1
|
Hadidi M, Liñán-Atero R, Tarahi M, Christodoulou MC, Aghababaei F. The Potential Health Benefits of Gallic Acid: Therapeutic and Food Applications. Antioxidants (Basel) 2024; 13:1001. [PMID: 39199245 PMCID: PMC11352096 DOI: 10.3390/antiox13081001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 09/01/2024] Open
Abstract
Gallic acid (GA), a phenolic acid found in fruits and vegetables, has been consumed by humans for centuries. Its extensive health benefits, such as antimicrobial, antioxidant, anticancer, anti-inflammatory, and antiviral properties, have been well-documented. GA's potent antioxidant capabilities enable it to neutralize free radicals, reduce oxidative stress, and protect cells from damage. Additionally, GA exerts anti-inflammatory effects by inhibiting inflammatory cytokines and enzymes, making it a potential therapeutic agent for inflammatory diseases. It also demonstrates anticancer properties by inhibiting cancer cell growth and promoting apoptosis. Furthermore, GA offers cardiovascular benefits, such as lowering blood pressure, decreasing cholesterol, and enhancing endothelial function, which may aid in the prevention and management of cardiovascular diseases. This review covers the chemical structure, sources, identification and quantification methods, and biological and therapeutic properties of GA, along with its applications in food. As research progresses, the future for GA appears promising, with potential uses in functional foods, pharmaceuticals, and nutraceuticals aimed at improving overall health and preventing disease. However, ongoing research and innovation are necessary to fully understand its functional benefits, address current challenges, and establish GA as a mainstay in therapeutic and nutritional interventions.
Collapse
Affiliation(s)
- Milad Hadidi
- Institute of Physiological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Rafael Liñán-Atero
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain;
| | - Mohammad Tarahi
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz 7144165186, Iran;
| | | | | |
Collapse
|
2
|
Buyse K, Noten NV, Delezie E, Goethals L, Janssens GPJ, Lourenço M. Chestnut tannins in broiler diets: Affecting intestinal development in different feeding phases. Front Vet Sci 2022; 9:996524. [PMID: 36187828 PMCID: PMC9524144 DOI: 10.3389/fvets.2022.996524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 09/01/2022] [Indexed: 11/21/2022] Open
Abstract
It is known that high doses of various tannins could impair broiler growth, and this seems to be linked to a lowered protein availability. However, effects on protein digestion under the influence of hydrolysable tannins were minimal in previous research and literature. Other possible proposed reasons to explain reduced growth are scarce. In this experiment we studied the effect of hydrolysable tannins on body allometry by using different feeding schemes throughout the rearing period. In total 112 individually reared male Ross 308 broilers received a 3-phase basal diet with chestnut wood extract (+: 2,000 mg/kg) or not (–: 0 mg/kg) (Tanno-SAN®, Sanluc International NV, Belgium). This resulted in 2 groups during the starter period (S+, S–), 4 groups in the grower period (G++, G+−, G–+, G–) and 8 groups in the finisher period (F+++, F++−, F+−+, F+−−, F−++, F−+−, F−−+, F——). Similar to previous studies, growth reduction was also observed in this study. Effects were the largest in broilers that were given the tannins during the grower phase. At the end of each phase 8 broilers per group were euthanized and sampled. Liver, pancreas, pectoralis muscle, intestinal weights and intestinal length were recorded. The largest effects were seen on the intestine. Broilers that received tannins during the grower phase, had longer intestines at the end of the finisher period. Furthermore, histological differences between treatment groups were observed at the end of the grower period. Addition of tannins in the grower phase (G–+, G++) resulted in longer villi, whereas addition of tannins in the starter (G+−, G++) caused deeper crypts at the end of the grower phase, with the group (G–+) having the highest villi-to-crypt ratio. These results tentatively prove that tannins influence intestinal growth, both macroscopically as well as histologically. We hypothesize that the observed growth reduction with tannins could be the result of a changed energy and nutrient partitioning, i.e., more nutrients are directed to intestinal growth than for muscle growth.
