1
|
Belmonte M, Foà A, Paolisso P, Bergamaschi L, Gallinoro E, Polimeni A, Scarsini R, Muscoli S, Amicone S, De Vita A, Villano A, Angeli F, Armillotta M, Sucato V, Tremamunno S, Morrone D, Indolfi C, Filardi PP, Ribichini F, Lanza GA, Chieffo A, Barbato E, Pizzi C. Coronary microvascular dysfunction beyond the spectrum of chronic coronary syndromes. Prog Cardiovasc Dis 2024; 87:73-82. [PMID: 39447854 DOI: 10.1016/j.pcad.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 10/19/2024] [Indexed: 10/26/2024]
Abstract
The prevalence of coronary microvascular dysfunction (CMD) beyond the spectrum of chronic coronary syndromes (CCS) is non-negligible, pertaining to pathophysiological and therapeutical implications. Thanks to the availability of accurate and safe non-invasive technique, CMD can be identified as a key player in heart failure, cardiomyopathies, Takotsubo syndrome, aortic stenosis. While CMD is widely recognized as a cause of myocardial ischemia leading to a worse prognosis even in the absence of obstructive coronary artery disease, the characterization of CMD patterns beyond CCS might provide valuable insights on the underlying disease progression, being potentially a "red flag" of adverse cardiac remodeling and a major determinant of response to therapy and outcomes. In this review, we aimed to provide an overview of the latest evidence on the prevalence, mechanistic and prognostic implications of CMD beyond the spectrum of CCS (i.e. heart failure, cardiomyopathies, Takotsubo syndrome, aortic stenosis).
Collapse
Affiliation(s)
- Marta Belmonte
- Department of Advanced Biomedical Sciences, University Federico II, Naples, Italy
| | - Alberto Foà
- Cardiology Unit, Cardiac Thoracic and Vascular Department, IRCCS Azienda Ospedaliera-Universitaria di Bologna; Department of Medical and Surgical Sciences - DIMEC; Alma Mater Studiorum, University of Bologna, Italy
| | - Pasquale Paolisso
- IRCCS Ospedale Galeazzi Sant'Ambrogio, Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Luca Bergamaschi
- Cardiology Unit, Cardiac Thoracic and Vascular Department, IRCCS Azienda Ospedaliera-Universitaria di Bologna; Department of Medical and Surgical Sciences - DIMEC; Alma Mater Studiorum, University of Bologna, Italy
| | - Emanuele Gallinoro
- IRCCS Ospedale Galeazzi Sant'Ambrogio, Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Alberto Polimeni
- Division of Cardiology, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy; Cardiovascular Research Center, Magna Graecia University, Catanzaro, Italy
| | - Roberto Scarsini
- Division of Cardiology, Department of Medicine, University of Verona, Verona, Italy
| | - Saverio Muscoli
- U.O.C. Cardiologia, Fondazione Policlinico "Tor Vergata", Rome, Italy
| | - Sara Amicone
- Cardiology Unit, Cardiac Thoracic and Vascular Department, IRCCS Azienda Ospedaliera-Universitaria di Bologna; Department of Medical and Surgical Sciences - DIMEC; Alma Mater Studiorum, University of Bologna, Italy
| | - Antonio De Vita
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Angelo Villano
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Francesco Angeli
- Cardiology Unit, Cardiac Thoracic and Vascular Department, IRCCS Azienda Ospedaliera-Universitaria di Bologna; Department of Medical and Surgical Sciences - DIMEC; Alma Mater Studiorum, University of Bologna, Italy
| | - Matteo Armillotta
- Cardiology Unit, Cardiac Thoracic and Vascular Department, IRCCS Azienda Ospedaliera-Universitaria di Bologna; Department of Medical and Surgical Sciences - DIMEC; Alma Mater Studiorum, University of Bologna, Italy
| | - Vincenzo Sucato
- Division of Cardiology, University Hospital Paolo Giaccone, Palermo, Italy; Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE) "G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Saverio Tremamunno
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Roma, Italy
| | - Doralisa Morrone
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine-Cardiology Division, University Hospital of Pisa, Italy
| | - Ciro Indolfi
- Istituto di Cardiologia, Dipartimento di Scienze Mediche e Chirurgiche, Università degli Studi "Magna Graecia", Catanzaro, Italy; Mediterranea Cardiocentro, Napoli, Italy
| | | | - Flavio Ribichini
- Division of Cardiology, Department of Medicine, University of Verona, Verona, Italy
| | - Gaetano Antonio Lanza
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Alaide Chieffo
- Vita Salute San Raffaele University, Milan, Italy; Interventional Cardiology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Emanuele Barbato
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Italy
| | - Carmine Pizzi
- Cardiology Unit, Cardiac Thoracic and Vascular Department, IRCCS Azienda Ospedaliera-Universitaria di Bologna; Department of Medical and Surgical Sciences - DIMEC; Alma Mater Studiorum, University of Bologna, Italy.
