1
|
Bonfio C. The curious case of peptide-coordinated iron-sulfur clusters: prebiotic and biomimetic insights. Dalton Trans 2021; 50:801-807. [PMID: 33351009 DOI: 10.1039/d0dt03947k] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Iron-sulfur clusters are among the most ancient biological cofactors and are thought to have had an ancient role in mediating the chemical reactions that led to life. Two different, yet complementary approaches, based on bioinorganic chemistry and prebiotic chemistry, have already provided important clues for the formation and activity of biomimetic iron-sulfur analogues in aqueous solution. This frontier article discusses the efforts spent in the last 50 years in the context of peptide-coordinated iron-sulfur clusters, with a particular emphasis on insightful contributions from recent prebiotic chemistry research.
Collapse
Affiliation(s)
- Claudia Bonfio
- Medical Research Council Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
2
|
Sarkar S, Das S, Dagar S, Joshi MP, Mungi CV, Sawant AA, Patki GM, Rajamani S. Prebiological Membranes and Their Role in the Emergence of Early Cellular Life. J Membr Biol 2020; 253:589-608. [PMID: 33200235 DOI: 10.1007/s00232-020-00155-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 11/08/2020] [Indexed: 01/30/2023]
Abstract
Membrane compartmentalization is a fundamental feature of contemporary cellular life. Given this, it is rational to assume that at some stage in the early origins of life, membrane compartments would have potentially emerged to form a dynamic semipermeable barrier in primitive cells (protocells), protecting them from their surrounding environment. It is thought that such prebiological membranes would likely have played a crucial role in the emergence and evolution of life on the early Earth. Extant biological membranes are highly organized and complex, which is a consequence of a protracted evolutionary history. On the other hand, prebiotic membrane assemblies, which are thought to have preceded sophisticated contemporary membranes, are hypothesized to have been relatively simple and composed of single chain amphiphiles. Recent studies indicate that the evolution of prebiotic membranes potentially resulted from interactions between the membrane and its physicochemical environment. These studies have also speculated on the origin, composition, function and influence of environmental conditions on protocellular membranes as the niche parameters would have directly influenced their composition and biophysical properties. Nonetheless, the evolutionary pathways involved in the transition from prebiological membranes to contemporary membranes are largely unknown. This review critically evaluates existing research on prebiotic membranes in terms of their probable origin, composition, energetics, function and evolution. Notably, we outline new approaches that can further our understanding about how prebiotic membranes might have evolved in response to relevant physicochemical parameters that would have acted as pertinent selection pressures on the early Earth.
Collapse
Affiliation(s)
- Susovan Sarkar
- Department of Biology, Indian Institute of Science Education and Research, Pune, 411008, India
| | - Souradeep Das
- Department of Biology, Indian Institute of Science Education and Research, Pune, 411008, India
| | - Shikha Dagar
- Department of Biology, Indian Institute of Science Education and Research, Pune, 411008, India
| | - Manesh Prakash Joshi
- Department of Biology, Indian Institute of Science Education and Research, Pune, 411008, India
| | - Chaitanya V Mungi
- Department of Biology, Indian Institute of Science Education and Research, Pune, 411008, India
| | - Anupam A Sawant
- Department of Biology, Indian Institute of Science Education and Research, Pune, 411008, India
| | - Gauri M Patki
- Department of Biology, Indian Institute of Science Education and Research, Pune, 411008, India
| | - Sudha Rajamani
- Department of Biology, Indian Institute of Science Education and Research, Pune, 411008, India.
| |
Collapse
|
3
|
Jackson JB. Ancient Living Organisms Escaping from, or Imprisoned in, the Vents? Life (Basel) 2017; 7:E36. [PMID: 28914790 PMCID: PMC5617961 DOI: 10.3390/life7030036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 09/11/2017] [Accepted: 09/11/2017] [Indexed: 12/18/2022] Open
Abstract
We have recently criticised the natural pH gradient hypothesis which purports to explain how the difference in pH between fluid issuing from ancient alkali vents and the more acidic Hadean ocean could have driven molecular machines that catalyse reactions that are useful in prebiotic and autotrophic chemistry. In this article, we temporarily suspend our earlier criticism while we consider difficulties for primitive organisms to have managed their energy supply and to have left the vents and become free-living. We point out that it may have been impossible for organisms to have acquired membrane-located proton (or sodium ion) pumps to replace the natural pH gradient, and independently to have driven essential molecular machines such as the ATP synthase. The volumes of the ocean and of the vent fluids were too large for a membrane-located pump to have generated a significant ion concentration gradient. Our arguments apply to three of the four concurrent models employed by the proponents of the natural pH gradient hypothesis. A fourth model is exempt from these arguments but has other intrinsic difficulties that we briefly consider. We conclude that ancient organisms utilising a natural pH gradient would have been imprisoned in the vents, unable to escape and become free-living.
