1
|
Danner C, Mello de Sousa TM, Mach RL, Mach-Aigner AR. The Impact of DNA Methylation in Trichoderma reesei on Cellulase Production and Strain Degeneration. Microorganisms 2025; 13:584. [PMID: 40142477 PMCID: PMC11946570 DOI: 10.3390/microorganisms13030584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 02/28/2025] [Accepted: 03/01/2025] [Indexed: 03/28/2025] Open
Abstract
The spontaneous loss of cellulase productivity of industrial T. reesei strains during production results in significant economic losses. This phenomenon was suggested to be epigenetically regulated, but the previous findings did not explain which epigenetic mechanisms occur and how they promote strain degeneration. Until now, the epigenetic landscape of T. reesei has been poorly understood. This study investigated whether DNA methylation and cellulase production are connected, and, if so, what that connection is and how it relates to strain degeneration. In order to determine what the impact of DNA methylation is on strain degeneration, we induced hypomethylation with hydralazine HCL, which showed a reduced non-productive phenotype and partially restored cellulase productivity. As a second test, we conducted a global DNA cytosine methylation assay, which showed T. reesei DNA methylation levels of between 0.2 and 1.3% 5-mC. Importantly, non-productive strains exhibited stronger methylation than productive counterparts, and global methylation patterns varied depending on the carbon source. As a final test, we carried out deletion experiments targeting the putative DNA methyltransferases Dim2 and Rid1, which initially reduced the occurrence of a non-producing subpopulation, but subsequent sub-cultivation eliminated cellulase productivity. This study shows that DNA methylation impacts T. reesei cellulase productivity, an understanding that can help us develop targeted strategies to reduce strain degeneration and improve cellulase production in industrial applications.
Collapse
Affiliation(s)
- Caroline Danner
- Christian Doppler Laboratory for Optimized Expression of Carbohydrate-Active Enzymes, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Str. 1a, 1060 Vienna, Austria; (C.D.)
| | - Thiago M. Mello de Sousa
- Christian Doppler Laboratory for Optimized Expression of Carbohydrate-Active Enzymes, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Str. 1a, 1060 Vienna, Austria; (C.D.)
| | - Robert L. Mach
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Str. 1a, 1060 Vienna, Austria;
| | - Astrid R. Mach-Aigner
- Christian Doppler Laboratory for Optimized Expression of Carbohydrate-Active Enzymes, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Str. 1a, 1060 Vienna, Austria; (C.D.)
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Str. 1a, 1060 Vienna, Austria;
| |
Collapse
|
2
|
Ullah SF, Oreb M, Boles E, Srivastava V, Seidl-Seiboth V, Seiboth B, Kappel L. N-acetylglucosamine sensing in the filamentous soil fungus Trichoderma reesei. FEBS J 2025. [PMID: 39954246 DOI: 10.1111/febs.70015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 12/03/2024] [Accepted: 01/02/2025] [Indexed: 02/17/2025]
Abstract
N-acetylglucosamine (GlcNAc) is involved in diverse signaling pathways in dimorphic yeasts and bacteria and is related to morphogenetic switching, mating, stress, virulence, and cell death. Recently, GlcNAc has been shown to promote plant growth by shaping the bacterial soil community. However, the role of GlcNAc sensing in filamentous soil fungi has not been investigated. By using Trichoderma reesei as a model organism, we show here that GlcNAc impacts the expression of around 2100 genes. Carbohydrate metabolism, amino acid metabolism, and secondary metabolism were the three most strongly affected classes of eukaryotic orthologous groups (KOG classes). Two key regulators of GlcNAc catabolism, the NDT80 domain-containing transcriptional regulator RON1, and a GlcNAc sensor, NGS1, are needed for differential regulation of two-thirds of these genes. In silico structural modeling of NGS1 identified a domain with homology to the GCN5-related histone acetyltransferase from Candida albicans, which serves as a GlcNAc catabolism regulator and GlcNAc sensor. Finally, we characterized the third regulator of GlcNAc sensing in T. reesei, which is the highly specific GlcNAc transporter N-acetylglucosamine transporter (NGT1). Using a deletion mutant of ngt1, we demonstrate that GlcNAc has to enter the cell to activate the GlcNAc catabolic gene expression. Interestingly, in contrast to dimorphic yeasts, the pathways for defense and pathogenicity seem to be induced in T. reesei by external GlcNAc. Given the ancestral role of Trichoderma spp. in the fungal kingdom and the highly conserved GlcNAc catabolism cluster that includes their regulators in many species of fungi, we propose a regulatory network for GlcNAc sensing in soil fungi.