| |
Collapse
|
2
|
Sabbah M, Olsen NT, Holmvang L, Tilsted HH, Pedersen F, Joshi FR, Sørensen R, Jabbari R, Arslani K, Sondergaard L, Engstrøm T, Lønborg JT. Long-term changes in coronary physiology after aortic valve replacement. EUROINTERVENTION 2023; 18:1156-1164. [PMID: 36239118 PMCID: PMC9940233 DOI: 10.4244/eij-d-22-00621] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 09/01/2022] [Indexed: 02/19/2023]
Abstract
BACKGROUND The detrimental effects of long-standing severe aortic stenosis (AS) often include left ventricular hypertrophy (LVH) and exhaustion of coronary flow reserve (CFR), the reversibility of which is unclear after valve replacement. AIMS Our aims were to 1) investigate whether CFR in the left anterior descending artery (LAD) would improve following valve replacement, and if the change was related to changes in hyperaemic coronary flow (QLAD) and minimal microvascular resistance (Rμ,LAD); and 2) investigate the relationship between changes in CFR and changes in left ventricular mass (LVM) and stroke work (LVSW). METHODS We measured intracoronary bolus thermodilution-derived CFR, and continuous thermodilution-derived QLAD and Rμ,LAD before and 6 months after aortic valve replacement. Cardiac magnetic resonance imaging was used to quantify left ventricular anatomy and function for the calculation of LVM and LVSW. Results: Thirty-four patients were included (17 patients had transcatheter aortic valve implantation; 14 had surgical valve replacement with a bioprosthesis and 3 with a mechanical prosthesis) who underwent invasive assessment in the LAD. CFR increased from 2.5 (interquartile range [IQR] 1.5-3.3) at baseline to 3.1 (IQR 2.2-5.1) at follow-up (p=0.005), despite no significant change in QLAD (230±106 mL/min to 250±101 mL/min; p=0.26) or Rμ,LAD (347 [IQR 247-463] to 287 [IQR 230-456]; p=0.20). When indexed for LVM, QLAD was 39% (IQR 8-98%) higher at follow-up compared with baseline (p<0.001). The improvement in CFR was correlated with ΔLVSW, r= -0.39; p=0.047. Conclusions: CFR in the LAD increased significantly at follow-up although global hyperaemic flow and minimal microvascular resistance remained unchanged. Thus, a decrease in resting flow was the cause of CFR improvement. CFR improvement was associated with reduction in LVSW.
Collapse
Affiliation(s)
- Muhammad Sabbah
- Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Niels T Olsen
- Department of Cardiology, Copenhagen University Hospital - Herlev and Gentofte, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Lene Holmvang
- Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Hans-Henrik Tilsted
- Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Frants Pedersen
- Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Francis Richard Joshi
- Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Rikke Sørensen
- Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Reza Jabbari
- Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Ketina Arslani
- Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Lars Sondergaard
- Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Engstrøm
- Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Jacob Thomsen Lønborg
- Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
3
|
Paolisso P, Gallinoro E, Vanderheyden M, Esposito G, Bertolone DT, Belmonte M, Mileva N, Bermpeis K, De Colle C, Fabbricatore D, Candreva A, Munhoz D, Degrieck I, Casselman F, Penicka M, Collet C, Sonck J, Mangiacapra F, de Bruyne B, Barbato E. Absolute coronary flow and microvascular resistance reserve in patients with severe aortic stenosis. HEART (BRITISH CARDIAC SOCIETY) 2022; 109:47-54. [PMID: 35977812 DOI: 10.1136/heartjnl-2022-321348] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/29/2022] [Indexed: 02/04/2023]
Abstract
BACKGROUND Development of left ventricle (LV) hypertrophy in aortic stenosis (AS) is accompanied by adaptive coronary flow regulation. We aimed to assess absolute coronary flow, microvascular resistance, coronary flow reverse (CFR) and microvascular resistance reserve (MRR) in patients with and without AS. METHODS Absolute coronary flow and microvascular resistance were measured by continuous thermodilution in 29 patients with AS and 29 controls, without AS, matched for age, gender, diabetes and functional severity of epicardial coronary lesions. Myocardial work, total myocardial mass and left anterior descending artery (LAD)-specific mass were quantified by echocardiography and cardiac-CT. RESULTS Patients with AS presented a significantly positive LV remodelling with lower global longitudinal strain and global work efficacy compared with controls. Total LV myocardial mass and LAD-specific myocardial mass were significantly higher in patients with AS (p=0.001). Compared with matched controls, absolute resting flow in the LAD was significantly higher in the AS cohort (p=0.009), resulting into lower CFR and MRR in the AS cohort compared with controls (p<0.005 for both). No differences were found in hyperaemic flow and resting and hyperaemic resistances. Hyperaemic myocardial perfusion (calculated as the ratio between the absolute coronary flow subtended to the LAD, expressed in mL/min/g), but not resting, was significantly lower in the AS group (p=0.035). CONCLUSIONS In patients with severe AS and non-obstructive coronary artery disease, with the progression of LV hypertrophy, the compensatory mechanism of increased resting flow maintains adequate perfusion at rest, but not during hyperaemia. As a consequence, both CFR and MRR are significantly impaired.
