oxygen saturation, mean transit time, and blood volume fraction in the cortex and caudoputamen; 2) the effect of mannitol on brain tissue PO2 and on venous oxygen saturation of the superior sagittal sinus (n = 5 rats per group); and 3) the cortical ultrastructural changes after treatment (n = 1 per group, taken from the first experiment). Compared with the sham-saline group, the traumatic brain injury-saline group had significantly lower tissue oxygen saturation, brain tissue PO2, and venous oxygen saturation of the superior sagittal sinus values concomitant with diffuse brain edema. These effects were associated with microcirculatory collapse due to astrocyte swelling. Treatment with mannitol after traumatic brain injury reversed all these effects. In the absence of traumatic brain injury, mannitol had no effect on brain oxygenation. Mean transit time and blood volume fraction were comparable between the four groups of rats. CONCLUSION The development of posttraumatic brain edema can limit the oxygen utilization by brain tissue without evidence of brain ischemia. Our findings indicate that an antiedematous agent such as mannitol can improve brain tissue oxygenation, possibly by limiting astrocyte swelling and restoring capillary perfusion.
Collapse
|
6
|
Blood-Brain Barrier Disruption Is an Early Event That May Persist for Many Years After Traumatic Brain Injury in Humans. J Neuropathol Exp Neurol 2015; 74:1147-57. [DOI: 10.1097/nen.0000000000000261] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
7
|
Hay JR, Johnson VE, Young AM, Smith DH, Stewart W. Blood-Brain Barrier Disruption Is an Early Event That May Persist for Many Years After Traumatic Brain Injury in Humans. J Neuropathol Exp Neurol 2015. [DOI: 10.1093/jnen/74.12.1147] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
8
|
Evidence to support mitochondrial neuroprotection, in severe traumatic brain injury. J Bioenerg Biomembr 2014; 47:133-48. [PMID: 25358440 DOI: 10.1007/s10863-014-9589-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 10/13/2014] [Indexed: 12/22/2022]
Abstract
Traumatic brain injury (TBI) is still the leading cause of disability in young adults worldwide. The major mechanisms - diffuse axonal injury, cerebral contusion, ischemic neurological damage, and intracranial hematomas have all been shown to be associated with mitochondrial dysfunction in some form. Mitochondrial dysfunction in TBI patients is an active area of research, and attempts to manipulate neuronal/astrocytic metabolism to improve outcomes have been met with limited translational success. Previously, several preclinical and clinical studies on TBI induced mitochondrial dysfunction have focused on opening of the mitochondrial permeability transition pore (PTP), consequent neurodegeneration and attempts to mitigate this degeneration with cyclosporine A (CsA) or analogous drugs, and have been unsuccessful. Recent insights into normal mitochondrial dynamics and into diseases such as inherited mitochondrial neuropathies, sepsis and organ failure could provide novel opportunities to develop mitochondria-based neuroprotective treatments that could improve severe TBI outcomes. This review summarizes those aspects of mitochondrial dysfunction underlying TBI pathology with special attention to models of penetrating traumatic brain injury, an epidemic in modern American society.
Collapse
|
9
|
Chodobski A, Zink BJ, Szmydynger-Chodobska J. Blood-brain barrier pathophysiology in traumatic brain injury. Transl Stroke Res 2013; 2:492-516. [PMID: 22299022 DOI: 10.1007/s12975-011-0125-x] [Citation(s) in RCA: 456] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The blood-brain barrier (BBB) is formed by tightly connected cerebrovascular endothelial cells, but its normal function also depends on paracrine interactions between the brain endothelium and closely located glia. There is a growing consensus that brain injury, whether it is ischemic, hemorrhagic, or traumatic, leads to dysfunction of the BBB. Changes in BBB function observed after injury are thought to contribute to the loss of neural tissue and to affect the response to neuroprotective drugs. New discoveries suggest that considering the entire gliovascular unit, rather than the BBB alone, will expand our understanding of the cellular and molecular responses to traumatic brain injury (TBI). This review will address the BBB breakdown in TBI, the role of blood-borne factors in affecting the function of the gliovascular unit, changes in BBB permeability and post-traumatic edema formation, and the major pathophysiological factors associated with TBI that may contribute to post-traumatic dysfunction of the BBB. The key role of neuroinflammation and the possible effect of injury on transport mechanisms at the BBB will also be described. Finally, the potential role of the BBB as a target for therapeutic intervention through restoration of normal BBB function after injury and/or by harnessing the cerebrovascular endothelium to produce neurotrophic growth factors will be discussed.