Collapse
Affiliation(s)
- Sadia Fida Ullah
- Division of Glycoscience, Department of Chemistry, KTH Royal Institute of Technology, AlbaNova University Centre, Stockholm, Sweden
| | - Mislav Oreb
- Faculty of Biological Sciences, Institute of Molecular Biosciences, Goethe University, Frankfurt, Germany
| | - Eckhard Boles
- Faculty of Biological Sciences, Institute of Molecular Biosciences, Goethe University, Frankfurt, Germany
| | - Vaibhav Srivastava
- Division of Glycoscience, Department of Chemistry, KTH Royal Institute of Technology, AlbaNova University Centre, Stockholm, Sweden
| | - Verena Seidl-Seiboth
- Research Division Biochemical Technology, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria
| | - Bernhard Seiboth
- Research Division Biochemical Technology, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria
| | - Lisa Kappel
- Research Division Biochemical Technology, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria
| |
Collapse
|
3
|
Haq IU, Kennedy P, Schreiner KM, Agnich JC, Schilling JS. Gene Expression by a Model Fungus in the Ascomycota Provides Insight Into the Decay of Fungal Necromass. Environ Microbiol 2024; 26:e70006. [PMID: 39647917 PMCID: PMC11625536 DOI: 10.1111/1462-2920.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/15/2024] [Accepted: 11/01/2024] [Indexed: 12/10/2024]
Abstract
Dead fungal cells, known as necromass, are increasingly recognised as significant contributors to long-term soil carbon pools, yet the genes involved in necromass decomposition are poorly understood. In particular, how microorganisms degrade necromass with differing initial cell wall chemical compositions using carbohydrate-active enzymes (CAZymes) has not been well studied. Based on the frequent occurrence and high abundance of the fungal genus Trichoderma on decaying fungal necromass in situ, we grew Trichoderma reesei RUT-C30 on low and high melanin necromass of Hyaloscypha bicolor (Ascomycota) in liquid cultures and assessed T. reesei gene expression relative to each other and relative to glucose. Transcriptome data revealed that T. reesei up-regulated many genes (over 100; necromass versus glucose substrate) coding for CAZymes, including enzymes that would target individual layers of an Ascomycota fungal cell wall. We also observed differential expression of protease- and laccase-encoding genes on high versus low melanin necromass, highlighting a subset of genes (fewer than 15) possibly linked to the deconstruction of melanin, a cell wall constituent that limits necromass decay rates in nature. Collectively, these results advance our understanding of the genomic traits underpinning the rates and fates of carbon turnover in an understudied pool of Earth's belowground carbon, fungal necromass.
Collapse
Affiliation(s)
- Irshad Ul Haq
- Department of Plant and Microbial Biology, College of Biological SciencesUniversity of MinnesotaTwin CitiesMinnesotaUSA
| | - Peter Kennedy
- Department of Plant and Microbial Biology, College of Biological SciencesUniversity of MinnesotaTwin CitiesMinnesotaUSA
| | - Kathryn M. Schreiner
- Department of Chemistry and BiochemistryUniversity of Minnesota DuluthDuluthMinnesotaUSA
- Large Lakes ObservatoryUniversity of Minnesota DuluthDuluthMinnesotaUSA
| | - Julia C. Agnich
- Large Lakes ObservatoryUniversity of Minnesota DuluthDuluthMinnesotaUSA
| | - Jonathan S. Schilling
- Department of Plant and Microbial Biology, College of Biological SciencesUniversity of MinnesotaTwin CitiesMinnesotaUSA
| |
Collapse
|
4
|
Chan Ho Tong L, Jourdier E, Naquin D, Ben Chaabane F, Aouam T, Chartier G, Castro González I, Margeot A, Bidard F. Transgressive phenotypes from outbreeding between the Trichoderma reesei hyper producer RutC30 and a natural isolate. Microbiol Spectr 2024; 12:e0044124. [PMID: 39162516 PMCID: PMC11448445 DOI: 10.1128/spectrum.00441-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/03/2024] [Indexed: 08/21/2024] Open
Abstract