Collapse
Affiliation(s)
- Pasquale Paolisso
- Hartcentrum OLV Aalst, Aalst, Belgium.,Department of Advanced Biomedical Sciences, Federico II University Hospital, Napoli, Campania, Italy
| | | | | | - Giuseppe Esposito
- Hartcentrum OLV Aalst, Aalst, Belgium.,Department of Advanced Biomedical Sciences, Federico II University Hospital, Napoli, Campania, Italy
| | - Dario Tino Bertolone
- Hartcentrum OLV Aalst, Aalst, Belgium.,Department of Advanced Biomedical Sciences, Federico II University Hospital, Napoli, Campania, Italy
| | - Marta Belmonte
- Hartcentrum OLV Aalst, Aalst, Belgium.,Centro Cardiologico Monzino Istituto di Ricovero e Cura a Carattere Scientifico, Milano, Lombardia, Italy
| | | | | | - Cristina De Colle
- Hartcentrum OLV Aalst, Aalst, Belgium.,Department of Advanced Biomedical Sciences, Federico II University Hospital, Napoli, Campania, Italy
| | - Davide Fabbricatore
- Hartcentrum OLV Aalst, Aalst, Belgium.,Department of Advanced Biomedical Sciences, Federico II University Hospital, Napoli, Campania, Italy
| | | | - Daniel Munhoz
- Hartcentrum OLV Aalst, Aalst, Belgium.,Department of Advanced Biomedical Sciences, Federico II University Hospital, Napoli, Campania, Italy
| | - Ivan Degrieck
- Cardiovascular and Thoracic Surgery, Hartcentrum OLV Aalst, Aalst, Belgium
| | - Filip Casselman
- Cardiovascular and Thoracic Surgery, Hartcentrum OLV Aalst, Aalst, Belgium
| | - Martin Penicka
- Cardiology, Hartcentrum OLV Aalst, Aalst, Flanderen, Belgium
| | | | | | | | | | - Emanuele Barbato
- Hartcentrum OLV Aalst, Aalst, Belgium .,Department of Advanced Biomedical Sciences, Federico II University Hospital, Napoli, Campania, Italy
| |
Collapse
|
4
|
Sabbah M, Olsen NT, Minkkinen M, Holmvang L, Tilsted H, Pedersen F, Joshi FR, Ahtarovski K, Sørensen R, Linde JJ, Søndergaard L, Pijls N, Lønborg J, Engstrøm T. Microcirculatory Function in Nonhypertrophic and Hypertrophic Myocardium in Patients With Aortic Valve Stenosis. J Am Heart Assoc 2022; 11:e025381. [PMID: 35470693 PMCID: PMC9238586 DOI: 10.1161/jaha.122.025381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Left ventricular hypertrophy (LVH) has often been supposed to be associated with abnormal myocardial blood flow and resistance. The aim of this study was to evaluate and quantify the physiological and pathological changes in myocardial blood flow and microcirculatory resistance in patients with and without LVH attributable to severe aortic stenosis. Methods and Results Absolute coronary blood flow and microvascular resistance were measured using a novel technique with continuous thermodilution and infusion of saline. In addition, myocardial mass was assessed with cardiac magnetic resonance imaging. Fifty-three patients with aortic valve stenosis were enrolled in the study. In 32 patients with LVH, hyperemic blood flow per gram of tissue was significantly decreased compared with 21 patients without LVH (1.26±0.48 versus 1.66±0.65 mL·min-1·g-1; P=0.018), whereas minimal resistance indexed for left ventricular mass was significantly increased in patients with LVH (63 [47-82] versus 43 [35-63] Wood Units·kg; P=0.014). Conclusions Patients with LVH attributable to severe aortic stenosis had lower hyperemic blood flow per gram of myocardium and higher minimal myocardial resistance compared with patients without LVH.
Collapse
Affiliation(s)
- Muhammad Sabbah
- Department of CardiologyCopenhagen University Hospital–RigshospitaletCopenhagenDenmark
| | - Niels Thue Olsen
- Department of CardiologyCopenhagen University Hospital–Herlev and GentofteGentofteDenmark
- Department of Clinical MedicineUniversity of CopenhagenDenmark
| | - Mikko Minkkinen
- Department of CardiologyCopenhagen University Hospital–RigshospitaletCopenhagenDenmark
| | - Lene Holmvang
- Department of CardiologyCopenhagen University Hospital–RigshospitaletCopenhagenDenmark
| | - Hans‐Henrik Tilsted
- Department of CardiologyCopenhagen University Hospital–RigshospitaletCopenhagenDenmark
| | - Frants Pedersen
- Department of CardiologyCopenhagen University Hospital–RigshospitaletCopenhagenDenmark
| | - Francis R. Joshi
- Department of CardiologyCopenhagen University Hospital–RigshospitaletCopenhagenDenmark
| | - Kiril Ahtarovski
- Department of CardiologyCopenhagen University Hospital–RigshospitaletCopenhagenDenmark
| | - Rikke Sørensen
- Department of CardiologyCopenhagen University Hospital–RigshospitaletCopenhagenDenmark
| | - Jesper James Linde
- Department of CardiologyCopenhagen University Hospital–RigshospitaletCopenhagenDenmark
| | - Lars Søndergaard
- Department of CardiologyCopenhagen University Hospital–RigshospitaletCopenhagenDenmark
- Department of Clinical MedicineUniversity of CopenhagenDenmark
| | - Nico Pijls
- Department of CardiologyCatharina HospitalEindhoventhe Netherlands
| | - Jacob Lønborg
- Department of CardiologyCopenhagen University Hospital–RigshospitaletCopenhagenDenmark
| | - Thomas Engstrøm
- Department of CardiologyCopenhagen University Hospital–RigshospitaletCopenhagenDenmark
- Department of Clinical MedicineUniversity of CopenhagenDenmark
| |
Collapse
|
5
|
Corporan D, Onohara D, Amedi A, Saadeh M, Guyton RA, Kumar S, Padala M. Hemodynamic and transcriptomic studies suggest early left ventricular dysfunction in a preclinical model of severe mitral regurgitation. J Thorac Cardiovasc Surg 2021; 161:961-976.e22. [PMID: 33277035 PMCID: PMC7889661 DOI: 10.1016/j.jtcvs.2020.08.119] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 08/06/2020] [Accepted: 08/24/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Primary mitral regurgitation is a valvular lesion in which the left ventricular ejection fraction remains preserved for long periods, delaying a clinical trigger for mitral valve intervention. In this study, we sought to investigate whether adverse left ventricular remodeling occurs before a significant fall in ejection fraction and characterize these changes. METHODS Sixty-five rats were induced with severe mitral regurgitation by puncturing the mitral valve leaflet with a 23-G needle using ultrasound guidance. Rats underwent longitudinal cardiac echocardiography at biweekly intervals and hearts explanted at 2 weeks (n = 15), 10 weeks (n = 15), 20 weeks (n = 15), and 40 weeks (n = 15). Sixty age- and weight-matched healthy rats were used as controls. Unbiased RNA-sequencing was performed at each terminal point. RESULTS Regurgitant fraction was 40.99 ± 9.40%, with pulmonary flow reversal in the experimental group, and none in the control group. Significant fall in ejection fraction occurred at 14 weeks after mitral regurgitation induction. However, before 14 weeks, end-diastolic volume increased by 93.69 ± 52.38% (P < .0001 compared with baseline), end-systolic volume increased by 118.33 ± 47.54% (P < .0001 compared with baseline), and several load-independent pump function indices were reduced. Transcriptomic data at 2 and 10 weeks before fall in ejection fraction indicated up-regulation of myocyte remodeling and oxidative stress pathways, whereas those at 20 and 40 weeks indicated extracellular matrix remodeling. CONCLUSIONS In this rodent model of mitral regurgitation, left ventricular ejection fraction was preserved for a long duration, yet rapid and severe left ventricular dilatation, and biological remodeling occurred before a clinically significant fall in ejection fraction.