Collapse
Affiliation(s)
- Adam Chodobski
- Neurotrauma and Brain Barriers Research Laboratory, Department of Emergency Medicine, Alpert Medical School of Brown University, Providence, RI 02903, USA
| | | | | |
Collapse
|
10
|
Bouzat P, Sala N, Payen JF, Oddo M. Beyond intracranial pressure: optimization of cerebral blood flow, oxygen, and substrate delivery after traumatic brain injury. Ann Intensive Care 2013; 3:23. [PMID: 23837598 PMCID: PMC3716965 DOI: 10.1186/2110-5820-3-23] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 06/25/2013] [Indexed: 02/17/2023] Open
Abstract
Monitoring and management of intracranial pressure (ICP) and cerebral perfusion pressure (CPP) is a standard of care after traumatic brain injury (TBI). However, the pathophysiology of so-called secondary brain injury, i.e., the cascade of potentially deleterious events that occur in the early phase following initial cerebral insult—after TBI, is complex, involving a subtle interplay between cerebral blood flow (CBF), oxygen delivery and utilization, and supply of main cerebral energy substrates (glucose) to the injured brain. Regulation of this interplay depends on the type of injury and may vary individually and over time. In this setting, patient management can be a challenging task, where standard ICP/CPP monitoring may become insufficient to prevent secondary brain injury. Growing clinical evidence demonstrates that so-called multimodal brain monitoring, including brain tissue oxygen (PbtO2), cerebral microdialysis and transcranial Doppler among others, might help to optimize CBF and the delivery of oxygen/energy substrate at the bedside, thereby improving the management of secondary brain injury. Looking beyond ICP and CPP, and applying a multimodal therapeutic approach for the optimization of CBF, oxygen delivery, and brain energy supply may eventually improve overall care of patients with head injury. This review summarizes some of the important pathophysiological determinants of secondary cerebral damage after TBI and discusses novel approaches to optimize CBF and provide adequate oxygen and energy supply to the injured brain using multimodal brain monitoring.
Collapse
Affiliation(s)
- Pierre Bouzat
- Department of Intensive Care Medicine, CHUV-University Hospital, Rue du Bugnon 46, BH 08,623, CH-1011 Lausanne, Switzerland.
| | | | | | | |
Collapse
|
11
|
Changes in brain tissue oxygenation after treatment of diffuse traumatic brain injury by erythropoietin. Crit Care Med 2013; 41:1316-24. [PMID: 23591210 DOI: 10.1097/ccm.0b013e31827ca64e] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES To investigate the effects of recombinant human erythropoietin on brain oxygenation in a model of diffuse traumatic brain injury. DESIGN Adult male Wistar rats. SETTING Neurosciences and physiology laboratories. INTERVENTIONS Thirty minutes after diffuse traumatic brain injury (impact-acceleration model), rats were intravenously administered with either a saline solution or a recombinant human erythropoietin (5000 IU/kg). A third group received no traumatic brain injury insult (sham-operated). MEASUREMENTS AND MAIN RESULTS Three series of experiments were conducted 2 hours after traumatic brain injury to investigate: 1) the effect of recombinant human erythropoietin on brain edema using diffusion-weighted magnetic resonance imaging and measurements of apparent diffusion coefficient (n = 11 rats per group); local brain oxygen saturation, mean transit time, and blood volume fraction were subsequently measured using a multiparametric magnetic resonance-based approach to estimate brain oxygenation and brain perfusion in the neocortex and caudoputamen; 2) the effect of recombinant human erythropoietin on brain tissue PO₂ in similar experiments (n = 5 rats per group); and 3) the cortical ultrastructural changes after treatment (n = 1 rat per group). Compared with the sham-operated group, traumatic brain injury saline rats showed a significant decrease in local brain oxygen saturation and in brain tissue PO₂ alongside brain edema formation and microvascular lumen collapse at H2. Treatment with recombinant human erythropoietin reversed all of these traumatic brain injury-induced changes. Brain perfusion (mean transit time and blood volume fraction) was comparable between the three groups of animals. CONCLUSION Our findings indicate that brain hypoxia can be related to microcirculatory derangements and cell edema without evidence of brain ischemia. These changes were reversed with post-traumatic administration of recombinant human erythropoietin, thus offering new perspectives in the use of this drug in brain injury.