Trichoderma reesei, the main filamentous fungus used for industrial cellulase production, was long considered to be asexual. The recent discovery of the mating type locus in the natural isolate QM6a and the possibility to cross this sterile female strain with a fertile natural female strain opened up a new avenue for strain optimization. We crossed the hyperproducer RutC30 with a compatible female ascospore-derived isolate of the wild-type strain CBS999.97 and analyzed about 300 offspring. A continuous distribution of secreted protein levels was observed in the progeny, confirming the involvement of several mutated loci in the hyperproductive phenotype. A bias toward MAT1-2 strains was identified for higher producers, but not directly linked to the Mating-type locus itself. Transgressive phenotypes were observed in terms of both productivity and secretome quality, with offspring that outperform their parents for three enzymatic activities. Genomic sequences of the 10 best producers highlighted the genetic diversity generated and the involvement of parental alleles in hyperproduction and fertility. IMPORTANCE The filamentous fungus Trichoderma reesei produces cellulolytic enzymes that are essential for the hydrolysis of lignocellulosic biomass into monomerics sugars. The filamentous fungus T. reesei produces cellulolytic enzymes that are essential for the hydrolysis of lignocellulosic biomass into monomerics sugars, which can in turn be fermented to produce second-generation biofuels and bioproducts. Production performance improvement, which is essential to reduce production cost, relies on classical mutagenesis and genetic engineering techniques. Although sexual reproduction is a powerful tool for improving domesticated species, it is often difficult to apply to industrial fungi since most of them are considered asexual. In this study, we demonstrated that outbreeding is an efficient strategy to optimize T. reesei. Crossing between a natural isolate and a mutagenized strain generated a biodiverse progeny with some offspring displaying transgressive phenotype for cellulase activities.
Collapse
Affiliation(s)
- Laetitia Chan Ho Tong
- Biotechnology Department, IFP Energies nouvelles (IFPEN), 92852 Rueil-Malmaison, France
| | - Etienne Jourdier
- Biotechnology Department, IFP Energies nouvelles (IFPEN), 92852 Rueil-Malmaison, France
| | - Delphine Naquin
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198 Gif-sur-Yvette, France
| | - Fadhel Ben Chaabane
- Biotechnology Department, IFP Energies nouvelles (IFPEN), 92852 Rueil-Malmaison, France
| | - Thiziri Aouam
- Biotechnology Department, IFP Energies nouvelles (IFPEN), 92852 Rueil-Malmaison, France
| | - Gwladys Chartier
- Biotechnology Department, IFP Energies nouvelles (IFPEN), 92852 Rueil-Malmaison, France
| | - Itzel Castro González
- Biotechnology Department, IFP Energies nouvelles (IFPEN), 92852 Rueil-Malmaison, France
| | - Antoine Margeot
- Biotechnology Department, IFP Energies nouvelles (IFPEN), 92852 Rueil-Malmaison, France
| | - Frederique Bidard
- Biotechnology Department, IFP Energies nouvelles (IFPEN), 92852 Rueil-Malmaison, France
| |
Collapse
|
5
|
Zhang X, Yang Y, Liu L, Sui X, Bermudez RS, Wang L, He W, Xu H. Insights into the efficient degradation mechanism of extracellular proteases mediated by Purpureocillium lilacinum. Front Microbiol 2024; 15:1404439. [PMID: 39040909 PMCID: PMC11260826 DOI: 10.3389/fmicb.2024.1404439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/17/2024] [Indexed: 07/24/2024] Open
Abstract
Protease secretion is crucial for degrading nematode cuticles using nematophagous fungus Purpureocillium lilacinum, but the secretion pattern of protease remains poorly understood. This study aimed to explore the degradation mechanism of proteases by investigating the characteristics of protease secretion under various carbon and nitrogen sources, and different carbon to nitrogen (C:N) ratios in P. lilacinum. The results showed that corn flour as a carbon source and yeast extract as a nitrogen source specifically induced protease secretion in P. lilacinum. P. lilacinum produced significant amounts of gelatinase and casein enzyme at C:N ratios of 10:1, 20:1, and 40:1, indicating that higher C:N ratios were more beneficial for secreting extracellular proteases. Proteomic analysis revealed 14 proteases, including 4 S8 serine endopeptidases and one M28 aminopeptidase. Among four S8 serine peptidases, Alp1 exhibited a high secretion level at C:N ratio less than 5:1, whereas PR1C, PR1D, and P32 displayed higher secretion levels at higher C:N ratios. In addition, the transcription levels of GATA transcription factors were investigated, revealing that Asd-4, A0A179G170, and A0A179HGL4 were more prevalent at a C:N ratio of 40:1. In contrast, the transcription levels of SREP, AreA, and NsdD were higher at lower C:N ratios. The putative regulatory profile of extracellular protease production in P. lilacinum, induced by different C:N ratios, was analyzed. The findings offered insights into the complexity of protease production and aided in the hydrolytic degradation of nematode cuticles.