Collapse
Affiliation(s)
- Kobe Buyse
- Institute for Agricultural, Fisheries and Food Research, Melle, Belgium
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- *Correspondence: Kobe Buyse
| | - Noémie Van Noten
- Institute for Agricultural, Fisheries and Food Research, Melle, Belgium
- Sanluc International NV, Ghent, Belgium
| | - Evelyne Delezie
- Institute for Agricultural, Fisheries and Food Research, Melle, Belgium
| | | | - Geert P. J. Janssens
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Marta Lourenço
- Institute for Agricultural, Fisheries and Food Research, Melle, Belgium
| |
Collapse
|
3
|
Borah AK, Sharma P, Singh A, Kalita KJ, Saha S, Chandra Borah J. Adipose and non-adipose perspectives of plant derived natural compounds for mitigation of obesity. JOURNAL OF ETHNOPHARMACOLOGY 2021; 280:114410. [PMID: 34273447 DOI: 10.1016/j.jep.2021.114410] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 07/07/2021] [Accepted: 07/10/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Phyto-preparations and phyto-compounds, by their natural origin, easy availability, cost-effectiveness, and fruitful traditional uses based on accumulated experiences, have been extensively explored to mitigate the global burden of obesity. AIM OF THIS REVIEW The review aimed to analyse and critically summarize the prospect of future anti-obesity drug leads from the extant array of phytochemicals for mitigation of obesity, using adipose related targets (adipocyte formation, lipid metabolism, and thermogenesis) and non-adipose targets (hepatic lipid metabolism, appetite, satiety, and pancreatic lipase activity). Phytochemicals as inhibitors of adipocyte differentiation, modulators of lipid metabolism, and thermogenic activators of adipocytes are specifically discussed with their non-adipose anti-obesogenic targets. MATERIALS AND METHODS PubMed, Google Scholar, Scopus, and SciFinder were accessed to collect data on traditional medicinal plants, compounds derived from plants, their reported anti-obesity mechanisms, and therapeutic targets. The taxonomically accepted name of each plant in this review has been vetted from "The Plant List" (www.theplantlist.org) or MPNS (http://mpns.kew.org). RESULTS Available knowledge of a large number of phytochemicals, across a range of adipose and non-adipose targets, has been critically analysed and delineated by graphical and tabular depictions, towards mitigation of obesity. Neuro-endocrinal modulation in non-adipose targets brought into sharp dual focus, both non-adipose and adipose targets as the future of anti-obesity research. Numerous phytochemicals (Berberine, Xanthohumol, Ursolic acid, Guggulsterone, Tannic acid, etc.) have been found to be effectively reducing weight through lowered adipocyte formation, increased lipolysis, decreased lipogenesis, and enhanced thermogenesis. They have been affirmed as potential anti-obesity drugs of future because of their effectiveness yet having no threat to adipose or systemic insulin sensitivity. CONCLUSION Due to high molecular diversity and a greater ratio of benefit to risk, plant derived compounds hold high therapeutic potential to tackle obesity and associated risks. This review has been able to generate fresh perspectives on the anti-diabetic/anti-hyperglycemic/anti-obesity effect of phytochemicals. It has also brought into the focus that many phytochemicals demonstrating in vitro anti-obesogenic effects are yet to undergo in vivo investigation which could lead to potential phyto-molecules for dedicated anti-obesity action.
Collapse
Affiliation(s)
- Anuj Kumar Borah
- Dept. of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur, 784028, Assam, India
| | - Pranamika Sharma
- Laboratory of Chemical Biology, Life Sciences Division, Institute of Advanced Study in Science & Technology, Guwahati, 781035, Assam, India
| | - Archana Singh
- Dept. of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur, 784028, Assam, India
| | - Kangkan Jyoti Kalita
- Laboratory of Chemical Biology, Life Sciences Division, Institute of Advanced Study in Science & Technology, Guwahati, 781035, Assam, India
| | - Sougata Saha
- Dept. of Biotechnology, NIT Durgapur, West Bengal, 713209, India
| | - Jagat Chandra Borah
- Laboratory of Chemical Biology, Life Sciences Division, Institute of Advanced Study in Science & Technology, Guwahati, 781035, Assam, India.
| |
Collapse
|
4
|
Sweet chestnut standardized fractions from sustainable circular process and green tea extract: In vitro inhibitory activity against phytopathogenic fungi for innovative applications in green agriculture. PLoS One 2021; 16:e0247298. [PMID: 33617600 PMCID: PMC7899350 DOI: 10.1371/journal.pone.0247298] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 02/04/2021] [Indexed: 10/31/2022] Open
Abstract
In the present study, the antifungal activities of two commercial tannins-rich dry fractions towards different filamentous fungi of agronomical and food interest were evaluated. In particular, a standardized fraction from sweet chestnut (Castanea sativa Mill.) wood by-products and a commercial green tea (Camellia sinensis L.) leaf extract were tested at different concentrations (0.1-5.0% and 0.2% w/v respectively). The Sweet Chestnut Wood fraction was produced in an industrial plant through an environmentally and economically sustainable process, involving hot-water extraction and a sequence of membrane filtration steps with different molecular cut-offs for fractionation and concentration of the active principles. The Sweet Chestnut Wood and Green Tea Leaf extracts were characterised via HPLC/DAD/MS quali-quantitative analysis. The first extract showed a polyphenolic content of 20.5% w/w, 100% hydrolysable tannins; the second one showed a polyphenolic content of 87.5% w/w, of which 96.2% epigallocatechin gallate and 3.8% epicatechin gallate. The antifungal activity of the Sweet Chestnut fraction in aqueous solutions was evaluated towards different filamentous fungi, in particular telluric phytopathogens (Fusarium oxysporum f. sp. radicis-lycopersici; Fusarium solani; Rhizoctonia solani; Sclerotium rolfsii) and post harvest pathogens (Botrytis cinerea, that can also attack field plants; Penicillium digitatum; Penicillium italicum), and compared to the activity of Green Tea Leaf extract solutions. The experimental results evidenced, for almost all tested fungi, inhibition of the mycelial growth rate in presence of tannins. The lowest inhibitions were observed for B. cinerea (7.5%, to 28.9%) and P. italicum (53.8% in 5.0% w/v Sweet Chestnut extract substrate). A proportional inhibitory effect to tannin concentration was observed for F. oxysporum f. sp. radicis-lycopersici and F. solani (from 33.7% to 56.6%), R. solani (from 29.7% to 68.8%) and P. digitatum (64.7% to 87.0%). The highest effect resulted for S. rolfsii, (5.0% to 100%).