Collapse
Affiliation(s)
- Daniella Corporan
- Structural Heart Research and Innovation Laboratory, Carlyle Fraser Heart Center at Emory University Hospital Midtown, Atlanta, Ga
| | - Daisuke Onohara
- Structural Heart Research and Innovation Laboratory, Carlyle Fraser Heart Center at Emory University Hospital Midtown, Atlanta, Ga
| | - Alan Amedi
- Structural Heart Research and Innovation Laboratory, Carlyle Fraser Heart Center at Emory University Hospital Midtown, Atlanta, Ga
| | - Maher Saadeh
- Structural Heart Research and Innovation Laboratory, Carlyle Fraser Heart Center at Emory University Hospital Midtown, Atlanta, Ga
| | - Robert A Guyton
- Structural Heart Research and Innovation Laboratory, Carlyle Fraser Heart Center at Emory University Hospital Midtown, Atlanta, Ga; Division of Cardiothoracic Surgery, Department of Surgery, Emory University School of Medicine, Atlanta, Ga
| | - Sandeep Kumar
- Department of Biomedical Engineering, Emory University School of Medicine, Atlanta, Ga
| | - Muralidhar Padala
- Structural Heart Research and Innovation Laboratory, Carlyle Fraser Heart Center at Emory University Hospital Midtown, Atlanta, Ga; Division of Cardiothoracic Surgery, Department of Surgery, Emory University School of Medicine, Atlanta, Ga.
| |
Collapse
|
6
|
Dedkov EI, Perloff JK, Tomanek RJ, Fishbein MC, Gutterman DD. The Coronary Microcirculation in Cyanotic Congenital Heart Disease. Circulation 2006; 114:196-200. [PMID: 16831984 DOI: 10.1161/circulationaha.105.602771] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background—
Despite an appreciable increase in basal coronary blood flow in cyanotic congenital heart disease, flow reserve remains normal. We hypothesized that preservation of flow reserve resides in remodeling of the coronary microcirculation. Microcirculatory morphometric analyses were performed to test this hypothesis.
Methods and Results—
Necropsy specimens from 4 sources were studied: (1) hearts from patients with Eisenmenger’s syndrome (A; n=5), (2) structurally abnormal hearts with ventricular hypertrophy (B; n=8), (3) structurally normal hearts with ventricular hypertrophy (C; n=6), and (4) normal hearts (D; n=5). To compare responses of the microcirculation to hypoxia versus hypertrophy, sections were taken from the left ventricular free wall, which in group A, was hypoxemic but not hypertrophied; in groups B and C, was hypertrophied but not hypoxemic; and in group D, was neither hypertrophied nor hypoxemic. Coronary arterioles were immunolabeled for smooth muscle α-actin. Measured morphometric parameters included long and short axes, area, and perimeter. Arteriolar length, volume and surface densities were calculated. There was a significant intergroup difference for arteriolar length density (
P
=0.03) and diameter (
P
=0.03). Total length density in group A hearts was markedly lower, but mean arteriolar diameter was significantly greater (34%) compared with group B (
P
=0.03). Arteriolar volume density was similar to that in the other groups.
Conclusions—
Remodeling of the coronary microcirculation is the key mechanism for preservation of flow reserve in cyanotic congenital heart disease. The increase in short axis (diameter) compensated for lower arteriolar length density and was the principal anatomic basis for maintenance of normal flow reserve.
Collapse
Affiliation(s)
- Eduard I Dedkov
- Department of Anatomy and Cell Biology and Cardiovascular Center, University of Iowa Carver College of Medicine, Iowa City, USA
| | | | | | | | | |
Collapse
|
7
|
Slaughter MR, Campbell S, O’Brien PJ. Myocardial concentration of cardiac troponin T as an early discriminator of mechanisms of cardiac hypertrophy. ACTA ACUST UNITED AC 2004. [DOI: 10.1007/s00580-004-0522-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Salih C, Sheppard MN, Ho SY. Morphometry of coronary capillaries in hypoplastic left heart syndrome. Ann Thorac Surg 2004; 77:903-7; discussion 907. [PMID: 14992895 DOI: 10.1016/j.athoracsur.2003.07.046] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/10/2003] [Indexed: 10/26/2022]
Abstract
BACKGROUND Hypoplastic left heart syndrome is a condition characterized by a constellation of morphological malformations affecting the left side of the heart. We studied the capillary network, and quantified the capillarization of the ventricular myocardium, which, if different from normal, may have implications for the success of surgical reconstruction. METHODS The capillaries were detected by immunohistochemistry using a monoclonal antibody (von Willebrand's factor) against the endothelium. Hearts with hypoplastic left heart syndrome have higher mean and maximal diffusion distances from any arbitrary point to the nearest capillary than normal hearts. RESULTS There was no significant difference in the heterogeneity of capillary distribution between the hearts with hypoplastic left heart syndrome and the control heart. Increase in distance was found in both the right and left ventricles. CONCLUSIONS Hearts with hypoplastic left heart syndrome show a reduction in the capillarization of both the right and left ventricles compared with age-matched controls. We believe this may be an inherent abnormality of hypoplastic left heart syndrome that may have implications for ventricular development.