Collapse
Affiliation(s)
- J Baz Jackson
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| |
Collapse
|
4
|
Jackson JB. Natural pH Gradients in Hydrothermal Alkali Vents Were Unlikely to Have Played a Role in the Origin of Life. J Mol Evol 2016; 83:1-11. [PMID: 27534947 PMCID: PMC4999464 DOI: 10.1007/s00239-016-9756-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 08/09/2016] [Indexed: 12/01/2022]
Abstract
The hypothesis that a natural pH gradient across inorganic membranes lying between the ocean and fluid issuing from hydrothermal alkali vents provided energy to drive chemical reactions during the origin of life has an attractive parallel with chemiosmotic ATP synthesis in present-day organisms. However, arguments raised in this review suggest that such natural pH gradients are unlikely to have played a part in life’s origin. There is as yet no evidence for thin inorganic membranes holding sharp pH gradients in modern hydrothermal alkali vents at Lost City near the Mid-Atlantic Ridge. Proposed models of non-protein forms of the H+-pyrophosphate synthase that could have functioned as a molecular machine utilizing the energy of a natural pH gradient are unsatisfactory. Some hypothetical designs of non-protein motors utilizing a natural pH gradient to drive redox reactions are plausible but complex, and such motors are deemed unlikely to have assembled by chance in prebiotic times. Small molecular motors comprising a few hundred atoms would have been unable to function in the relatively thick (>1 μm) inorganic membranes that have hitherto been used as descriptive models for the natural pH gradient hypothesis. Alternative hypotheses for the evolution of chemiosmotic systems following the emergence of error-prone gene replication and translation are more likely to be correct.
Collapse
Affiliation(s)
- J Baz Jackson
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
5
|
Francis BR. The Hypothesis that the Genetic Code Originated in Coupled Synthesis of Proteins and the Evolutionary Predecessors of Nucleic Acids in Primitive Cells. Life (Basel) 2015; 5:467-505. [PMID: 25679748 PMCID: PMC4390864 DOI: 10.3390/life5010467] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 02/02/2015] [Indexed: 12/22/2022] Open
Abstract
Although analysis of the genetic code has allowed explanations for its evolution to be proposed, little evidence exists in biochemistry and molecular biology to offer an explanation for the origin of the genetic code. In particular, two features of biology make the origin of the genetic code difficult to understand. First, nucleic acids are highly complicated polymers requiring numerous enzymes for biosynthesis. Secondly, proteins have a simple backbone with a set of 20 different amino acid side chains synthesized by a highly complicated ribosomal process in which mRNA sequences are read in triplets. Apparently, both nucleic acid and protein syntheses have extensive evolutionary histories. Supporting these processes is a complex metabolism and at the hub of metabolism are the carboxylic acid cycles. This paper advances the hypothesis that the earliest predecessor of the nucleic acids was a β-linked polyester made from malic acid, a highly conserved metabolite in the carboxylic acid cycles. In the β-linked polyester, the side chains are carboxylic acid groups capable of forming interstrand double hydrogen bonds. Evolution of the nucleic acids involved changes to the backbone and side chain of poly(β-d-malic acid). Conversion of the side chain carboxylic acid into a carboxamide or a longer side chain bearing a carboxamide group, allowed information polymers to form amide pairs between polyester chains. Aminoacylation of the hydroxyl groups of malic acid and its derivatives with simple amino acids such as glycine and alanine allowed coupling of polyester synthesis and protein synthesis. Use of polypeptides containing glycine and l-alanine for activation of two different monomers with either glycine or l-alanine allowed simple coded autocatalytic synthesis of polyesters and polypeptides and established the first genetic code. A primitive cell capable of supporting electron transport, thioester synthesis, reduction reactions, and synthesis of polyesters and polypeptides is proposed. The cell consists of an iron-sulfide particle enclosed by tholin, a heterogeneous organic material that is produced by Miller-Urey type experiments that simulate conditions on the early Earth. As the synthesis of nucleic acids evolved from β-linked polyesters, the singlet coding system for replication evolved into a four nucleotide/four amino acid process (AMP = aspartic acid, GMP = glycine, UMP = valine, CMP = alanine) and then into the triplet ribosomal process that permitted multiple copies of protein to be synthesized independent of replication. This hypothesis reconciles the “genetics first” and “metabolism first” approaches to the origin of life and explains why there are four bases in the genetic alphabet.