Collapse
|
12
|
6-Hydroxydopamine leads to T2 hyperintensity, decreased claudin-3 immunoreactivity and altered aquaporin 4 expression in the striatum. Behav Brain Res 2012; 232:148-58. [DOI: 10.1016/j.bbr.2012.04.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 03/30/2012] [Accepted: 04/03/2012] [Indexed: 11/23/2022]
|
13
|
Zhou Z, Sun D, Levasseur JE, Merenda A, Hamm RJ, Zhu J, Spiess BD, Bullock MR. Perfluorocarbon emulsions improve cognitive recovery after lateral fluid percussion brain injury in rats. Neurosurgery 2009; 63:799-806; discussion 806-7. [PMID: 18981892 DOI: 10.1227/01.neu.0000325493.51900.53] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Perfluorocarbon emulsions have been shown to improve outcomes in stroke models. This study examined the effect of Oxycyte, a third-generation perfluorocarbon emulsion (04RD33; Synthetic Blood International, Inc., Costa Mesa, CA) treatment on cognitive recovery and mitochondrial oxygen consumption after a moderate lateral fluid percussion injury (LFPI). METHODS Adult male Sprague-Dawley rats (Harlan Bioproducts for Science, Indianapolis, IN) were allocated to 4 groups: 1) LFPI treated with a lower dose of Oxycyte (4.5 mL/kg); 2) LFPI with a higher dose of Oxycyte (9.0 mL/kg); 3) LFPI with saline infusion; and 4) sham animals treated with saline. Fifteen minutes after receiving moderate LFPI or sham surgery, animals were infused intravenously with Oxycyte or saline within 30 minutes while breathing 100% O2. Animals breathed 100% O2 continuously for a total of 4 hours after injury. At 11 to 15 days after LFPI, animals were assessed for cognitive deficits using the Morris water maze test. They were sacrificed at Day 15 after injury for histology to assess hippocampal neuronal cell loss. In a parallel study, mitochondrial oxygen consumption values were measured by the Cartesian diver microrespirometer method. RESULTS We found that injured animals treated with a lower or higher dose of Oxycyte had significant improvement in cognitive function when compared with injured saline-control animals (P < 0.05). Moreover, injured animals that received either dose of Oxycyte had significantly less neuronal cell loss in the hippocampal CA3 region compared with saline-treated animals (P < 0.05). Furthermore, a lower dose of Oxycyte significantly improved mitochondrial oxygen consumption levels (P < 0.05). CONCLUSION The current study demonstrates that Oxycyte can improve cognitive recovery and reduce CA3 neuronal cell loss after traumatic brain injury in rats.
Collapse
Affiliation(s)
- Zhengwen Zhou
- Department of Neurosurgery, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
Head injury remains a major cause of preventable death and serious morbidity in young adults. Based on the available evidence, it appears that a cerebral perfusion pressure of 50 to 70 mm Hg is generally adequate to ensure cerebral oxygen delivery and prevent ischemia. However, evidence suggests that perfusion requirements may not only vary across the injured brain but also differ depending on the time since injury. Such heterogeneity, both within and between subjects, suggests that individualized therapy may be an appropriate treatment strategy. Future studies should aim to assess which groups of patients, and what regional pathophysiological derangements, may benefit with improvements in functional outcome from therapeutic increases or decreases in cerebral perfusion pressure beyond these proposed limits. Such functional improvements may be of immense importance to patients and require formal neurocognitive assessments to discriminate improvements.
Collapse
Affiliation(s)
- Monica Trivedi
- Division of Anaesthesia, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Jonathan P. Coles
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom, Division of Anaesthesia, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom,
| |
Collapse
|
15
|
Joshi S, Ornstein E, Bruce JN. Targeting the brain: rationalizing the novel methods of drug delivery to the central nervous system. Neurocrit Care 2007; 6:200-12. [PMID: 17572864 DOI: 10.1007/s12028-007-0034-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Drug delivery to the brain has remained one of the most vexing problems in translational neuroscience research. This review rationalizes the strategies to target drugs to the brain. Factors such as the speed of intervention, the scale of intervention, the state of BBB, and the permissible risks, will all be critical in deciding how best to deliver drugs to a target site in the brain for a specific clinical situation.