Collapse
|
5
|
Ong BX, Brunmeir R, Zhang Q, Peng X, Idris M, Liu C, Xu F. Regulation of Thermogenic Adipocyte Differentiation and Adaptive Thermogenesis Through Histone Acetylation. Front Endocrinol (Lausanne) 2020; 11:95. [PMID: 32174890 PMCID: PMC7057231 DOI: 10.3389/fendo.2020.00095] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 02/14/2020] [Indexed: 12/13/2022] Open
Abstract
Over the past decade, the increasing prevalence of obesity and its associated metabolic disorders constitutes one of the most concerning healthcare issues for countries worldwide. In an effort to curb the increased mortality and morbidity derived from the obesity epidemic, various therapeutic strategies have been developed by researchers. In the recent years, advances in the field of adipocyte biology have revealed that the thermogenic adipose tissue holds great potential in ameliorating metabolic disorders. Additionally, epigenetic research has shed light on the effects of histone acetylation on adipogenesis and thermogenesis, thereby establishing the essential roles which histone acetyltransferases (HATs) and histone deacetylases (HDACs) play in metabolism and systemic energy homeostasis. In regard to the therapeutic potential of thermogenic adipocytes for the treatment of metabolic diseases, herein, we describe the current state of knowledge of the regulation of thermogenic adipocyte differentiation and adaptive thermogenesis through histone acetylation. Furthermore, we highlight how different HATs and HDACs maintain the epigenetic transcriptional network to mediate the pathogenesis of various metabolic comorbidities. Finally, we provide insights into recent advances of the potential therapeutic applications and development of HAT and HDAC inhibitors to alleviate these pathological conditions.
Collapse
Affiliation(s)
- Belinda X. Ong
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Reinhard Brunmeir
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Qiongyi Zhang
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium, A*STAR, Singapore, Singapore
| | - Xu Peng
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Muhammad Idris
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Chungang Liu
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Feng Xu
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- *Correspondence: Feng Xu
| |
Collapse
|
6
|
Dludla PV, Nkambule BB, Jack B, Mkandla Z, Mutize T, Silvestri S, Orlando P, Tiano L, Louw J, Mazibuko-Mbeje SE. Inflammation and Oxidative Stress in an Obese State and the Protective Effects of Gallic Acid. Nutrients 2018; 11:nu11010023. [PMID: 30577684 PMCID: PMC6356415 DOI: 10.3390/nu11010023] [Citation(s) in RCA: 169] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/08/2018] [Accepted: 11/17/2018] [Indexed: 12/12/2022] Open
Abstract
Metabolic complications in an obese state can be aggravated by an abnormal inflammatory response and enhanced production of reactive oxygen species. Pro-inflammatory response is known to be associated with the formation of toxic reactive oxygen species and subsequent generation of oxidative stress. Indeed, adipocytes from obese individuals display an altered adipokine profile, with upregulated expression and secretion of pro-inflammatory cytokines such as tumor necrosis factor alpha (TNF-α) and interleukin (IL-6). Interestingly, natural compounds, including phenolic enriched foods are increasingly explored for their ameliorative effects against various metabolic diseases. Of interest is gallic acid, a trihydroxybenzoic acid that has progressively demonstrated robust anti-obesity capabilities in various experimental models. In addition to reducing excessive lipid storage in obese subjects, gallic acid has been shown to specifically target the adipose tissue to suppress lipogenesis, improve insulin signaling, and concomitantly combat raised pro-inflammatory response and oxidative stress. This review will revise mechanisms involved in the pathophysiological effects of inflammation and oxidative stress in an obese state. To better inform on its therapeutic potential and improvement of human health, available evidence reporting on the anti-obesity properties of gallic acid and its derivatives will be discussed, with emphases on its modulatory effect on molecular mechanisms involved in insulin signaling, inflammation and oxidative stress.
Collapse
Affiliation(s)
- Phiwayinkosi V Dludla
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy.
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa.
| | - Bongani B Nkambule
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa.
| | - Babalwa Jack
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa.
| | - Zibusiso Mkandla
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa.
| | - Tinashe Mutize
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa.
| | - Sonia Silvestri
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy.
| | - Patrick Orlando
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy.
| | - Luca Tiano
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy.
| | - Johan Louw
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa.
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa.
| | - Sithandiwe E Mazibuko-Mbeje
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa.
- Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa.
| |
Collapse
|
7
|
Chung MY, Song JH, Lee J, Shin EJ, Park JH, Lee SH, Hwang JT, Choi HK. Tannic acid, a novel histone acetyltransferase inhibitor, prevents non-alcoholic fatty liver disease both in vivo and in vitro model. Mol Metab 2018; 19:34-48. [PMID: 30473486 PMCID: PMC6323241 DOI: 10.1016/j.molmet.2018.11.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/31/2018] [Accepted: 11/02/2018] [Indexed: 02/07/2023] Open
Abstract
Objective We examined the potential of tannic acid (TA) as a novel histone acetyltransferase inhibitor (HATi) and demonstrated that TA prevents non-alcoholic fatty liver disease (NAFLD) by inhibiting HAT activity. Methods The anti-HAT activity of TA was examined using HAT activity assays. An in vitro NAFLD model was generated by treating HepG2 cells with oleic and palmitic acids. Male C57BL/6J mice were fed a control diet (CD) or Western diet (WD) with or without supplementation with either 1% or 3% TA (w/w) for 12 weeks. Finally, the possibility of interacting p300 and TA was simulated. Results TA suppressed HAT activity both in vitro and in vivo. Interestingly, TA abrogated occupancy of p300 on the sterol regulatory element in the fatty acid synthase and ATP-citrate lyase promoters, eventually inducing hypoacetylation of H3K9 and H3K36. Furthermore, TA decreased acetylation at lysine residues 9 and 36 of histone H3 protein and that of total proteins. Consequently, TA decreased the mRNA expression of lipogenesis-related genes and attenuated lipid accumulation in vivo. We observed that NAFLD features, including body weight, liver mass, fat mass, and lipid profile in serum, were improved by TA supplementation in vivo. Finally, we demonstrated the possibility that TA directly binds to p300 through docking simulation between ligand and protein. Conclusions Our findings demonstrate that TA, a novel HATi, has potential application for the prevention of NAFLD. Tannic acid is a general inhibitor of histone acetyltransferase. Tannic acid decreases transcriptional activity of the lipogenesis-related genes through its HATi activity. Tannic acid ameliorates non-alcoholic fatty liver disease in the western diet-fed mice through its HATi activity. Tannic acid binds to EP300, possibly reducing its activity through inducing conformational change of EP300.
Collapse
Affiliation(s)
- Min-Yu Chung
- Korea Food Research Institute, Jeollabuk-do 55365, Republic of Korea
| | - Ji-Hye Song
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Jinhyuk Lee
- Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea; Department of Bioinformatics, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Eun Ju Shin
- Korea Food Research Institute, Jeollabuk-do 55365, Republic of Korea; Department of Food Biotechnology, Korea University of Science & Technology, Daejeon 34113, Republic of Korea
| | - Jae Ho Park
- Korea Food Research Institute, Jeollabuk-do 55365, Republic of Korea
| | - Seung-Hyun Lee
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, 03722 Seoul, Republic of Korea
| | - Jin-Taek Hwang
- Korea Food Research Institute, Jeollabuk-do 55365, Republic of Korea; Department of Food Biotechnology, Korea University of Science & Technology, Daejeon 34113, Republic of Korea.
| | - Hyo-Kyoung Choi
- Korea Food Research Institute, Jeollabuk-do 55365, Republic of Korea.
| |
Collapse
|
8
|
Abdel-Moneim A, El-Twab SMA, Yousef AI, Reheim ESA, Ashour MB. Modulation of hyperglycemia and dyslipidemia in experimental type 2 diabetes by gallic acid and p-coumaric acid: The role of adipocytokines and PPARγ. Biomed Pharmacother 2018; 105:1091-1097. [PMID: 30021345 DOI: 10.1016/j.biopha.2018.06.096] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 06/15/2018] [Accepted: 06/16/2018] [Indexed: 01/21/2023] Open
Abstract
There are many indications that confirm the vital role of adipocytokines and PPARγ in diabetics. Hence, the current investigation aimed to study the modulatory effects of gallic acid and p-coumaric acid on adipocytokines secretion and PPARγ mRNA expression in type 2 diabetic rats. After induction of type 2 diabetes, diabetic rats were orally treated with 20 mg/kg body mass gallic acid and 40 mg/kg body mass p-coumaric acid for six weeks. Among treatment diabetic rats, glucose and glycosylated hemoglobin levels significantly declined in diabetic rats, while insulin level and body weight significantly increased as compared to control group. Gallic acid and p-coumaric acid markedly decreased the level of TNF-α and increased the levels of PPARγ mRNA and adiponectin. In addition, the tested agents improved markedly lipid profile parameters, cardiovascular indices 1 and 2 and anti-atherogenic index. In conclusion, gallic acid and p-coumaric acid exhibited marked antidiabetic action that could be mediated via modulation of TNF-α and adipocytokines secretions as well as upregulation of PPARγ mRNA expression.