Collapse
Affiliation(s)
- Caner Salih
- Departments of Pediatrics and Histopathology, Imperial College, London, United Kingdom
| | | | | |
Collapse
|
9
|
Osbakken MD. Metabolic regulation of in vivo myocardial contractile function: multiparameter analysis. Mol Cell Biochem 1994; 133-134:13-37. [PMID: 7808451 DOI: 10.1007/bf01267945] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
To gain insight into the mechanisms of myocardial regulation as it relates to the interaction of mechanical and metabolic function and perfusion, intact animal models were instrumented for routine physiological measurements of mechanical function and for measurements of metabolism (31P NMR, NADH fluorescence (redox state)) and perfusion (2H NMR and Laser doppler techniques). These techniques were applied to canine and cat models of volume and/or pressure loading, hypoxia, ischemia and cardiomyopathic states. Data generated using these techniques indicate that myocardial bioenergetic function is quite stable under most loading conditions as long as the heart is not ischemic. In addition, these data indicate that there is no universal regulator and that different biochemical regulators appear to mediate stable function under different physiological and pathophysiological conditions: for example; during hypoxia, NADH redox state appears to play a regulatory role; and in pressure loading, ADP, phosphorylation potential and free energy of ATP hydrolysis as well as NADH redox state appear to be regulatory.
Collapse
Affiliation(s)
- M D Osbakken
- Department of Medicine, University of Pennsylvania, Philadelphia 19104
| |
Collapse
|
10
|
Vassalli G, Hess OM, Krogmann ON, Villari B, Corin WJ, Turina M, Krayenbuehl HP. Coronary artery size in mitral regurgitation and its regression after mitral valve surgery. Am Heart J 1993; 126:1091-8. [PMID: 8237750 DOI: 10.1016/0002-8703(93)90659-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The relationship between coronary artery size and left ventricular (LV) muscle mass was studied in 10 control subjects and in 10 patients with chronic mitral regurgitation before and 28 +/- 15 months after mitral valve surgery. Left and right coronary artery size was determined by quantitative coronary arteriography. Left coronary artery size was significantly increased before surgery (26 mm2) and decreased after operation (23 mm2), but was still larger than in control subjects (14 mm2). The right coronary artery was also enlarged preoperatively (13 mm2; controls = 9 mm2), but was normalized after surgery (11 mm2). A linear correlation was found between LV muscle mass and left (r = 0.88, p < 0.001) and right coronary artery size (r = 0.84, p < 0.001) as well as between right coronary artery size and mean pulmonary artery pressure (r = 0.56, p < 0.01). Thus in chronic mitral regurgitation the enlargement of the left and right coronary artery is proportional to the degree of LV hypertrophy. The increase in right coronary artery size is probably the result of right ventricular pressure overload. Postoperatively there is only partial regression of left coronary artery size but normalization of right coronary artery size.
Collapse
Affiliation(s)
- G Vassalli
- Department of Internal Medicine, Cardiology, BPol 11, University Hospital, Zurich
| | | | | | | | | | | | | |
Collapse
|
11
|
Zubritsky AN. Informational analysis of morphometric parameters of pulmonary heart in chronic nonspecific pulmonary diseases. Pathol Res Pract 1993; 189:42-51. [PMID: 8516216 DOI: 10.1016/s0344-0338(11)80115-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The difference between macro- and micrometric parameters of the right ventricle of the heart was studied in 26 autopsy cases of chronic nonspecific pulmonary disease, and 11 cases of violent death without pulmonary or cardiac disease from the institute of forensic medicine, matching in age and sex with the first group. The results obtained from organ and tissue analysis enabled us to determine the most informative parameters common for compensation and decompensation status of cor pulmonale: Width, wall thickness, and weight of the right ventricle, thickness of cardiomyocytes and cross-section of their nuclei. Analysis of morphometric parameters at the compensation stage revealed a specific diagnostic value in the circumference of the pulmonary artery and the volume density of focal cardiomyocytic lesions. For the decompensation stage, it was possible to gain specific diagnostic information from the length of inflow into the right ventricle, and from the volume and density of sclerotic foci.
Collapse
Affiliation(s)
- A N Zubritsky
- Pathology Department, Central Regional Hospital, Taldom, USSR
| |
Collapse
|
12
|
Schwitter J, Eberli FR, Ritter M, Turina M, Krayenbuehl HP. Myocardial oxygen consumption in aortic valve disease with and without left ventricular dysfunction. Heart 1992; 67:161-9. [PMID: 1531759 PMCID: PMC1024747 DOI: 10.1136/hrt.67.2.161] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE To assess whether and to what extent myocardial oxygen consumption is modified by hypertrophy and alterations in contractility in patients with aortic valve disease and to evaluate the influence of regression of left ventricular hypertrophy and improvement of contractility on myocardial oxygen consumption after successful aortic valve replacement. DESIGN A cohort analytical study to investigate the influence of the "explanatory" variables of myocardial oxygen consumption by multiple regression analysis. A comparison of myocardial oxygen consumption in preoperative patients with that after operation in a group with comparable severity of aortic valve disease before operation (analysis of covariance). PATIENTS In six controls and in 43 patients with aortic valve disease and normal coronary arteries standard haemodynamic variables were measured, left ventricular biplane cineangiography performed, and coronary sinus blood flow measured by thermodilution. The patients were divided into three groups: 19 preoperative patients with normal ejection fraction (greater than or equal to 57%) (group 1); nine preoperative patients with reduced ejection fraction (less than 57%) (group 2); 16 postoperative patients (one with preoperative and postoperative measurements (group 3). Postoperative evaluation was performed 12-51 months after surgery. MAIN OUTCOME MEASUREMENTS Myocardial oxygen consumption/100 g left ventricular muscle mass and its suspected "explanatory" variables--that is, peak systolic left ventricular circumferential wall stress, heart rate, contractility (assessed by left ventricular ejection fraction), and left ventricular muscle mass index. RESULTS Multiple regression analysis showed that the product of peak systolic stress and heart rate (p less than 0.0001) and ejection fraction (p less than 0.03) were positively correlated with myocardial oxygen consumption/100 g and that left ventricular muscle mass index (p less than 0.002) was negatively correlated with myocardial oxygen consumption/100 g (r = 0.72; n = 50 measurements). Myocardial oxygen consumption per 100 g at a given stress-rate product was higher in the controls than in group 1 (hypertrophied ventricles with normal ejection fraction) and was also higher in group 1 than in group 2 (hypertrophied ventricles with reduced ejection fraction). In a subgroup of the postoperative patients with complete regression of hypertrophy and normalisation of contractility, myocardial oxygen consumption per 100 g at a given stress-rate product was indistinguishable from that in controls. CONCLUSIONS When the actual stress-rate product was used as an index of overall left ventricular performance the results suggested that mechanical efficiency was increased in hypertrophied ventricles especially when contractility was decreased. These changes in mechanical efficiency seemed to be reversible during the postoperative course when muscle mass and contractility returned to normal.