Collapse
Affiliation(s)
- Brian R Francis
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA.
| |
Collapse
|
6
|
Lane N, Martin WF, Raven JA, Allen JF. Energy, genes and evolution: introduction to an evolutionary synthesis. Philos Trans R Soc Lond B Biol Sci 2013; 368:20120253. [PMID: 23754807 DOI: 10.1098/rstb.2012.0253] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Life is the harnessing of chemical energy in such a way that the energy-harnessing device makes a copy of itself. No energy, no evolution. The 'modern synthesis' of the past century explained evolution in terms of genes, but this is only part of the story. While the mechanisms of natural selection are correct, and increasingly well understood, they do little to explain the actual trajectories taken by life on Earth. From a cosmic perspective-what is the probability of life elsewhere in the Universe, and what are its probable traits?-a gene-based view of evolution says almost nothing. Irresistible geological and environmental changes affected eukaryotes and prokaryotes in very different ways, ones that do not relate to specific genes or niches. Questions such as the early emergence of life, the morphological and genomic constraints on prokaryotes, the singular origin of eukaryotes, and the unique and perplexing traits shared by all eukaryotes but not found in any prokaryote, are instead illuminated by bioenergetics. If nothing in biology makes sense except in the light of evolution, nothing in evolution makes sense except in the light of energetics. This Special Issue of Philosophical Transactions examines the interplay between energy transduction and genome function in the major transitions of evolution, with implications ranging from planetary habitability to human health. We hope that these papers will contribute to a new evolutionary synthesis of energetics and genetics.
Collapse
Affiliation(s)
- Nick Lane
- Department of Genetics, Evolution and Environment, University College London, London, UK.
| | | | | | | |
Collapse
|
7
|
Abstract
In addition to its central role in mediating electron-transfer reactions within all living cells, iron undergoes extracellular redox transformations linked to microbial energy generation through utilization of Fe(II) as a source of chemical energy or Fe(III) as an electron acceptor for anaerobic respiration. These processes permit microbial populations and communities to engage in cyclic coupled iron oxidation and reduction within redox transition zones in subsurface environments. In the present paper, I review and synthesize a few case studies of iron-redox cycling in subsurface environments, highlighting key biochemical aspects of the extracellular iron-redox metabolisms involved. Of specific interest are the coupling of iron oxidation and reduction in field and experimental systems that model redox gradients and fluctuations in the subsurface, and novel pathways and organisms involved in the redox cycling of insoluble iron-bearing minerals. These findings set the stage for rapid expansion in our knowledge of the range of extracellular electron-transfer mechanisms utilized by subsurface micro-organisms. The observation that closely coupled oxidation and reduction of iron can take place under conditions common to the subsurface motivates this expansion in pursuit of molecular tools for studying iron-redox cycling communities in situ.
Collapse
|
8
|
Lane N, Allen JF, Martin W. How did LUCA make a living? Chemiosmosis in the origin of life. Bioessays 2010; 32:271-80. [PMID: 20108228 DOI: 10.1002/bies.200900131] [Citation(s) in RCA: 186] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Despite thermodynamic, bioenergetic and phylogenetic failings, the 81-year-old concept of primordial soup remains central to mainstream thinking on the origin of life. But soup is homogeneous in pH and redox potential, and so has no capacity for energy coupling by chemiosmosis. Thermodynamic constraints make chemiosmosis strictly necessary for carbon and energy metabolism in all free-living chemotrophs, and presumably the first free-living cells too. Proton gradients form naturally at alkaline hydrothermal vents and are viewed as central to the origin of life. Here we consider how the earliest cells might have harnessed a geochemically created proton-motive force and then learned to make their own, a transition that was necessary for their escape from the vents. Synthesis of ATP by chemiosmosis today involves generation of an ion gradient by means of vectorial electron transfer from a donor to an acceptor. We argue that the first donor was hydrogen and the first acceptor CO2.
Collapse
Affiliation(s)
- Nick Lane
- Department of Genetics, Evolution and Environment, University College London, London, UK
| | | | | |
Collapse
|
9
|
Abstract
Bioenergetics is central to our understanding of living systems, yet has attracted relatively little attention in origins of life research. This article focuses on energy resources available to drive primitive metabolism and the synthesis of polymers that could be incorporated into molecular systems having properties associated with the living state. The compartmented systems are referred to as protocells, each different from all the rest and representing a kind of natural experiment. The origin of life was marked when a rare few protocells happened to have the ability to capture energy from the environment to initiate catalyzed heterotrophic growth directed by heritable genetic information in the polymers. This article examines potential sources of energy available to protocells, and mechanisms by which the energy could be used to drive polymer synthesis.
Collapse
Affiliation(s)
- David Deamer
- Department of Biomolecular Engineering, Baskin School of Engineering, University of California, Santa Cruz, California 95064, USA.
| | | |
Collapse
|
10
|
McNichol J. Primordial soup, fool's gold, and spontaneous generation: A brief introduction to the theory, history, and philosophy of the search for the origin of life. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2008; 36:255-261. [PMID: 21591204 DOI: 10.1002/bmb.20194] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
This study provides a concise background to the biochemical search for the origin of life, as grounded in the field of prebiotic chemistry. It is intended to provide a good summary of competing theories and place them in a broader context, raising questions about weaknesses in any particular theory. This material is relevant for science educators at all levels, and will stimulate interest in a wide variety of students.