Collapse
Affiliation(s)
- Xiujun Zhang
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Yuhong Yang
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Li Liu
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Xin Sui
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | | | - Lushan Wang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Wenxing He
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Huilian Xu
- School of Biological Science and Technology, University of Jinan, Jinan, China
| |
Collapse
|
6
|
de Assis MA, da Silva JJB, de Carvalho LM, Parreiras LS, Cairo JPLF, Marone MP, Gonçalves TA, Silva DS, Dantzger M, de Figueiredo FL, Carazzolle MF, Pereira GAG, Damasio A. A Multiomics Perspective on Plant Cell Wall-Degrading Enzyme Production: Insights from the Unexploited Fungus Trichoderma erinaceum. J Fungi (Basel) 2024; 10:407. [PMID: 38921393 PMCID: PMC11205114 DOI: 10.3390/jof10060407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 06/27/2024] Open
Abstract
Trichoderma erinaceum is a filamentous fungus that was isolated from decaying sugarcane straw at a Brazilian ethanol biorefinery. This fungus shows potential as a source of plant cell wall-degrading enzymes (PCWDEs). In this study, we conducted a comprehensive multiomics investigation of T. erinaceum to gain insights into its enzymatic capabilities and genetic makeup. Firstly, we performed genome sequencing and assembly, which resulted in the identification of 10,942 genes in the T. erinaceum genome. We then conducted transcriptomics and secretome analyses to map the gene expression patterns and identify the enzymes produced by T. erinaceum in the presence of different substrates such as glucose, microcrystalline cellulose, pretreated sugarcane straw, and pretreated energy cane bagasse. Our analyses revealed that T. erinaceum highly expresses genes directly related to lignocellulose degradation when grown on pretreated energy cane and sugarcane substrates. Furthermore, our secretome analysis identified 35 carbohydrate-active enzymes, primarily PCWDEs. To further explore the enzymatic capabilities of T. erinaceum, we selected a β-glucosidase from the secretome data for recombinant production in a fungal strain. The recombinant enzyme demonstrated superior performance in degrading cellobiose and laminaribiose compared to a well-known enzyme derived from Trichoderma reesei. Overall, this comprehensive study provides valuable insights into both the genetic patterns of T. erinaceum and its potential for lignocellulose degradation and enzyme production. The obtained genomic data can serve as an important resource for future genetic engineering efforts aimed at optimizing enzyme production from this fungus.
Collapse
Affiliation(s)
- Michelle A. de Assis
- Laboratory of Enzymology and Molecular Biology (LEBIMO), Department of Biochemistry and Tissue Biology, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-862, São Paulo, Brazil; (M.A.d.A.); (J.P.L.F.C.); (T.A.G.); (F.L.d.F.)
| | - Jovanderson J. B. da Silva
- Genomics and BioEnergy Laboratory (LGE), Department of Genetics, Evolution, Microbiology and Immunology, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-862, São Paulo, Brazil; (J.J.B.d.S.); (L.M.d.C.); (L.S.P.); (M.D.); (M.F.C.); (G.A.G.P.)
| | - Lucas M. de Carvalho
- Genomics and BioEnergy Laboratory (LGE), Department of Genetics, Evolution, Microbiology and Immunology, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-862, São Paulo, Brazil; (J.J.B.d.S.); (L.M.d.C.); (L.S.P.); (M.D.); (M.F.C.); (G.A.G.P.)
| | - Lucas S. Parreiras
- Genomics and BioEnergy Laboratory (LGE), Department of Genetics, Evolution, Microbiology and Immunology, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-862, São Paulo, Brazil; (J.J.B.d.S.); (L.M.d.C.); (L.S.P.); (M.D.); (M.F.C.); (G.A.G.P.)
| | - João Paulo L. F. Cairo
- Laboratory of Enzymology and Molecular Biology (LEBIMO), Department of Biochemistry and Tissue Biology, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-862, São Paulo, Brazil; (M.A.d.A.); (J.P.L.F.C.); (T.A.G.); (F.L.d.F.)