Collapse
Affiliation(s)
- J Schwitter
- Medical Policlinic, University Hospital, Zurich, Switzerland
| | | | | | | | | |
Collapse
|
13
|
Liu Z, Hilbelink DR, Crockett WB, Gerdes AM. Regional changes in hemodynamics and cardiac myocyte size in rats with aortocaval fistulas. 1. Developing and established hypertrophy. Circ Res 1991; 69:52-8. [PMID: 1829028 DOI: 10.1161/01.res.69.1.52] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The effects of a large arteriovenous fistula on left and right ventricular hemodynamics and cardiac myocyte size were examined in adult rats at 1 week and 1 month after surgery. Cardiac output, left ventricular function, and right ventricular function were evaluated before obtaining isolated myocytes for cell size measurements. Average heart weight increased 35% at 1 week and 86% at 1 month in rats with fistulas. In general, myocyte hypertrophy was due to a proportional increase in length and width (length/width ratio remained constant). This change was more evident in the large hearts from rats with 1-month fistulas. At both the 1-week and 1-month intervals, the hypertrophic response of right ventricular myocytes was slightly greater than that observed in the left ventricle or interventricular septum. Left ventricular systolic pressure and dP/dtmax were significantly reduced at 1 week but returned to normal after 1 month of overloading. Left ventricular end-diastolic pressure was increased approximately fivefold and twofold at 1 week and 1 month, respectively. Right ventricular systolic pressure and dP/dtmax were increased at both intervals examined. We conclude that severe volume overloading from a large aortocaval fistula in the rat is characterized by 1) depressed left ventricular function at 1 week followed by a large compensatory hypertrophy and near normal function at 1 month, 2) right ventricular pressure overload, and 3) changes in myocyte shape that resemble normal physiological growth.
Collapse
Affiliation(s)
- Z Liu
- Department of Anatomy, University of South Florida, Tampa 33612
| | | | | | | |
Collapse
|
14
|
Abstract
Volume overload cardiac hypertrophy was induced in male Sprague-Dawley rats by experimental aortocaval fistula. This procedure resulted in considerable increases in left ventricular mass (70%) by 21-23 days. Our objective was to study the effect of volume overload on the geometry of coronary capillaries in the left ventricular midmyocardium. Tissue sections were stained according to a protocol that distinguished arteriolar (AC) and venular (VC) capillary regions by color. Morphometric data were then collected and compared between AC and VC regions. In sham-operated controls (CON; n = 8), the tissue area (capillary domain) supplied by a single capillary decreased from AC to VC regions (AC = 505 +/- 5 microns 2: VC = 452 +/- 7 microns 2; P less than 0.01; mean +/- SE). In volume overloaded hearts (VOL; n = 8), only VC domain areas were reduced from control values (P less than 0.01) and the differences between AC and VC regions were preserved (AC = 480 +/- 5 microns 2; VC = 395 +/- 6 microns 2; P less than 0.01). Minimal capillary length was significantly longer in volume overloaded hearts (VOL = 723 +/- 18; CON = 581 +/- 20 microns; P less than 0.01). In the control group, AC segment length was longer than VC segment length (AC = 93 +/- 2 microns: VC = 74 +/- 2 microns; P less than 0.01). In volume overload, AC segment length was also longer than VC segment length, but the divergence between AC and VC regions was increased (AC = 108 +/- 3 microns; VC = 71 +/- 2 microns; P less than 0.01). These changes in capillary geometry may be secondary to specific changes in the arrangement and dimension of myocytes in the left ventricular wall following volume overload hypertrophy.