Collapse
Affiliation(s)
- Jesse McNichol
- Department of Biology, Mount Allison University, Sackville, New Brunswick, Canada E4L 1B3.
| |
Collapse
|
11
|
Jepsen SM, Priscu JC, Grimm RE, Bullock MA. The potential for lithoautotrophic life on Mars: application to shallow interfacial water environments. ASTROBIOLOGY 2007; 7:342-54. [PMID: 17480165 DOI: 10.1089/ast.2007.0124] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
We developed a numerical model to assess the lithoautotrophic habitability of Mars based on metabolic energy, nutrients, water availability, and temperature. Available metabolic energy and nutrient sources were based on a laboratory-produced Mars-analog inorganic chemistry. For this specific reference chemistry, the most efficient lithoautotrophic microorganisms would use Fe(2+) as a primary metabolic electron donor and NO(3)(-) or gaseous O(2) as a terminal electron acceptor. In a closed model system, biomass production was limited by the electron donor Fe(2+) and metabolically required P, and typically amounted to approximately 800 pg of dry biomass/ml ( approximately 8,500 cells/ml). Continued growth requires propagation of microbes to new fecund environments, delivery of fresh pore fluid, or continued reaction with the host material. Within the shallow cryosphere--where oxygen can be accessed by microbes and microbes can be accessed by exploration-lithoautotrophs can function within as little as three monolayers of interfacial water formed either by adsorption from the atmosphere or in regions of ice stability where temperatures are within some tens of degrees of the ice melting point. For the selected reference host material (shergottite analog) and associated inorganic fluid chemistry, complete local reaction of the host material potentially yields a time-integrated biomass of approximately 0.1 mg of dry biomass/g of host material ( approximately 10(9) cells/g). Biomass could also be sustained where solutes can be delivered by advection (cryosuction) or diffusion in interfacial water; however, both of these processes are relatively inefficient. Lithoautotrophs in near-surface thin films of water, therefore, would optimize their metabolism by deriving energy and nutrients locally. Although the selected chemistry and associated model output indicate that lithoautotrophic microbial biomass could accrue within shallow interfacial water on Mars, it is likely that these organisms would spend long periods in maintenance or survival modes, with instantaneous biomass comparable to or less than that observed in extreme environments on Earth.
Collapse
Affiliation(s)
- Steven M Jepsen
- Department of Land Resources & Environmental Sciences, Montana State University, Bozeman, Montana 59717, USA
| | | | | | | |
Collapse
|
12
|
de Souza-Barros F, Braz-Levigard R, Ching-San Y, Monte MMB, Bonapace JAP, Montezano V, Vieyra A. Phosphate sorption and desorption on pyrite in primitive aqueous scenarios: relevance of acidic --> alkaline transitions. ORIGINS LIFE EVOL B 2007; 37:27-45. [PMID: 16821096 DOI: 10.1007/s11084-006-9015-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2005] [Accepted: 03/23/2006] [Indexed: 10/24/2022]
Abstract
Phosphate (P(i)) sorption assays onto pyrite in media simulating primeval aquatic scenarios affected by hydrothermal emissions, reveal that acidic conditions favour P(i) sorption whereas mild alkaline media--as well as those simulating sulfur oxidation to SO(2-) (4)--revert this capture process. Several mechanisms relevant to P(i) availability in prebiotic eras are implicated in the modulation of these processes. Those favouring sorption are: (a) hydrophobic coating of molecules, such as acetate that could be formed in the vicinity of hydrothermal vents; (b) water and Mg(2+) bridging in the interface mineral-aqueous media; (c) surface charge neutralization by monovalent cations (Na+ and K+). The increase of both the medium pH and the SO(2-) (4) trapping by the mineral interface would provoke the release of sorbed P(i) due to charge polarization. Moreover it is shown that P(i) self-modulates its sorption, a mechanism that depends on the abundance of SO(2-) (4) in the interface. The relevance of the proposed mechanisms of P(i) capture, release and trapping arises from the need of abundant presence of this molecule for primitive phosphorylations, since--similarly to contemporary aqueous media--inorganic phosphate concentrations in primitive seas should have been low. It is proposed that the presence of sulphide minerals with high affinity to P(i) could have trapped this molecule in an efficient manner, allowing its concentration in specific niches. In these niches, the conditions studied in the present work would have been relevant for its availability in soluble form, specially in primitive insulated systems with pH gradients across the wall.