- York Structural Biology Laboratory (YSBL), Department of Chemistry, University of York, York YO10 5DD, UK
| | - Marina P. Marone
- Genomics and BioEnergy Laboratory (LGE), Department of Genetics, Evolution, Microbiology and Immunology, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-862, São Paulo, Brazil; (J.J.B.d.S.); (L.M.d.C.); (L.S.P.); (M.D.); (M.F.C.); (G.A.G.P.)
| | - Thiago A. Gonçalves
- Laboratory of Enzymology and Molecular Biology (LEBIMO), Department of Biochemistry and Tissue Biology, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-862, São Paulo, Brazil; (M.A.d.A.); (J.P.L.F.C.); (T.A.G.); (F.L.d.F.)
| | - Desireé S. Silva
- SENAI Institute for Biomass Innovation, Três Lagoas 79640-250, Brazil;
| | - Miriam Dantzger
- Genomics and BioEnergy Laboratory (LGE), Department of Genetics, Evolution, Microbiology and Immunology, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-862, São Paulo, Brazil; (J.J.B.d.S.); (L.M.d.C.); (L.S.P.); (M.D.); (M.F.C.); (G.A.G.P.)
| | - Fernanda L. de Figueiredo
- Laboratory of Enzymology and Molecular Biology (LEBIMO), Department of Biochemistry and Tissue Biology, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-862, São Paulo, Brazil; (M.A.d.A.); (J.P.L.F.C.); (T.A.G.); (F.L.d.F.)
| | - Marcelo F. Carazzolle
- Genomics and BioEnergy Laboratory (LGE), Department of Genetics, Evolution, Microbiology and Immunology, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-862, São Paulo, Brazil; (J.J.B.d.S.); (L.M.d.C.); (L.S.P.); (M.D.); (M.F.C.); (G.A.G.P.)
| | - Gonçalo A. G. Pereira
- Genomics and BioEnergy Laboratory (LGE), Department of Genetics, Evolution, Microbiology and Immunology, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-862, São Paulo, Brazil; (J.J.B.d.S.); (L.M.d.C.); (L.S.P.); (M.D.); (M.F.C.); (G.A.G.P.)
| | - André Damasio
- Laboratory of Enzymology and Molecular Biology (LEBIMO), Department of Biochemistry and Tissue Biology, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-862, São Paulo, Brazil; (M.A.d.A.); (J.P.L.F.C.); (T.A.G.); (F.L.d.F.)
| |
Collapse
|
7
|
Zhu Z, Zou G, Chai S, Xiao M, Wang Y, Wang P, Zhou Z. The protein methyltransferase TrSAM inhibits cellulase gene expression by interacting with the negative regulator ACE1 in Trichoderma reesei. Commun Biol 2024; 7:375. [PMID: 38548869 PMCID: PMC10978942 DOI: 10.1038/s42003-024-06072-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 03/19/2024] [Indexed: 04/01/2024] Open
Abstract
Protein methylation is a commonly posttranslational modification of transcriptional regulators to fine-tune protein function, however, whether this regulation strategy participates in the regulation of lignocellulase synthesis and secretion in Trichoderma reesei remains unexplored. Here, a putative protein methyltransferase (TrSAM) is screened from a T. reesei mutant with the ability to express heterologous β-glucosidase efficiently even under glucose repression. The deletion of its encoding gene trsam causes a significant increase of cellulase activities in all tested T. reesei strains, including transformants of expressing heterologous genes using cbh1 promotor. Further investigation confirms that TrSAM interacts with the cellulase negative regulator ACE1 via its amino acid residue Arg383, which causes a decrease in the ACE1-DNA binding affinity. The enzyme activity of a T. reesei strain harboring ACE1R383Q increases by 85.8%, whereas that of the strains with trsam or ace1 deletion increases by more than 100%. By contrast, the strain with ACE1R383K shows no difference to the parent strain. Taken together, our results demonstrate that TrSAM plays an important role in regulating the expression of cellulase and heterologous proteins initiated by cbh1 promotor through interacting with ACE1R383. Elimination and mutation of TrSAM and its downstream ACE1 alleviate the carbon catabolite repression (CCR) in expressing cellulase and heterologous protein in varying degrees. This provides a new solution for the exquisite modification of T. reesei chassis.