Collapse
Affiliation(s)
- S Batra
- Department of Physiology, Faculty of Medicine, University of Ottawa, Ontario, Canada
| | | |
Collapse
|
15
|
Franz MR, Bargheer K, Costard-Jäckle A, Miller DC, Lichtlen PR. Human ventricular repolarization and T wave genesis. Prog Cardiovasc Dis 1991; 33:369-84. [PMID: 2028018 DOI: 10.1016/0033-0620(91)90003-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- M R Franz
- Stanford University School of Medicine, CA
| | | | | | | | | |
Collapse
|
16
|
Carabello BA, Nakano K, Ishihara K, Kanazawa S, Biederman RW, Spann JF. Coronary blood flow in dogs with contractile dysfunction due to experimental volume overload. Circulation 1991; 83:1063-75. [PMID: 1825623 DOI: 10.1161/01.cir.83.3.1063] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Abnormalities in coronary blood flow are responsible for stress-induced reductions in contractile function in pressure overload hypertrophy. Less is known about coronary blood flow in volume overload. In this study, we tested the hypothesis that coronary blood flow abnormalities were responsible for contractile abnormalities in experimental volume overload hypertrophy. METHODS AND RESULTS We examined coronary blood flow at rest and during pacing in seven dogs with contractile dysfunction secondary to chronic experimental mitral regurgitation (average regurgitant fraction at 3 months, 0.58 +/- 0.05). After 3 months of mitral regurgitation, left ventricular mass had increased from 92 +/- 8 g at baseline to 118 +/- 10 g (p less than 0.002). The slope of the end-ejection stress-volume relation, one of our indexes used to estimate contractile function, had fallen from 5.4 +/- 0.3 at baseline to 3.0 +/- 0.3 at 3 months of mitral regurgitation (p less than 0.001). In the mitral regurgitation dogs, coronary blood flow at rest was similar to that of control dogs (endocardial blood flow: control dogs, 1.33 +/- 0.12 ml/min/g; mitral regurgitation dogs, 1.16 ml/min/g, p = NS; epicardial blood flow at rest: control dogs, 1.30 +/- 0.16 ml/min/g; mitral regurgitation dogs 1.13 +/- 0.2 ml/min/g, p = NS). With pacing-induced stress, coronary blood flow increased appropriately in control and mitral regurgitation dogs. Ultrasonic dimension gauges placed in the endocardium and epicardium demonstrated no further deterioration in ventricular function during pacing in the mitral regurgitation dogs. In a separate group of five control dogs and five dogs with mitral regurgitation and left ventricular dysfunction, coronary blood flow was examined in the conscious closed-chest state at rest, during adenosine infusion, and during rapid atrial pacing (240 beats/min). Blood flow increased similarly in both groups during pacing and adenosine infusion. CONCLUSIONS We conclude that in dogs with mitral regurgitation that have developed contractile dysfunction, abnormalities in coronary blood flow do not explain the resting contractile dysfunction. Furthermore, studies during pacing-induced stress and coronary vasodilation with adenosine demonstrate that substantial coronary blood flow reserve is present in this type of volume overload hypertrophy.
Collapse
Affiliation(s)
- B A Carabello
- Cardiology Division, Medical University of South Carolina, Charleston 29425
| | | | | | | | | | | |
Collapse
|
17
|
Legault F, Rouleau JL, Juneau C, Rose C, Rakusan K. Functional and morphological characteristics of compensated and decompensated cardiac hypertrophy in dogs with chronic infrarenal aorto-caval fistulas. Circ Res 1990; 66:846-59. [PMID: 2137729 DOI: 10.1161/01.res.66.3.846] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The relation between cardiac hypertrophy, shunt size, myocardial contractility, capillary density, adrenergic responsiveness, and neurohumoral stimulation was evaluated in dogs with compensated and decompensated cardiac hypertrophy caused by an infrarenal aorto-caval shunt. Shunt size varied from 5 to 35 mm2 due to an inability to create a uniform size. Dogs that developed heart failure within 4 months had 25 +/- 2 mm2 shunts, whereas those that developed it after 4 months had 19 +/- 3 mm2 shunts; those that did not develop heart failure had 10 +/- 1 mm2 shunts. Hypertrophy developed at the same rate in all the dogs that developed heart failure, which occurred at a critical heart weight (hypertrophy) for a given load (shunt size). In the dogs with heart failure there was a decrease in myocardial contractility (tension = 5.7 +/- 0.6 vs. 7.3 +/- 0.3 g/mm2, p less than 0.05), a decrease in adrenergic responsiveness (maximal heart rate with isoproterenol = 203 +/- 7 vs. 249 +/- 5 beats/min, p less than 0.01), an increase in circulating neurohormones, and a decrease in urinary sodium excretion (0.4 +/- 0.1 vs. 5.0 +/- 1.3 meq/3 hr, p less than 0.01). None of these abnormalities occurred in dogs with compensated hypertrophy. There were no differences in cardiac capillary density between the control dogs and the dogs with compensated cardiac hypertrophy or heart failure. Thus, it would appear that if heart failure is to develop after an initial toleration of a sudden volume overload, it will develop at a given combination of cardiac hypertrophy and volume overload, with cardiac hypertrophy developing at the same rate in all cases. In this model, once heart failure develops, myocardial contractility and cardiac adrenergic responsiveness are decreased and there is pronounced neurohumoral activation. All these changes are absent in hearts with compensated hypertrophy.
Collapse
Affiliation(s)
- F Legault
- Research Center, Hôpital du Sacré-Coeur de Montréal, Université de Montréal, Canada
| | | | | | | | | |
Collapse
|
18
|
Breisch EA, White FC, Hammond HK, Flynn S, Bloor CM. Myocardial characteristics of thyroxine stimulated hypertrophy. A structural and functional study. Basic Res Cardiol 1989; 84:345-58. [PMID: 2530972 DOI: 10.1007/bf02650869] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The effects of thyroxine-stimulated hypertrophy (TSH) were studied in the porcine left ventricular myocardium. Hypertrophy was produced in six adult pigs by administration of triiodothyronine (1 mg/kg; i.v.) for eight days. Six pigs served as controls. The degree of hypertrophy, determined by left ventricular-to-body weight ratio, was 47%. With hypertrophy there was a significant increase in heart rate, blood pressure and myocardial blood flows. Minimal coronary resistance measured during adenosine infusion was lower in the TSH group compared with the control group. Anatomic studies revealed a balanced proliferative response of mitochondria, myofibrils and the t-tubular system during TSH. Analysis of the microvasculature indicated that the capillary and arteriolar beds both experienced growth which paralleled myocyte growth during TSH. These results suggest that thyroxine administration promotes angiogenesis in the microvascular bed which provides a partial anatomic rationale for the lowered minimal coronary resistance.