Collapse
Affiliation(s)
- Shailendra Joshi
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University, 630 West 168th Street, P&S Box 46, New York, NY 10032, USA.
| | | | | |
Collapse
|
16
|
Donkin JJ, Turner RJ, Hassan I, Vink R. Substance P in traumatic brain injury. PROGRESS IN BRAIN RESEARCH 2007; 161:97-109. [PMID: 17618972 DOI: 10.1016/s0079-6123(06)61007-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Recent evidence has suggested that neuropeptides, and in particular substance P (SP), may play a critical role in the development of morphological injury and functional deficits following acute insults to the brain. Few studies, however, have examined the role of SP, and more generally, neurogenic inflammation, in the pathophysiology of traumatic brain injury and stroke. Those studies that have been reported suggest that SP is released following injury to the CNS and facilitates the increased permeability of the blood brain barrier, the development of vasogenic edema and the subsequent cell death and functional deficits that are associated with these events. Inhibition of the SP activity, either through inhibition of the neuropeptide release or the use of SP receptor antagonists, have consistently resulted in profound decreases in edema formation and marked improvements in functional outcome. The current review summarizes the role of SP in acute brain injury, focussing on its properties as a neurotransmitter and the potential for SP to adversely affect outcome.
Collapse
Affiliation(s)
- James J Donkin
- Discipline of Pathology, University of Adelaide, Adelaide, South Australia, Australia
| | | | | | | |
Collapse
|
17
|
Levasseur JE, Alessandri B, Reinert M, Clausen T, Zhou Z, Altememi N, Bullock MR. LACTATE, NOT GLUCOSE, UP-REGULATES MITOCHONDRIAL OXYGEN CONSUMPTION BOTHIN SHAM AND LATERAL FLUID PERCUSSED RAT BRAINS. Neurosurgery 2006; 59:1122-30; discussion 1130-1. [PMID: 17143246 DOI: 10.1227/01.neu.0000245581.00908.af] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Failure of energy metabolism after traumatic brain injury may be a major factor limiting outcome. Although glucose is the primary metabolic substrate in the healthy brain, the well documented surge in tissue lactate after traumatic brain injury suggests that lactate may provide an energy need that cannot be met by glucose. We hypothesized, therefore, that administration of lactate or the combination of lactate and supraphysiological oxygen may improve mitochondrial oxidative respiration in the brain after rat fluid percussion injury. We measured oxygen consumption (VO2) to determine what effects glucose, lactate, oxygen, and the combination of lactate and oxygen have on mitochondrial respiration in both injured and uninjured rat brain tissue. METHODS Anesthetized Sprague-Dawley rats were intubated and ventilated with either 0.21 or 1.0 fraction of inspired oxygen (FIO2). Brain tissue from acute sham animals was subjected in vitro to 1.1 mM, 12 mM and 100 mM concentrations of glucose and L-lactate. In another group, injury (fluid percussion injury of 2.5 +/- 0.02 atmospheres) was induced over the left hemisphere. The VO2 of mug amounts of brain tissues were measured in a microrespirometry system (Cartesian diver). RESULTS The VO2 was found to be independent of glucose concentrations, but dose-dependent for lactate. Moreover, the lactate dependent VO2s were all significantly higher than those generated by glucose. Injured rats on FIO2 0.21 had brain tissue VO2 rates that were significantly lower than those of shams or preinjury levels. In injured rats treated with FIO2 1.0, the reduction in VO2 levels was prevented. Injured rats that received an intravenous infusion of 100 mM lactate had VO2 rates that were significantly higher than those obtained with FIO2 1.0. Combined treatment further boosted the lactate generated VO2 rates by approximately 15%. CONCLUSION Glucose sustains mitochondrial respiration at a low level "fixed" rate because, despite increasing its concentration nearly 100-fold, it cannot up-regulate VO2 after fluid percussion injury. Lactate produces a dose-dependent VO2 response, possibly enabling mitochondria to meet the increased energy needs of the injured brain.
Collapse
Affiliation(s)
- Joseph E Levasseur
- Department of Neurosurgery, Virginia Commonwealth University Medical Center, Richmond, Virginia 23298, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Kwon TH, Sun D, Daugherty WP, Spiess BD, Bullock MR. Effect of perfluorocarbons on brain oxygenation and ischemic damage in an acute subdural hematoma model in rats. J Neurosurg 2005; 103:724-30. [PMID: 16266056 DOI: 10.3171/jns.2005.103.4.0724] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Object. This study was conducted to determine whether perfluorocarbons (PFCs) improve brain oxygenation and reduce ischemic brain damage in an acute subdural hematoma (SDH) model in rats.