Collapse
|
13
|
Olasagasti F, Moreno A, Peretó J, Morán F. Energetically plausible model of a self-maintaining protocellular system. Bull Math Biol 2007; 69:1423-45. [PMID: 17235709 DOI: 10.1007/s11538-006-9171-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2005] [Accepted: 09/09/2006] [Indexed: 10/23/2022]
Abstract
Most of the models for cellular origin stress one of these two approaches: "replication-first" or "metabolism-first." The model presented here focuses on the latter, consisting of the combination of kinetic and energetic descriptions of protocellular metabolism. In this model, the membrane plays a very crucial role in the maintenance of the cell and the osmotic stability. The model contains the following elements: structural membrane elements (Lm), transducers (T), molecules (E) that combine enzyme-like activity with the transport of elements through the membrane, energy-rich molecules (A), precursors of each type of molecule (l, t, e, and a, respectively), and an impermeable substance (x). Different kinetic parameters lead to a wide region of stable steady states, as studied through numerical analysis. The system presents stability under different external conditions. Two energy source regimes have been studied: periodic and nonperiodic. The kinetic restrictions that lead to osmotic stability are also addressed in this paper.
Collapse
Affiliation(s)
- Felix Olasagasti
- Dpto. de Bioquímica y Biología Molecular I, Grupo de BioFírica Facultad de CC. Químicas, Universidad Complutense de Madrid, Madrid, Spain
| | | | | | | |
Collapse
|
14
|
Wächtershäuser G. From volcanic origins of chemoautotrophic life to Bacteria, Archaea and Eukarya. Philos Trans R Soc Lond B Biol Sci 2006; 361:1787-806; discussion 1806-8. [PMID: 17008219 PMCID: PMC1664677 DOI: 10.1098/rstb.2006.1904] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The theory of a chemoautotrophic origin of life in a volcanic iron-sulphur world postulates a pioneer organism at sites of reducing volcanic exhalations. The pioneer organism is characterized by a composite structure with an inorganic substructure and an organic superstructure. Within the surfaces of the inorganic substructure iron, cobalt, nickel and other transition metal centres with sulphido, carbonyl and other ligands were catalytically active and promoted the growth of the organic superstructure through carbon fixation, driven by the reducing potential of the volcanic exhalations. This pioneer metabolism was reproductive by an autocatalytic feedback mechanism. Some organic products served as ligands for activating catalytic metal centres whence they arose. The unitary structure-function relationship of the pioneer organism later gave rise to two major strands of evolution: cellularization and emergence of the genetic machinery. This early phase of evolution ended with segregation of the domains Bacteria, Archaea and Eukarya from a rapidly evolving population of pre-cells. Thus, life started with an initial, direct, deterministic chemical mechanism of evolution giving rise to a later, indirect, stochastic, genetic mechanism of evolution and the upward evolution of life by increase of complexity is grounded ultimately in the synthetic redox chemistry of the pioneer organism.
Collapse
|
15
|
Abstract
The First Cell arose in the previously pre-biotic world with the coming together of several entities that gave a single vesicle the unique chance to carry out three essential and quite different life processes. These were: (a) to copy informational macromolecules, (b) to carry out specific catalytic functions, and (c) to couple energy from the environment into usable chemical forms. These would foster subsequent cellular evolution and metabolism. Each of these three essential processes probably originated and was lost many times prior to The First Cell, but only when these three occurred together was life jump-started and Darwinian evolution of organisms began. The replication of informational molecules that made only occasional mistakes allowed evolution to form all the basic components of cellular life. Ribozymes, the first informational molecules, were also catalytic. Energy coupling required the formation of a closed lipid surface to generate and maintain an ion-motive gradient. The closed vesicle partitioned components and avoided dilution within the primordial sea. Closed membranes were essential for the first self-reproducing cell to arise and for its descendants to disperse. Subsequent cellular development after the origin of The First Cell led to the beginnings of intermediary metabolism and membrane transport processes. This long process, subject to strong evolutionary selection, developed the cellular biology that is now shared by all extant organisms.
Collapse
Affiliation(s)
- Arthur L Koch
- Biology Department, Indiana University, Bloomington, IN 47405-6801, USA
| | | |
Collapse
|
16
|
Abstract
When Bacteria, Archaea, and Eucarya separated from each other, a great deal of evolution had taken place. Only then did extensive diversity arise. The bacteria split off with the new property that they had a sacculus that protected them from their own turgor pressure. The saccular wall of murein (or peptidoglycan) was an effective solution to the osmotic pressure problem, but it then was a target for other life-forms, which created lysoymes and beta-lactams. The beta-lactams, with their four-member strained rings, are effective agents in nature and became the first antibiotic in human medicine. But that is by no means the end of the story. Over evolutionary time, bacteria challenged by beta-lactams evolved countermeasures such as beta-lactamases, and the producing organisms evolved variant beta-lactams. The biology of both classes became evident as the pharmaceutical industry isolated, modified, and produced new chemotherapeutic agents and as the properties of beta-lactams and beta-lactamases were examined by molecular techniques. This review attempts to fit the wall biology of current microbes and their clinical context into the way organisms developed on this planet as well as the changes arising since the work done by Fleming. It also outlines the scientific advances in our understanding of this broad area of biology.