Collapse
Affiliation(s)
- E A Breisch
- Department of Surgery, University of California, San Diego, La Jolla
| | | | | | | | | |
Collapse
|
19
|
Thomas DP, McCormick KM, Jenkins RR. Effects of beta-adrenergic blockade on training-induced structural adaptations in rat left ventricle. EUROPEAN JOURNAL OF APPLIED PHYSIOLOGY AND OCCUPATIONAL PHYSIOLOGY 1988; 57:671-6. [PMID: 2901350 DOI: 10.1007/bf01075987] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The study was designed to evaluate the effects of eight weeks of exercise training or training-beta-adrenergic blockade combination on gross and microscopic alterations of rat cardiac muscle and microvascular bed. Rats were randomly assigned to either sedentary control (C), trained (T), metoprolol-trained (MT), or propranolol-trained (PT) groups. The training protocol involved treadmill running for 8 weeks at 0.5 ms-1, 20% grade. Earlier experiments by us showed this training protocol to be effective in producing significant changes in selected skeletal muscle enzyme activities in all trained groups. In the current study an absolute reduction in left ventricular (LV) weight was observed in the PT compared to the C group (0.91 +/- 0.02 vs. 1.04 +/- 0.04 g, P less than 0.05). LV weight in the T and MT groups was no different from C so that LV to BW ratio (mg.g-1) was significantly increased (P less than 0.05) due to a similar reduction in body weight (BW) in all three training groups. Morphometric analysis of LV myocardium revealed no significant differences in myocyte mean cross-sectional area (micron 2) in any of the groups (289 +/- 16-C, 332 +/- 20-T, 281 +/- 44-MT, and 273 +/- 12-PT). Capillary density independently calculated by light and electron microscopy was unchanged by training or training-beta-blockade combination. It was concluded that training of sufficient intensity and duration to produce skeletal muscle enzyme adaptations does not necessarily produce myocyte hypertrophy or alter LV capillarity. Additionally functioning beta-adrenergic receptors appear to play a role in both the central and peripheral adaptations to endurance exercise training.
Collapse
Affiliation(s)
- D P Thomas
- Biodynamics Laboratory, University of Wisconsin, Madison 53706
| | | | | |
Collapse
|
20
|
Osbakken M, Young M, Huddell J, Closter J, Prammer M, Chance B. Acute volume loading studied in cat myocardium with 31P nuclear magnetic resonance. Magn Reson Med 1988; 7:143-55. [PMID: 3398762 DOI: 10.1002/mrm.1910070203] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
To study the effects of acute volume loading on myocardial metabolic and mechanical function, seven cats were volume loaded via anastomosis of the abdominal aorta to the vena cava (AV shunt). Metabolic effects were evaluated with 31P nuclear magnetic resonance (NMR). Mechanical function was evaluated with heart rate X systolic blood pressure product (HR X SBP). Shunts were opened for 1-2 h during which time phosphocreatine (PCr), adenosine triphosphate (ATP), inorganic phosphate (Pi), and HR X SBP were monitored. High-energy phosphate energetics as determined by Pi/PCr and PCr/ATP ratios were correlated with HR X SBP. Opening of the AV shunts was associated with an increase (four cats) or a decrease (three cats) in HR X SBP. Pi/PCr ratios increased and PCr/ATP ratios decreased in cats with an increase in HR X SBP. In cats with a decrease in HR X SBP, Pi/PCr and PCr/ATP generally did not change significantly. In summary, acute volume loading could be associated with an increase or decrease in myocardial external work as evaluated by HR X SBP, accompanied by metabolic changes suggestive of appropriate induction of state 3 metabolism (active metabolic state: ADP + Pi----ATP) in those cats with increased mechanical work, and minimal change in bioenergetics in cats with no or minimal increase in mechanical work. These induced metabolic responses to myocardial mechanical loading can be evaluated with 31P NMR techniques and may provide insight into in vivo metabolic control mechanisms.
Collapse
Affiliation(s)
- M Osbakken
- Department of Anesthesia, University of Pennsylvania, Philadelphia 19104
| | | | | | | | | | | |
Collapse
|
21
|
Affiliation(s)
- R J Bache
- Department of Medicine, University of Minnesota, Minneapolis
| |
Collapse
|
22
|
Abstract
Physiologic hypertrophy resulting from intense athletic participation has been reported to result in normal, reduced and augmented overall left ventricular performance. Rather than representing true differences in left ventricular contractility, these data may reflect the variable degree of ventricular dilation and increased wall thickness that occur with different types of exercise. As such, the resultant altered loading conditions may diminish the ability of the usual indexes of left ventricular function to accurately assess the left ventricular contractile state. Therefore, three groups of elite athletes with distinct patterns of myocardial hypertrophy were investigated utilizing recently developed load-independent contractility indexes. Age-matched control subjects (n = 33) were compared with 11 swimmers, 11 long-distance runners and 11 power lifters. Rest echocardiogram, phonocardiogram and calibrated carotid pulse tracing were used to calculate left ventricular dimensions, wall thickness, mass, fractional shortening, velocity of shortening and mean, peak and end-systolic wall stresses and the stress-time and minute stress-time integrals. Compared with control subjects, all athletes had increased left ventricular mass, even when values were normalized for body surface area. Runners had a dilated left ventricular and normal wall thickness, swimmers had a mildly dilated ventricle with increased wall thickness and power lifters had normal cavity size with markedly increased wall thickness. Peak systolic wall stress was normal in runners and swimmers and reduced in power lifters, whereas end-systolic stress was low in swimmers and power lifters and normal in runners. The minute stress-time integral, a measure of myocardial oxygen consumption, was normal in runners and swimmers but was significantly reduced in lifters.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
23
|
|