Collapse
Affiliation(s)
- Zhihua Zhu
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 FengLin Rd, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Gen Zou
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 FengLin Rd, Shanghai, 200032, China
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Science, 1000 Jinqi Rd, Shanghai, 201403, China
| | - Shunxing Chai
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 FengLin Rd, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Meili Xiao
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 FengLin Rd, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yinmei Wang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 FengLin Rd, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pingping Wang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 FengLin Rd, Shanghai, 200032, China
| | - Zhihua Zhou
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 FengLin Rd, Shanghai, 200032, China.
| |
Collapse
|
8
|
Alharake J, Bidard F, Aouam T, Sénamaud-Beaufort C, Margeot A, Heiss-Blanquet S. Effect of the res2 transcription factor gene deletion on protein secretion and stress response in the hyperproducer strain Trichoderma reesei Rut-C30. BMC Microbiol 2023; 23:374. [PMID: 38036984 PMCID: PMC10687790 DOI: 10.1186/s12866-023-03125-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 11/17/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND The fungus Trichoderma reesei is one of the most used industrial cellulase producers due to its high capacity of protein secretion. Strains of T. reesei with enhanced protein secretion capacity, such as Rut-C30, have been obtained after several rounds of random mutagenesis. The strain was shown to possess an expanded endoplasmic reticulum, but the genetic factors responsible for this phenotype remain still unidentified. Recently, three new transcription factors were described in Neurospora crassa which were demonstrated to be involved in protein secretion. One of them, RES2, was involved in upregulation of secretion-related genes. The aim of our present study was therefore to analyze the role of RES2, on protein secretion in the T. reesei Rut-C30 strain. RESULT Deletion of the res2 gene in Rut-C30 resulted in slightly slower growth on all substrates tested, and lower germination rate as well as lower protein secretion compared to the parental strain Rut-C30. Transcriptomic analysis of the Rut-C30 and the Δres2 mutant strain in secretion stress conditions showed remarkably few differences : 971 genes were differentially expressed (DE) in both strains while 192 genes out of 1163 (~ 16.5%) were DE in Rut-C30 only and 693 out of 1664 genes (~ 41.6%) displayed differential expression solely in Δres2. Notably, induction of protein secretion by cultivating on lactose and addition of secretion stress inducer DTT induced many genes of the secretion pathway similarly in both strains. Among the differentially expressed genes, those coding for amino acid biosynthesis genes, transporters and genes involved in lipid metabolism were found to be enriched specifically in the Δres2 strain upon exposure to lactose or DTT. Besides, redox homeostasis and DNA repair genes were specifically upregulated in the Δres2 strain, indicating an altered stress response. CONCLUSION These results indicate that in the T. reesei Rut-C30 strain, RES2 does not act as a master regulator of the secretion pathway, but it contributes to a higher protein secretion by adjusting the expression of genes involved in different steps of protein synthesis and the secretion pathway.
Collapse
Affiliation(s)
- Jawad Alharake
- IFP Energies Nouvelles, 1 et 4, avenue de Bois-Préau, Rueil-Malmaison Cedex, 92852, France
| | - Frédérique Bidard
- IFP Energies Nouvelles, 1 et 4, avenue de Bois-Préau, Rueil-Malmaison Cedex, 92852, France
| | - Thiziri Aouam
- IFP Energies Nouvelles, 1 et 4, avenue de Bois-Préau, Rueil-Malmaison Cedex, 92852, France
| | - Catherine Sénamaud-Beaufort
- Département de biologie, GenomiqueENS, Institut de Biologie de l'ENS (IBENS), CNRS, INSERM, Université PSL, École normale supérieure, Paris, 75005, France
| | - Antoine Margeot
- IFP Energies Nouvelles, 1 et 4, avenue de Bois-Préau, Rueil-Malmaison Cedex, 92852, France
| | - Senta Heiss-Blanquet
- IFP Energies Nouvelles, 1 et 4, avenue de Bois-Préau, Rueil-Malmaison Cedex, 92852, France.