Collapse
Affiliation(s)
- Arthur L Koch
- Biology Department, Indiana University, Bloomington, Indiana 47405-6801, USA.
| |
Collapse
|
17
|
Martin W, Russell MJ. On the origins of cells: a hypothesis for the evolutionary transitions from abiotic geochemistry to chemoautotrophic prokaryotes, and from prokaryotes to nucleated cells. Philos Trans R Soc Lond B Biol Sci 2003; 358:59-83; discussion 83-5. [PMID: 12594918 PMCID: PMC1693102 DOI: 10.1098/rstb.2002.1183] [Citation(s) in RCA: 420] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
All life is organized as cells. Physical compartmentation from the environment and self-organization of self-contained redox reactions are the most conserved attributes of living things, hence inorganic matter with such attributes would be life's most likely forebear. We propose that life evolved in structured iron monosulphide precipitates in a seepage site hydrothermal mound at a redox, pH and temperature gradient between sulphide-rich hydrothermal fluid and iron(II)-containing waters of the Hadean ocean floor. The naturally arising, three-dimensional compartmentation observed within fossilized seepage-site metal sulphide precipitates indicates that these inorganic compartments were the precursors of cell walls and membranes found in free-living prokaryotes. The known capability of FeS and NiS to catalyse the synthesis of the acetyl-methylsulphide from carbon monoxide and methylsulphide, constituents of hydrothermal fluid, indicates that pre-biotic syntheses occurred at the inner surfaces of these metal-sulphide-walled compartments, which furthermore restrained reacted products from diffusion into the ocean, providing sufficient concentrations of reactants to forge the transition from geochemistry to biochemistry. The chemistry of what is known as the RNA-world could have taken place within these naturally forming, catalyticwalled compartments to give rise to replicating systems. Sufficient concentrations of precursors to support replication would have been synthesized in situ geochemically and biogeochemically, with FeS (and NiS) centres playing the central catalytic role. The universal ancestor we infer was not a free-living cell, but rather was confined to the naturally chemiosmotic, FeS compartments within which the synthesis of its constituents occurred. The first free-living cells are suggested to have been eubacterial and archaebacterial chemoautotrophs that emerged more than 3.8 Gyr ago from their inorganic confines. We propose that the emergence of these prokaryotic lineages from inorganic confines occurred independently, facilitated by the independent origins of membrane-lipid biosynthesis: isoprenoid ether membranes in the archaebacterial and fatty acid ester membranes in the eubacterial lineage. The eukaryotes, all of which are ancestrally heterotrophs and possess eubacterial lipids, are suggested to have arisen ca. 2 Gyr ago through symbiosis involving an autotrophic archaebacterial host and a heterotrophic eubacterial symbiont, the common ancestor of mitochondria and hydrogenosomes. The attributes shared by all prokaryotes are viewed as inheritances from their confined universal ancestor. The attributes that distinguish eubacteria and archaebacteria, yet are uniform within the groups, are viewed as relics of their phase of differentiation after divergence from the non-free-living universal ancestor and before the origin of the free-living chemoautotrophic lifestyle. The attributes shared by eukaryotes with eubacteria and archaebacteria, respectively, are viewed as inheritances via symbiosis. The attributes unique to eukaryotes are viewed as inventions specific to their lineage. The origin of the eukaryotic endomembrane system and nuclear membrane are suggested to be the fortuitous result of the expression of genes for eubacterial membrane lipid synthesis by an archaebacterial genetic apparatus in a compartment that was not fully prepared to accommodate such compounds, resulting in vesicles of eubacterial lipids that accumulated in the cytosol around their site of synthesis. Under these premises, the most ancient divide in the living world is that between eubacteria and archaebacteria, yet the steepest evolutionary grade is that between prokaryotes and eukaryotes.