Collapse
Affiliation(s)
- Adel Abdel-Moneim
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt.
| | - Sanaa M Abd El-Twab
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Ahmed I Yousef
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Eman S Abdel Reheim
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Mohamed B Ashour
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
9
|
Campo M, Pinelli P, Romani A. Hydrolyzable Tannins from Sweet Chestnut Fractions Obtained by a Sustainable and Eco-friendly Industrial Process. Nat Prod Commun 2016. [DOI: 10.1177/1934578x1601100323] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Sweet Chestnut ( Castanea sativa Mill.) wood extracts, rich in Hydrolyzable Tannins (HTs), are traditionally used in the tanning and textile industries, but recent studies suggest additional uses. The aim of this work is the HPLC-DAD-ESI-MS characterization of Sweet Chestnut aqueous extracts and fractions obtained through a membrane separation technology system without using other solvents, and the evaluation of their antioxidant and antiradical activities. Total tannins range between 2.7 and 138.4 mM; gallic acid ranges between 6% and 100%; castalagin and vescalagin range between 0% and 40%. Gallic Acid Equivalents, measured with the Folin-Ciocalteu test, range between 0.067 and 56.99g/100g extract weight; ORAC test results for the marketed fractions are 450.4 and 3050 μmol/g Trolox Equivalents/extract weight. EC50 values, measured with the DPPH test, range between 0.444 and 2.399 μM. These results suggest a new ecofriendly and economically sustainable method for obtaining chestnut fractions with differentiated, stable and reproducible chemical compositions. Such fractions can be marketed for innovative uses in several sectors.
Collapse
Affiliation(s)
- Margherita Campo
- Consortium I.N.S.T.M., Via G. Giusti 9, I-50121 Florence, Italy
- PHYTOLAB (Pharmaceutical, Cosmetic, Food supplement Technology and Analysis) - DiSIA, Department of Statistics, Computer Science, Applications “G. Parenti”, University of Florence, Via U. Schiff, 6 – 50019 Sesto Fiorentino, Florence, Italy
| | - Patrizia Pinelli
- PHYTOLAB (Pharmaceutical, Cosmetic, Food supplement Technology and Analysis) - DiSIA, Department of Statistics, Computer Science, Applications “G. Parenti”, University of Florence, Via U. Schiff, 6 – 50019 Sesto Fiorentino, Florence, Italy
| | - Annalisa Romani
- PHYTOLAB (Pharmaceutical, Cosmetic, Food supplement Technology and Analysis) - DiSIA, Department of Statistics, Computer Science, Applications “G. Parenti”, University of Florence, Via U. Schiff, 6 – 50019 Sesto Fiorentino, Florence, Italy
| |
Collapse
|
10
|
Skowyra M, Falguera V, Gallego G, Peiró S, Almajano MP. Antioxidant properties of aqueous and ethanolic extracts of tara (Caesalpinia spinosa) pods in vitro and in model food emulsions. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2014; 94:911-918. [PMID: 23929224 DOI: 10.1002/jsfa.6335] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 07/22/2013] [Accepted: 08/08/2013] [Indexed: 06/02/2023]
Abstract
BACKGROUND The successful replacement of some synthetic food antioxidants by safe natural antioxidants has fostered intensive search for new vegetable sources of antioxidants. In our study the phenol and flavonoid content of extracts of tara pods was determined. The antioxidant activity was also studied by three different analytical assays: the measurement of scavenging capacity against a radical ABTS⁺ , the oxygen radical absorbance capacity (ORAC) and the ferric reducing antioxidant power (FRAP). RESULTS All analyzed samples showed a good antioxidant capacity, but the use of a solution of ethanol 75% in a 1 h ultrasonic process allowed achieving the greatest quantity of phenolics (0.464 mg gallic acid equivalent (GAE) g⁻¹ dry weight (DW) ) and the highest antioxidant activity measured by the ABTS⁺ and ORAC methods (10.17 and 4.29 mmol L⁻¹ Trolox equivalents (TE) g⁻¹ DW, respectively). The best method for efficient extraction of flavonoids (3.08 mg catechin equivalent (CE) g⁻¹ DW) was a 24 h maceration in cold water. Two extracts obtained with ethanol 75% and water were added to a model food system (oil-in-water emulsion) and the oxidative stability was studied during storage at 38 °C. Oxidation was monitored by determination of the peroxide value. The addition of 48 µg mL⁻¹ ethanol extract to the emulsion delayed oxidation to the same extent as 17.8 µg mL⁻¹ of Trolox, while water extract was only effective in the early stages of the oxidation process. CONCLUSION The results of this study indicate that ethanolic tara extracts may be suitable for use in food, cosmetic and nutraceutical applications.