| |
Collapse
|
9
|
Liu Z, Ma K, Zhang X, Song X, Qin Y. Different Putative Methyltransferases Have Different Effects on the Expression Patterns of Cellulolytic Genes. J Fungi (Basel) 2023; 9:1118. [PMID: 37998923 PMCID: PMC10671955 DOI: 10.3390/jof9111118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/07/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023] Open
Abstract
Putative methyltranferase LaeA and LaeA-like proteins, conserved in many filamentous fungi, regulate fungal growth, development, virulence, the biosynthesis of secondary metabolites, and the production of cellulolytic enzymes. Penicillium oxaliucm is a typical fungus that produces cellulolytic enzymes. In this study, we reported the biological function of eight putative methyltransferases (PoMtr23C/D/E/F/G/H and PoMtr25A/B) containing a methyltransf_23 or methyltransf_25 domain, with a focus on their roles in the production of cellulolytic enzymes. In P. oxalicum, various methyltransferase genes displayed different transcriptional levels. The genes Pomtr23C and Pomtr25A exhibited high transcriptional levels, while Pomtr23D/E/F/G/H and Pomtr25B were transcribed constantly at low levels. The gene deletion mutants (Δmtr23C/D/E/F/G/H and Δmtr25A/B) were constructed. Various mutants have different patterns in cellulolytic enzyme production. Compared to the WT, the largest increase in filter paper activity (FPA, indicating total cellulase activity) was observed in the Δmtr23G mutant, the only mutant with a cellulolytic halo surrounding the colony. Three mutants (Δmtr23C/D and Δmtr25A) also showed increased cellulolytic enzyme production. The Δmtr23E and Δmtr25B mutants displayed decreased FPA activity, while the Δmtr23F and Δmtr23H mutants displayed similar patterns of cellulolytic enzyme production compared with the WT. The assay of transcriptional levels of cellobiohydrolase gene Pocbh1 and β-1,4-endoglucanase Poeg1 supported that higher cellulolytic gene transcription resulted in higher production of cellulolytic enzymes, and vice versa. The transcriptional levels of two transcription factors, activator XlnR and repressor CreA, were measured. The high transcription level of the PoxlnR gene in the Δmtr23D mutant should be one reason for the increased transcription of its cellulolytic enzyme gene. Both XlnR and CreA transcriptional levels increased in the Δmtr23G mutant, but the former showed a more significant increase than the latter, indicating that the activation effect predominated. The PoMtr25A is localized in the nucleus. The catalytic subunit SNF2 of the SWI/SNF chromatin-remodeling complex was found as one of the interacting proteins of PoMtr25A via tandem affinity purification coupled with mass spectrometry. PoMtr25A may affect not only the transcription of repressor CreA but also by recruiting SWI/SNF complexes that affect chromatin structure, thereby regulating the transcription of target genes.
Collapse
Affiliation(s)
- Zhongjiao Liu
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, China; (Z.L.); (K.M.); (X.Z.); (X.S.)
| | - Kexuan Ma
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, China; (Z.L.); (K.M.); (X.Z.); (X.S.)
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Xiujun Zhang
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, China; (Z.L.); (K.M.); (X.Z.); (X.S.)
- School of Biological Science and Technology, University of Jinan, Jinan 250024, China
| | - Xin Song
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, China; (Z.L.); (K.M.); (X.Z.); (X.S.)
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Yuqi Qin
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, China; (Z.L.); (K.M.); (X.Z.); (X.S.)
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| |
Collapse
|
10
|
Giwa AS, Ali N, Akhter MS. Cellulose Degradation Enzymes in Filamentous Fungi, A Bioprocessing Approach Towards Biorefinery. Mol Biotechnol 2023:10.1007/s12033-023-00900-1. [PMID: 37839042 DOI: 10.1007/s12033-023-00900-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 09/04/2023] [Indexed: 10/17/2023]
Abstract
The economic exploration of renewable energy resources has hot fundamentals among the countries besides dwindling energy resources and increasing public pressure. Cellulose accumulation is a major bio-natural resource from agricultural waste. Cellulases are the most potential enzymes that systematically degrade cellulosic biomass into monomers which could be further processed into several efficient value-added products via chemical and biological reactions including useful biomaterial for human benefits. This could lower the environmental risks problems followed by an energy crisis. Cellulases are mainly synthesized by special fungal genotypes. The strain Trichoderma orientalis could highly express cellulases and was regarded as an ideal strain for further research, as the genetic tools have found compatibility for cellulose breakdown by producing effective cellulose-degrading enzymes. This strain has found a cellulase production of about 35 g/L that needs further studies for advancement. The enzyme activity of strain Trichoderma orientalis needed to be further improved from a molecular level which is one of the important methods. Considering synthetic biological approaches to unveil the genetic tools will boost the knowledge about commercial cellulases bioproduction. Several genetic transformation methods were significantly cited in this study. The transformation approaches that are currently researchers are exploring is transcription regulatory factors that are deeply explained in this study, that are considered essential regulators of gene expression.