Collapse
Affiliation(s)
- William Martin
- Institut für Botanik III, Heinrich-Heine Universitaet Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany.
| | | |
Collapse
|
18
|
Abstract
Acetyl-coenzyme A synthases (ACS) are Ni-Fe-S containing enzymes found in archaea and bacteria. They are divisible into 4 classes. Class I ACS's catalyze the synthesis of acetyl-CoA from CO2 + 2e-, CoA, and a methyl group, and contain 5 types of subunits (alpha, beta, gamma, delta, and epsilon). Class II enzymes catalyze essentially the reverse reaction and have similar subunit composition. Class III ACS's catalyze the same reaction as Class I enzymes, but use pyruvate as a source of CO2 and 2e-, and are composed of 2 autonomous proteins, an alpha 2 beta 2 tetramer and a gamma delta heterodimer. Class IV enzymes catabolize CO to CO2 and are alpha-subunit monomers. Phylogenetic analyses were performed on all five subunits. ACS alpha sequences divided into 2 major groups, including Class I/II sequences and Class III/IV-like sequences. Conserved residues that may function as ligands to the B- and C-clusters were identified. Other residues exclusively conserved in Class I/II sequences may be ligands to additional metal centers in Class I and II enzymes. ACS beta sequences also separated into two groups, but they were less divergent than the alpha's, and the separation was not as distinct. Class III-like beta sequences contained approximately 300 residues at their N-termini absent in Class I/II sequences. Conserved residues identified in beta sequences may function as ligands to active site residues used for acetyl-CoA synthesis. ACS gamma-sequences separated into 3 groups (Classes I, II, and III), while delta-sequences separated into 2 groups (Class I/II and III). These groups are less divergent than those of alpha sequences. ACS epsilon-sequence topology showed greater divergence and less consistency vis-à-vis the other subunits, possibly reflecting reduced evolutionary constraints due to the absence of metal centers. The alpha subunit phylogeny may best reflect the functional diversity of ACS enzymes. Scenarios of how ACS and ACS-containing organisms may have evolved are discussed.
Collapse
Affiliation(s)
- P A Lindahl
- Departments of Chemistry and of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843-3255, USA.
| | | |
Collapse
|
19
|
Tessis AC, Penteado-Fava A, Pontes-Buarque M, De Amorim HS, Bonapace JA, De Souza-Barros F, Vieyra A. Pyrite suspended in artificial sea water catalyzes hydrolysis of adsorbed ATP: enhancing effect of acetate. ORIGINS LIFE EVOL B 1999; 29:361-74. [PMID: 10472626 DOI: 10.1023/a:1006535029107] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Minerals have been implicated in different catalytic processes during chemical evolution. It has been proposed that exergonic synthesis of pyrite (FeS2) could have served to promote the endergonic synthesis of biomonomers in early stages of life formation on Earth. The present study was aimed to investigate whether pyrite can adsorb nucleotides and oxo acids in the potentially mild prebiotic conditions found away from the hot hydrothermal vents. It is shown that pyrite strongly adsorbs adenosine 5'-triphosphate in an artificial medium that simulates primordial aqueous environments, and that adsorption is enhanced in the presence of acetate and in an oxygen-free atmosphere. Moreover, the mineral catalyzes the sequential hydrolysis of the gamma and beta phosphoanhydride bonds of the nucleotide.
Collapse
Affiliation(s)
- A C Tessis
- Department of Medical Biochemistry, Federal University of Rio de Janeiro, Brazil
| | | | | | | | | | | | | |
Collapse
|
20
|
Fisk MR, Giovannoni SJ. Sources of nutrients and energy for a deep biosphere on Mars. ACTA ACUST UNITED AC 1999. [DOI: 10.1029/1999je900010] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
21
|
Abstract
Bacteria in the modern taxonomic sense are one of the three Domains. They must have split from the other two after the bulk of the development of biochemistry and cell biology had taken place. Up to the time of the Last Universal Ancestor (LUA) the world had been monophyletic with little stable diversity. This is to say that as advances took place the older forms were eliminated and diversity was only temporary. Two kinds of events could, in principle, permit stable diversity to arise. One kind occurs when two nearly simultaneous, different advances occur, both of which overcome the same problem. While the previous type would be supplanted, if the new types did not compete with each other, new niches and habitats could lead to stable diversity. The second kind is a saltation or macroevolutionary event that greatly expands the biota and reduces previous constraints and thereby drastically reduces competition; this generally leads to a 'species radiation' and results in the development of a spectrum of biological types some of which persist and do not compete with each other. It is proposed that the two splits to yield the three Domains of Bacteria, Archaea, and Eukarya, resulted from one of each of these two processes leading to diversity. One arose from the consequences of cells accumulating substances from the environment, thus increasing their internal osmotic pressure. This resulted in two nearly simultaneous biological solutions: one (Bacteria) was the development of the external sacculus, i.e. the formation of a stress-bearing exoskeleton. The other (Eukarya) was the development of cytoskeletons and mechanoenzymes, i.e. formation of an endoskeleton. The other event causing diversity was the invention of an effective way to tap a new energy source and allow the biomass to increase extensively permitting a radiation of many different types of organisms. I suggest that this seminal advance was the development of methanogenesis. This caused a short-lived expansion and radiation before oxygen-producing photosynthesis allowed a still more major expansion and decreased the number of methanogens. Some details of these processes are elaborated. In particular, the evolutionary process that permitted the development of a sacculus, interpreted in light of the bacterial physiology of today's organisms is presented. It is argued that many great advances arise by developing a number of totally different processes for other purposes that can then each be modified to combine for yet another purpose.