Collapse
Affiliation(s)
- Monika Skowyra
- Chemical Engineering Department, Technical University of Catalonia, 08034, Barcelona, Spain
| | | | | | | | | |
Collapse
|
11
|
Patel SS, Goyal RK. Cardioprotective effects of gallic acid in diabetes-induced myocardial dysfunction in rats. Pharmacognosy Res 2012; 3:239-45. [PMID: 22224046 PMCID: PMC3249782 DOI: 10.4103/0974-8490.89743] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 05/09/2011] [Accepted: 11/15/2011] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Normalization of hyperglycemia, hyperlipidemia, and oxidative stress is an important objective in preventing diabetes-induced cardiac dysfunction. OBJECTIVE This study was undertaken to examine the effects of gallic acid in myocardial dysfunctions associated with type-1 diabetes. MATERIALS AND METHODS Diabetes was induced by single intravenous injection of streptozotocin (STZ, 50 mg/kg i.v.). Gallic acid was administered daily at three different doses (100, 50, and 25 mg/kg p.o.) for 8 weeks at the end of which blood samples were collected and analyzed for various biochemical parameters. RESULTS Injection of STZ produced significant loss of body weight (BW), polyphagia, polydypsia, hyperglycemia, hypoinsulinemia, hyperlipidemia, hypertension, bradycardia, and myocardial functional alterations. Treatment with gallic acid significantly lowered fasting glucose, the AUC(glucose) level in a dose-dependent manner; however, the insulin level was not increased significantly at same the dose and prevented loss of BW, polyphagia, and polydypsia in diabetic rats. It also prevented STZ-induced hyperlipidemia, hypertension, bradycardia, structural alterations in cardiac tissue such as increase in force of contraction, left ventricular weight to body weight ratio, collagen content, protein content, serum lactate dehydrogenase, and creatinine kinase levels in a dose-dependent manner. Further, treatment also produced reduction in lipid peroxidation and increase in antioxidant parameters in heart of diabetic rats. CONCLUSION The results of this study suggest that gallic acid to be beneficial for the treatment of myocardial damage associated with type-1 diabetes.
Collapse
Affiliation(s)
- Snehal S Patel
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad 382 481, India
| | | |
Collapse
|
12
|
Romani A, Campo M, Pinelli P. HPLC/DAD/ESI-MS analyses and anti-radical activity of hydrolyzable tannins from different vegetal species. Food Chem 2012. [DOI: 10.1016/j.foodchem.2011.07.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Zhang L, Cheng L, Jiang L, Wang Y, Yang G, He G. Effects of tannic acid on gluten protein structure, dough properties and bread quality of Chinese wheat. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2010; 90:2462-2468. [PMID: 20718030 DOI: 10.1002/jsfa.4107] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
BACKGROUND The effects of tannic acid, which is present in many plants, on the structure of gluten proteins and the properties of dough and bread were studied. Tannic acid was added at levels of 0.01, 0.02 and 0.03 g kg(-1) during the dough-making process. RESULTS The added tannic acid acted negatively on disulfide bond formation but interacted with gluten proteins via other covalent bonds, as detected by UV spectroscopy and dynamic rheometry. Rheological properties and texture of the bread were measured by farinograph, extensograph and texture profile analyser. Texture analysis indicated little change in adhesiveness and resilience of the bread at all three levels of tannic acid compared with the control, but changes in hardness and chewiness of the bread made with added tannic acid indicated that tannic acid could delay bread staling. CONCLUSION The effect of tannic acid on flour and dough is different from that of other flour redox agents. It breaks down disulfide bonds but also has positive effects on dough properties and bread quality. Disulfide bonds are commonly considered to be the most important factor affecting changes in the quality of bread. However, this study presents the new concept that other covalent bonds can also improve the quality of flour and bread and uses this property to investigate new, safe and efficient flour additives.
Collapse
Affiliation(s)
- Li Zhang
- China-UK HUST-RRes Genetic Engineering and Genomics Joint Laboratory, College of Life Science and Technology, Huazhong University of Science & Technology, Luoyu Road 1037, Wuhan 430074, China
| | | | | | | | | | | |
Collapse
|
14
|
Romani A, Ieri F, Turchetti B, Mulinacci N, Vincieri FF, Buzzini P. Analysis of condensed and hydrolysable tannins from commercial plant extracts. J Pharm Biomed Anal 2006; 41:415-20. [PMID: 16406441 DOI: 10.1016/j.jpba.2005.11.031] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2005] [Revised: 11/25/2005] [Accepted: 11/29/2005] [Indexed: 11/28/2022]
Abstract
High performance liquid chromatography (HPLC)/DAD and MS qualitative and quantitative analyses of polyphenols, hydrolysable and condensed tannins from Pinus maritima L. and tannic acid (TA) extracts were performed using normal and reverse phase. Normal-phase HPLC was more suitable for pine bark (PBE) and tannic acid extracts analysis. The chromatographic profile revealed that P. maritima L. extract was mainly composed by polymeric flavanols (containing from two to seven units) and tannic acid (characterized by a mixture of glucose gallates containing from three to seven units of gallic acid). Concerning their antimycotic properties, P. maritima L. extract exhibited a broad activity towards yeast strains of the genera Candida, Cryptococcus, Filobasidiella, Issatchenkia, Saccharomyces: MICs from 200 to 4000 microg/ml (corresponding to 140-2800 microg/ml of active polyphenols) were determined. Conversely, no activity of tannic acid was observed over the same target microorganisms. Taken into consideration the above results of HPLC analysis and on the basis of the current literature, we may conclude that only 70.2% of polyphenols (recognized as condensed tannins) occurring in P. maritima L. extract can be apparently considered responsible for its antimycotic activity.