Methods. Forty adult male Sprague—Dawley rats were allocated to four groups: 1) controls, acute SDH treated with saline and 30% O2; 2) 30-PFC group, acute SDH treated with PFC infusion in 30% O2; 3) 100-O2 group, acute SDH treated with 100% O2; and 4) 100-PFC group, acute SDH treated with PFC plus 100% O2. Ten minutes after the induction of acute SDH, a single dose of PFC was infused and 30% or 100% O2 was administered simultaneously. Four hours later, half of the rats were killed by perfusion for histological study to assess the extent of ischemic brain damage. The other half were used to measure brain tissue oxygen tension (PO2). The volume of ischemic brain damage was 162.4 ± 7.6 mm3 in controls, 165.3 ± 11.3 mm3 in the 30-PFC group, 153.4 ± 17.3 mm3 in the 100-O2 group, and 95.9 ± 12.8 mm3 in the 100-PFC group (41% reduction compared with controls, p = 0.002). Baseline brain tissue PO2 values were approximately 20 mm Hg, and after induction of acute SDH, PO2 rapidly decreased and remained at 1 to 2 mm Hg. Treatment with either PFC or 100% O2 improved brain tissue PO2, with final values of 5.14 and 7.02 mm Hg, respectively. Infusion of PFC with 100% O2 improved brain tissue PO2 the most, with a final value of 15.16 mm Hg.
Conclusions. Data from the current study demonstrated that PFC infusion along with 100% O2 can significantly improve brain oxygenation and reduce ischemic brain damage in acute SDH.
Collapse
Affiliation(s)
- Taek Hyun Kwon
- Department of Neurosurgery, College of Medicine, Korea University, Seoul, Korea
| | | | | | | | | |
Collapse
|
19
|
Coles J. Regional is Chaemia following Acute Head Injury. J Intensive Care Soc 2005. [DOI: 10.1177/175114370500600116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- J.P. Coles
- The Division of Anaesthesia, University of Cambridge, Box 93, Addenbrooke's Hospital, Cambridge CB2 2QQ, UK
| |
Collapse
|
20
|
Szmydynger-Chodobska J, Chung I, Koźniewska E, Tran B, Harrington FJ, Duncan JA, Chodobski A. Increased Expression of Vasopressin V1aReceptors after Traumatic Brain Injury. J Neurotrauma 2004; 21:1090-102. [PMID: 15319008 DOI: 10.1089/0897715041651033] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Experimental evidence obtained in various animal models of brain injury indicates that vasopressin promotes the formation of cerebral edema. However, the molecular and cellular mechanisms underlying this vasopressin action are not fully understood. In the present study, we analyzed the temporal changes in expression of vasopressin V1a receptors after traumatic brain injury (TBI) in rats. In the intact brain, the V1a receptor was expressed in neurons located in all layers of the frontoparietal cortex. The V1a receptor-immunoreactive product was predominantly localized to neuronal nuclei and had both a diffused and punctate staining pattern. The V1a receptors were also expressed in astrocytes, especially in layer 1 of the frontoparietal cortex. In these cells, two distinctive patterns of immunopositive staining for V1a receptors were observed: a diffused cytosolic staining of cell bodies and processes and a clearly punctate staining pattern that was predominantly localized to the astrocytic cell bodies. The real-time reverse-transcriptase polymerase chain reaction analysis of changes in mRNA for the V1a receptor demonstrated that after TBI, there is an early (4 h post-TBI) increase in the number of transcripts in the ipsilateral frontoparietal cortex, when compared to the contralateral hemisphere or the sham-injured rats. This increase in the message was followed by the up-regulation of expression of the V1a receptors at the protein level. This was most evident in cortical astrocytes in the areas surrounding the lesion. The number of the V1a receptor-immunopositive astrocytes in the traumatized parenchyma gradually increased, starting at 8 h and peaking at 4-6 days after TBI. Furthermore, a redistribution of V1a receptors from the astrocytic cell bodies to the astrocytic processes was observed. In addition to astrocytes, an increased expression of V1a receptors was found in the endothelium of both blood microvessels and the large-diameter blood vessels in the frontoparietal cortex ipsilateral to injury. This increase in the V1a receptor expression was apparent between 2 and 4 days after TBI. As early as 1-2 h following the impact, there was also a striking increase in the number of the V1a receptor-immunopositive beaded axonal processes, with greatly enlarged varicosities, that were localized to various areas of the injured parenchyma. It is suggested that the increased expression of V1a receptors plays an important role in the vasopressin-mediated formation of edema in the injured brain.