Collapse
Affiliation(s)
- A L Koch
- Department of Biology, Indiana University, Bloomington 47405-6801, USA
| |
Collapse
|
22
|
Edwards MR. From a soup or a seed? Pyritic metabolic complexes in the origin of life. Trends Ecol Evol 1998; 13:178-81. [DOI: 10.1016/s0169-5347(97)01317-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
23
|
Abstract
The first systems of molecules having the properties of the living state presumably self-assembled from a mixture of organic compounds available on the prebiotic Earth. To carry out the polymer synthesis characteristic of all forms of life, such systems would require one or more sources of energy to activate monomers to be incorporated into polymers. Possible sources of energy for this process include heat, light energy, chemical energy, and ionic potentials across membranes. These energy sources are explored here, with a particular focus on mechanisms by which self-assembled molecular aggregates could capture the energy and use it to form chemical bonds in polymers. Based on available evidence, a reasonable conjecture is that membranous vesicles were present on the prebiotic Earth and that systems of replicating and catalytic macromolecules could become encapsulated in the vesicles. In the laboratory, this can be modeled by encapsulated polymerases prepared as liposomes. By an appropriate choice of lipids, the permeability properties of the liposomes can be adjusted so that ionic substrates permeate at a sufficient rate to provide a source of monomers for the enzymes, with the result that nucleic acids accumulate in the vesicles. Despite this progress, there is still no clear mechanism by which the free energy of light, ion gradients, or redox potential can be coupled to polymer bond formation in a protocellular structure.
Collapse
Affiliation(s)
- D W Deamer
- Department of Chemistry and Biochemistry, University of California, Santa Cruz 95064, USA.
| |
Collapse
|
24
|
Abstract
There are living prokaryotes (Bacteria and Archaea) that have cell sizes that range from 0.02-400 microns3. Over this tremendous range, various abilities to cope with the environment are needed. This review attempts to formulate some of the problems and some of the solutions. The smallest size for a free-living organism is suggested to be largely set by the catalytic efficiency of enzymes and protein synthetic machinery. Because of fluctuations in the environment, cells must maintain machinery to cope with various catastrophes; these mechanisms increase the minimum size of the cell. On the other hand, the largest cell is reasonably assumed to be limited by the ability of diffusion to bring nutrients to the appropriate part of the cell and to dispose of waste products. To explore the limitation imposed by diffusion, analysis is developed of diffusion processes through stirred and unstirred media, diffusion through media that contains obstacles, and the effect of size and shape.
Collapse
Affiliation(s)
- A L Koch
- Department of Biology, Indiana University, Bloomington 47405-6801, USA.
| |
Collapse
|
25
|
Affiliation(s)
- M Lübben
- Lehrstuhl für Biophysik, Ruhr-Universität Bochum, Germany
| |
Collapse
|
26
|
Schmidt CL, Anemüller S, Teixeira M, Schäfer G. Purification and characterization of the Rieske iron-sulfur protein from the thermoacidophilic crenarchaeon Sulfolobus acidocaldarius. FEBS Lett 1995; 359:239-43. [PMID: 7867807 DOI: 10.1016/0014-5793(94)00052-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The previously detected Rieske iron-sulfur protein from the membranes of the thermoacidophile Sulfolobus acidocaldarius [Anemüller, S., et al. (1993) FEBS Lett. 318, 61-64] was purified to electrophoretic homogeneity and the N-terminal amino acids determined. The apparent molecular weight was estimated to be 32 kDa. The reduced protein displays a rhombic EPR spectrum with gxyz = 1.768, 1.895, 2.035. The average g-value of 1.902 is typical for nitrogen ligand-containing clusters. EPR spin quantification and the iron content indicate the presence of one [2Fe-2S] cluster. The purified protein displays ubiquinol cytochrome c reductase activity. The pH optimum of this reaction is temperature dependent and was determined to be pH 7 at 56 degrees C. The results presented in this study clearly prove that the Sulfolobus Rieske protein belongs to the family of the true Rieske iron-sulfur proteins.
Collapse
Affiliation(s)
- C L Schmidt
- Institut für Biochemie, Medizinische Universität zu Lübeck, Germany
| | | | | | | |
Collapse
|
27
|
Russell MJ, Daniel RM, Hall AJ, Sherringham JA. A hydrothermally precipitated catalytic iron sulphide membrane as a first step toward life. J Mol Evol 1994. [DOI: 10.1007/bf00160147] [Citation(s) in RCA: 178] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|