Collapse
Affiliation(s)
- A Romani
- University of Florence, Department of Pharmaceutical Science, Via Ugo Schiff 6, I-50019 Sesto Fiorentino, Florence, Italy.
| | | | | | | | | | | |
Collapse
|
15
|
Taffetani S, Ueno Y, Meng F, Venter J, Francis H, Glaser S, Alpini G, Patel T. Tannic acid inhibits cholangiocyte proliferation after bile duct ligation via a cyclic adenosine 5',3'-monophosphate-dependent pathway. THE AMERICAN JOURNAL OF PATHOLOGY 2005; 166:1671-9. [PMID: 15920152 PMCID: PMC1602411 DOI: 10.1016/s0002-9440(10)62477-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Chronic cholestatic diseases are characterized by morphological changes involving cholangiocyte proliferation and functional alterations of secretory capacity. The plant polyphenol tannic acid inhibits the growth of malignant human cholangiocytes. However, the mechanisms by which tannic acid limits excessive cholangiocyte proliferation are unknown. In this study we assessed the effect of tannic acid on cholangiocyte proliferation after bile duct ligation in rats. Tannic acid feeding decreased cholangiocyte proliferation and ductal mass in vivo after bile duct ligation. These changes were associated with functional changes in bile secretion and with decreases of intracellular cyclic adenosine 5',3'-monophosphate. The anti-proliferative effect of tannic acid was associated with a reduction of ERK1,2 phosphorylation. Additionally, tannic acid feeding decreased protein kinase A phosphorylation and activity. Similar changes were observed in isolated cholangiocytes during in vitro incubation with tannic acid. Furthermore, forskolin abolished the anti-proliferative effect of tannic acid on cholangiocyte proliferation after bile duct ligation. In conclusion, the anti-proliferative effects of tannic acid in cholangiocytes involve modulation of ERK1,2 by a cyclic adenosine 5',3'-monophosphate-protein kinase A-dependent pathway. These data suggest that tannic acid may be useful in limiting excessive cholangiocyte proliferation and modulating secretion during cholestasis.
Collapse
Affiliation(s)
- Silvia Taffetani
- Department of Internal Medicine, Texas A&M University System Health Science Center College of Medicine, Temple, Texas, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Szentmihályi K, Taba G, Lado C, Fodor J, Then M, Szőke É. Medicinal Plant TEAS Recommended as nutritional source for element supplementation. ACTA ALIMENTARIA 2005. [DOI: 10.1556/aalim.34.2005.2.9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
17
|
Liu X, Kim JK, Li Y, Li J, Liu F, Chen X. Tannic acid stimulates glucose transport and inhibits adipocyte differentiation in 3T3-L1 cells. J Nutr 2005; 135:165-71. [PMID: 15671208 DOI: 10.1093/jn/135.2.165] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Obesity is a major risk factor for Syndrome X and type II diabetes (T2D). However, most antidiabetic drugs that are hypoglycemic also promote weight gain, thus alleviating one symptom of T2D while aggravating a major risk factor that leads to T2D. Adipogenesis, the differentiation and proliferation of adipocytes, is a major mechanism leading to weight gain and obesity. It is highly desirable to develop pharmaceuticals and treatments for T2D that reduce blood glucose levels without inducing adipogenesis in patients. Previously, we reported that an extract from Lagerstroemia speciosa L. (banaba) possessed activities that both stimulated glucose transport and inhibited adipocyte differentiation in 3T3-L1 cells. Using glucose uptake assays and Western/Northern blot analyses as major tools and 3T3-L1 cells as a model, we showed that the banaba extract (BE) with tannin removed was devoid of the 2 activities, and tannic acid (TA), a major component of tannins, had the same 2 activities as BE. Inhibitors known to abolish insulin-induced glucose transport also blocked TA-induced glucose transport. We further detected that TA induced phosphorylation of the insulin receptor (IR) and Akt, as well as translocation of glucose transporter 4 (GLUT 4), the protein factors involved in the signaling pathway of insulin-mediated glucose transport. We also demonstrated that TA inhibited the expression of key genes for adipogenesis. Differences between samples with or without TA in all of the quantitative assays were significant (P < 0.05). These results suggest that TA may be useful for the prevention and treatment of T2D and its associated obesity. TA may have the potential to become the lead compound in the development of new types of antidiabetic pharmaceuticals that are able to reduce blood glucose levels without increasing adiposity.