Collapse
Affiliation(s)
- Joanna Szmydynger-Chodobska
- Department of Clinical Neurosciences, Brown University School of Medicine, Providence, Rhode Island 02903, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Menon DK, Coles JP, Gupta AK, Fryer TD, Smielewski P, Chatfield DA, Aigbirhio F, Skepper JN, Minhas PS, Hutchinson PJ, Carpenter TA, Clark JC, Pickard JD. Diffusion limited oxygen delivery following head injury*. Crit Care Med 2004; 32:1384-90. [PMID: 15187523 DOI: 10.1097/01.ccm.0000127777.16609.08] [Citation(s) in RCA: 239] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To use a range of techniques to explore diffusion limitation as a mechanism of cellular hypoxia in the setting of head injury. DESIGN A prospective interventional study. SETTING A specialist neurocritical care unit. PATIENTS Thirteen patients within 7 days of closed head injury underwent imaging studies. Tissue for ultrastructural studies was obtained from a cohort of seven patients who required surgery. INTERVENTIONS Cerebral tissue PO2 (PtO2) was obtained using a multiple-variable sensor, and images of oxygen extraction fraction (OEF), derived from positron emission tomography, were used to calculate cerebral venous PO2 (PvO2). These data were used to derive the PvO2-PtO2 gradient in a region of interest around the sensor, which provided a measure of the efficiency of microvascular oxygen delivery. Measurements were repeated after PaCO2 was reduced from 37 +/- 3 to 29 +/- 3 torr (4.9 +/- 0.4 to 3.9 +/- 0.4 kPa) to assess the ability of the microvasculature to increase oxygen unloading during hypocapnia-induced hypoperfusion. Pericontusional tissue was submitted to electron microscopy to illustrate the structural correlates of physiologic findings. MEASUREMENTS AND MAIN RESULTS Tissue regions with hypoxic levels of PtO2 (<10 torr) had similar levels of PvO2 compared with nonhypoxic areas and hence displayed larger PvO2-PtO2 gradients (27 +/- 2 vs. 9 +/- 8 torr, p <.001). Despite similar cerebral blood flow reductions with hyperventilation, hypoxic regions achieved significantly smaller OEF increases compared with normoxic regions (7 +/- 5 vs. 16 +/- 6 %, p <.05). Pericontusional tissue showed varying degrees of endothelial swelling, microvascular collapse, and perivascular edema. CONCLUSIONS Increased diffusion barriers may reduce cellular oxygen delivery following head injury and attenuate the ability of the brain to increase oxygen extraction in response to hypoperfusion. Global or regional OEF underestimates tissue hypoxia due to such mechanisms.
Collapse
Affiliation(s)
- David K Menon
- Division of Anaesthesia, and the Wolfson Brain Imaging Centre, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Daugherty WP, Levasseur JE, Sun D, Spiess BD, Bullock MR. Perfluorocarbon Emulsion Improves Cerebral Oxygenation and Mitochondrial Function after Fluid Percussion Brain Injury in Rats. Neurosurgery 2004; 54:1223-30; discussion 1230. [PMID: 15113478 DOI: 10.1227/01.neu.0000119238.68938.5d] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2003] [Accepted: 01/14/2004] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Cerebral ischemia is a common secondary sequela of traumatic brain injury (TBI). Experimental models of stroke have demonstrated reductions in ischemia after perfluorocarbon (PFC) administration; however, there are no published reports of PFC efficacy after TBI. The current study analyzed the effect of the PFC emulsion Oxygent (AF0144; Alliance Pharmaceutical Corp., San Diego, CA) on cerebral oxygenation, mitochondrial redox potential, and free radical formation after lateral fluid percussion injury. METHODS After fluid percussion injury, five 2.25 ml/kg doses of PFC or saline were administered to rats breathing 100% O(2), and oxygen tension was recorded. In a second experiment, a single bolus (11.25 ml/kg) of PFC or saline was given after injury, and redox potential and free radical formation were measured at 1 or 4 hours with Alamar blue dye and dihydrorhodamine 123, respectively. RESULTS Cerebral oxygen tension was significantly increased in both injured and sham animals treated with 11.25 ml/kg of PFC as compared with saline (P < 0.05). Likewise, PFC significantly increased mitochondrial redox potential as compared with saline at 4 hours after injury (P < 0.01). Mitochondrial peroxynitrite and peroxide production also increased with the administration of PFC (P < 0.05). CONCLUSION The current study demonstrates that a PFC emulsion can significantly increase cerebral oxygenation after TBI and enhance mitochondrial function at 4 hours after injury as compared with saline. This study demonstrates a new therapeutic potential for PFC to enhance cerebral oxygenation and aerobic metabolism after TBI. However, the increased free radical formation with high-dose PFCs suggests the need for further studies combining PFCs with free radical scavengers.