Collapse
Affiliation(s)
- Xueqing Liu
- Department of Biochemistry, Edison Biotechnology Institute, College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | | | | | | | | | | |
Collapse
|
18
|
Yoshikawa M, Shimoda H, Nishida N, Takada M, Matsuda H. Salacia reticulata and its polyphenolic constituents with lipase inhibitory and lipolytic activities have mild antiobesity effects in rats. J Nutr 2002; 132:1819-24. [PMID: 12097653 DOI: 10.1093/jn/132.7.1819] [Citation(s) in RCA: 153] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Salacia (S.) reticulata, a Hippocrateaceae plant distributed in Sri Lankan and Indian forests, has been used as a supplementary food in Japan to prevent obesity and diabetes. We examined the antiobesity effects of the hot water-soluble extract (SRHW) from the roots of S. reticulata using obese rat models and an in vitro study. Body weight (P = 0.07) and periuterine fat storage (P = 0.10) in female Zucker fatty rats (8-9 wk old) tended to be suppressed by oral administration of SRHW (125 mg/kg) for 27 d. Male rats fed a high fat diet were not affected by SRHW. Furthermore, SRHW inhibited porcine pancreatic lipase (PL), rat adipose tissue-derived lipoprotein lipase (LPL) and glycerophosphate dehydrogenase (GPDH) activities with 50% inhibitory concentrations (IC(50)) of 264 (95% confidence limits: 203-393) mg/L, 15 (12-18) mg/L and 54 (35-85) mg/L, respectively, but did not inhibit hormone-sensitive lipase activity in rat adipose tissue. Next, we examined the effects of polyphenols, di- and triterpenes and salacinol isolated from the roots of S. reticulata on lipid metabolizing enzymes and lipolysis. (-)-Epigallocatechin and (-)-epicatechin-(4beta-->8)-(-)-4'-O-methylepigallocatechin inhibited PL activity with IC(50) of 88 (not calculated) and 68 (26-122) mg/L, respectively. (-)-Epicatechin, 3beta, 22beta-dihydroxyolean-12-en-29-oic acid and the tannin fraction inhibited LPL activity with IC(50) of 81 (54-214), 89 (62-214) and 35 (24-62) mg/L. Only the tannin fraction inhibited GPDH activity with an IC(50) of 6.8 (3.4-10.9) mg/L. These constituents may be involved in the lipase and GPDH inhibitory activities of SRHW. On the other hand, SRHW at 100 mg/L tended to enhance lipolysis in rat adipocytes (P = 0.06). Significant lipolytic effects were exerted by mangiferin, (-)-4'-O-methylepigallocatechin and maytenfolic acid at 100 mg/L (P < 0.01). In conclusion, polyphenolic compounds may be involved in the antiobesity effects of SRHW in rats through inhibition of fat metabolizing enzymes (PL, LPL and GPDH) and enhanced lipolysis.
Collapse
|
19
|
Zhu M, Phillipson JD, Greengrass PM, Bowery NE, Cai Y. Plant polyphenols: biologically active compounds or non-selective binders to protein? PHYTOCHEMISTRY 1997; 44:441-447. [PMID: 9014370 DOI: 10.1016/s0031-9422(96)00598-5] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Twenty phenolic compounds, representatives of proanthocyanidins and gallic acid/hexahydroxyldiphenic acid esters of glucose, have been assessed for their ability to inhibit binding of specific radioligands to 16 receptors. The receptors utilized were alpha 1-, alpha 2- and beta-adrenoceptors, adenosine 1, dopamine 1 and 2, muscarinic, Ca2+ channel, sulphonylureas, 5HT1, 5HT1A, 5HT2, histamine 1, benzodiazepine, opiate and Na+/K/ATPase. These phenolic compounds failed to inhibit ligands binding to 10 of the receptors under the test conditions. The most susceptible receptors to phenolic binding were beta-adrenergic, 5HT1 and opiate. Some of the compounds tested showed selectivity for a single or for two receptors. The inhibition of binding of radioligands to receptors by the phenolic compounds cannot be explained solely in terms of phenolic-protein binding. The results indicate that the removal of tannins from plant extracts prior to screening for receptor activities may result in missing biologically active compounds with specificity of action.
Collapse
Affiliation(s)
- M Zhu
- Department of Pharmacy, Chinese University of Hong Kong, NT, Hong Kong
| | | | | | | | | |
Collapse
|
20
|
Ong KC, Khoo HE. Insulinomimetic effects of myricetin on lipogenesis and glucose transport in rat adipocytes but not glucose transport translocation. Biochem Pharmacol 1996; 51:423-9. [PMID: 8619886 DOI: 10.1016/0006-2952(95)02195-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Myricetin is a naturally occurring flavonol that is commonly found in tea, berries, fruits, and medicinal plants. It mimics insulin in stimulating lipogenesis and glucose transport in rat adipocytes in vitro. It was found to stimulate lipogenesis in rat adipocytes and enhance the stimulatory effect of insulin. The EC50 was estimated to be about 65 microM. Myricetin did not have any effect on insulin receptor autophosphorylation nor on the tyrosine kinase activity of the receptor. However, myricetin stimulated both D-glucose and D-3-O-methylglucose uptake in rat adipocytes. The Vmax of glucose transport was increased, but the Km did not change significantly. Immunoblot analysis of Glut4 in rat adipocyte plasma membrane showed that the stimulation of glucose transport was not a consequence of glucose transporter translocation. Instead, the stimulation in glucose uptake probably was due to a change in the intrinsic activity of the glucose transporter possibly caused by alterations in membrane fluidity or transporter-lipid interactions as a result of the insertion of myricetin into the membrane bilayer. Thus, myricetin may have therapeutic potential in the management of non-insulin-dependent diabetes mellitus by stimulating glucose uptake without the presence of fully functional insulin receptor.
Collapse
Affiliation(s)
- K C Ong
- Department of Biochemistry, Faculty of Medicine, National University of Singapore, Singapore
| | | |
Collapse
|