Collapse
Affiliation(s)
- Wilson P Daugherty
- Departments of Neurosurgery and Physiology, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | | | | | | | | |
Collapse
|
23
|
Rodríguez-Baeza A, Reina-de la Torre F, Poca A, Martí M, Garnacho A. Morphological features in human cortical brain microvessels after head injury: a three-dimensional and immunocytochemical study. THE ANATOMICAL RECORD. PART A, DISCOVERIES IN MOLECULAR, CELLULAR, AND EVOLUTIONARY BIOLOGY 2003; 273:583-93. [PMID: 12808643 DOI: 10.1002/ar.a.10069] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We studied the morphology of cortical microvessels in the brains of 10 patients who had died after receiving a traumatic head injury (THI). Scanning electron microscopy (SEM) of vascular corrosion casts, confocal microscopy of histological sections after immunocytochemistry, and detection of apoptosis by terminal dUTP nick end labeling (TUNEL) were used. Microvascular casts showed an angioarchitectonic distribution that was defined as normal according to results obtained in a previous, nontraumatic series of subjects. However, when we compared them with previous works, the cast surface of some of the microvessels showed three types of morphological alterations: longitudinal folds, sunken surfaces with craters, and a significant flattening with reduction of lumen. The vessels that were primarily affected were the arterioles and capillaries of the middle and deep cortical vascular zones. Immunostaining with the monoclonal antibody MAS-336 against endothelial cells also showed the presence of longitudinal folds with a thinning of the vascular lumen, cytoplasmic round bodies, and a thickening of the endothelial cell membrane. The TUNEL technique revealed a positive staining of some endothelial cells. The structural alterations we observed indicate that microvessels undergo endothelial cell damage after THI. We suggest that this kind of lesion and the secondary functional injury to the blood-brain barrier (BBB) could play an important role in the development of the secondary lesions that these patients show in the subacute phase.
Collapse
Affiliation(s)
- Alfonso Rodríguez-Baeza
- Department of Morphological Sciences, Anatomy and Embryology Unit, Faculty of Medicine, Autonomous University of Barcelona, Barcelona, Spain.
| | | | | | | | | |
Collapse
|
24
|
Kaplanski J, Pruneau D, Asa I, Artru AA, Azez A, Ivashkova Y, Rudich Z, Shapira Y. LF 16-0687 Ms, a bradykinin B2 receptor antagonist, reduces brain edema and improves long-term neurological function recovery after closed head trauma in rats. J Neurotrauma 2002; 19:953-64. [PMID: 12225655 DOI: 10.1089/089771502320317104] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Bradykinin is an endogenous inflammatory agent that enhances vascular permeability and produces tissue edema. We investigated whether LF 16-0687 Ms, a potent nonpeptide antagonist of bradykinin type-2 (B(2)) receptor, was able to reduce brain swelling and to improve the recovery of neurological function following closed head trauma (CHT) in rats. In dose-effect studies, LF 16-0687 Ms doses of 0.75-4.5 mg/kg given 1 h after trauma significantly reduced the development of edema in the injured hemisphere by a maximum of 70%. It had no effect on the brain water content of sham-operated rats. LF 16-0687 Ms also significantly improved neurological recovery evaluated by a Neurological Severity Score (NSS) based on motor, reflex, and behavioral tests. In time-window studies LF 16-0687 Ms (2.25 mg/kg) was given 1, 2, 4, and 10 h after CHT. The extent of edema was significantly reduced when LF 16-0687 Ms was given 1 h (-45%), 2 h (-52%), and 4 h (-63%) but not 10 h (-24%) after CHT. Given at any time-point, LF 16-0687 Ms significantly improved the recovery of the NSS at 24 h. In duration of treatment studies, rats tended to recover normal neurological function over 14 days after CHT. However, time to recovery was longer in severely than in moderately injured animals, unless they were treated with LF 16-0687 Ms. This study provides further evidence that blockade of bradykinin B(2) receptors represents a potential effective approach to the treatment of focal cerebral contusions.
Collapse
Affiliation(s)
- Jakob Kaplanski
- Department of Pharmacology, Soroka Medical Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Librizzi L, Janigro D, De Biasi S, de Curtis M. Blood-brain barrier preservation in the in vitro isolated guinea pig brain preparation. J Neurosci Res 2001; 66:289-97. [PMID: 11592126 DOI: 10.1002/jnr.1223] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The morphofunctional preservation of the blood-brain barrier (BBB) was evaluated in the isolated guinea pig brain maintained in vitro by arterial perfusion. Electron microscopy evaluation after 5 hr in vitro demonstrated that cerebral capillaries and BBB specializations in this preparation retain features compatible with structural integrity. BBB-impermeable and -permeable atropine derivatives arterially perfused to antagonize carbachol-induced fast oscillatory activity confirmed the functional preservation of the BBB in vitro. To study BBB function further, changes in extracellular K+ concentration during arterial perfusion of a high-K+ solution were measured with K+-sensitive electrodes positioned in the cortex and, as control, at the brain venous outlet, where the solution perfused through the brain arterial system was collected. After 5 hr in vitro, the [K+](o) values measured during high-K+ perfusion in the piriform and entorhinal cortices were 5.02 +/- 0.17 mM (mean +/- SE) and 5.2 +/- 0.21 mM, respectively (n = 6). Coperfusion of the high-K+ solution with the Na+/K+ pump blocker ouabain (10 microM; n = 4) induced consistently spreading depression preceded by a rise in [K+](o). Finally, sporadic, isolated spots of extravasation of the fluorescent marker fluorescein isothiocyanate (FITC)-dextran preferentially circumscribed to deep cortical layers was observed in brains perfused with FITC-dextran after 5 hr in vitro. The study demonstrates that the in vitro isolated guinea pig brain is viable for studying cerebrovascular interactions and BBB permeability of compounds active in the central nervous system.
Collapse
Affiliation(s)
- L Librizzi
- Department of Neurophysiology, Istituto Nazionale Neurologico, via Celoria 11, 20133 Milan, Italy
| | | | | | | |
Collapse
|
26
|
Lin B, Ginsberg MD, Zhao W, Alonso OF, Belayev L, Busto R. Quantitative analysis of microvascular alterations in traumatic brain injury by endothelial barrier antigen immunohistochemistry. J Neurotrauma 2001; 18:389-97. [PMID: 11336440 DOI: 10.1089/089771501750170958] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
Abstract
Endothelial barrier antigen (EBA) is a protein triplet located in the plasma membrane of microvascular endothelium and selectively expressed in the normal nervous system. In this study, microvascular alterations following traumatic brain injury were studied using EBA immunohistochemistry. Anesthetized, physiologically regulated, normothermic Sprague-Dawley rats received moderate (1.5-2.0 atm) parieto-occipital parasagittal fluid-percussion traumatic brain injury (TBI). Control rats were subjected to similar anesthesia and physiological monitoring. Seven days after operative procedures, brains were perfusion-fixed, and coronal sections were reacted for EBA immunohistochemistry using a monoclonal antibody to rat EBA. Selected sections were reacted for isolectin B4 histochemistry. Computerized image analysis was used to compute numbers of EBA-immunopositive vascular profiles and mean vascular profile areas. In control brains, virtually all brain microvessels were clearly and positively immunostained, and antibody binding was specific for blood vessels. In rats with TBI, EBA immunoreactivity was greatly reduced in the zone of cortical contusion. Within the core contusion, fractional areas occupied by vascular profiles were markedly reduced (on average, by 57%), vascular profile counts were diminished, and lectin histochemistry revealed a robust inflammatory response with abundant macrophages. Taken together, these findings were thought to indicate frank microvascular destruction. At adjacent peri-contusional sites, the intensity of EBA immunostaining was also diminished; and vascular profile counts were reduced at adjacent cortical sites and homologous contralateral sites. The latter findings were interpreted as sublethal microvascular alterations possibly related to cerebral edema. The present results confirm that EBA is a specific immunohistochemical marker of normal central nervous system microvessels; that it is suitable for use in formaldehyde-fixed material; and that it is useful in quantitatively assessing microvascular alterations observed at contusional, peri-contusional and more remote sites following traumatic brain injury.
Collapse
Affiliation(s)
- B Lin
- Cerebral Vascular Disease Research Center, Department of Neurology, University of Miami School of Medicine, Florida 33101, USA.
| | | | | | | | | | | |
Collapse
|