Collapse
Affiliation(s)
- Abdulmoseen Segun Giwa
- School of Environment and Civil Engineering, Nanchang Institute of Science and Technology, Nanchang, 330108, China
| | - Nasir Ali
- Institute of Biotechnology Genetic Engineering, The University of Agriculture, Peshawar, 25130, Khyber Pakhtunkhwa, Pakistan.
| | - Mohammed Salim Akhter
- Department of Chemistry, College of Science, University of Bahrain, Sakheer Campus Bahrain, Zallaq, Bahrain
| |
Collapse
|
11
|
Yan S, Xu Y, Yu XW. Role of cellulose response transporter-like protein CRT2 in cellulase induction in Trichoderma reesei. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:118. [PMID: 37488642 PMCID: PMC10364367 DOI: 10.1186/s13068-023-02371-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/19/2023] [Indexed: 07/26/2023]
Abstract
BACKGROUND Induction of cellulase in cellulolytic fungi Trichoderma reesei is strongly activated by cellulosic carbon sources. The transport of cellulosic inducer and the perception of inducing signal is generally considered as the critical process for cellulase induction, that the inducing signal would be perceived by a sugar transporter/transceptor in T. reesei. Several sugar transporters are coexpressed during the induction stage, but which function they serve and how they work collaboratively are still difficult to elucidate. RESULTS In this study, we found that the constitutive expression of the cellulose response transporter-like protein CRT2 (previously identified as putative lactose permease TRE77517) improves cellulase induction on a cellulose, cellobiose or lactose medium. Functional studies indicate that the membrane-bound CRT2 is not a transporter of cellobiose, lactose or glucose in a yeast system, and it also does not affect cellobiose and lactose utilization in T. reesei. Further study reveals that CRT2 has a slightly similar function to the cellobiose transporter CRT1 in cellulase induction. Overexpression of CRT2 led to upregulation of CRT1 and the key transcription factor XYR1. Moreover, overexpression of CRT2 could partially compensate for the function loss of CRT1 on cellulase induction. CONCLUSIONS Our study uncovers the novel function of CRT2 in cellulase induction collaborated with CRT1 and XYR1, possibly as a signal transductor. These results deepen the understanding of the influence of sugar transporters in cellulase production.
Collapse
Affiliation(s)
- Su Yan
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Yan Xu
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Xiao-Wei Yu
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
12
|
MtTRC-1, a Novel Transcription Factor, Regulates Cellulase Production via Directly Modulating the Genes Expression of the Mthac-1 and Mtcbh-1 in Myceliophthora thermophila. Appl Environ Microbiol 2022; 88:e0126322. [PMID: 36165620 PMCID: PMC9552611 DOI: 10.1128/aem.01263-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The thermophilic fungus Myceliophthora thermophila has been used to produce industrial enzymes and biobased chemicals. In saprotrophic fungi, the mechanisms regulating cellulase production have been studied, which revealed the involvement of multiple transcription factors. However, in M. thermophila, the transcription factors influencing cellulase gene expression and secretion remain largely unknown. In this study, we identified and characterized a novel cellulase regulator (MtTRC-1) in M. thermophila through a combination of functional genomics and genetic analyses. Deletion of Mttrc-1 resulted in significantly decreased cellulase production and activities. Transcriptome analysis revealed downregulation of not only the encoding genes of main cellulases but also the transcriptional regulator MtHAC-1 of UPR pathway after disruption of MtTRC-1 under cellulolytic induction conditions. Herein, we also characterized the ortholog of the yeast HAC1p in M. thermophila. We show that Mthac-1 mRNA undergoes an endoplasmic reticulum (ER) stress-induced splicing by removing a 23-nucleotide (nt) intron. Notably, the protein secretion on cellulose was dramatically impaired by the deletion of MtHAC-1. Moreover, the colonial growth on various carbon sources was defective in the absence of MtHAC-1. Electrophoretic mobility shift assays and chromatin immunoprecipitation assays verified MtTRC-1 regulates the transcription of Mthac-1 and the major cellulase gene Mtcbh-1 by binding directly to the promoters in vitro and in vivo. Furthermore, DNase I footprinting assays identified the putative consensus binding site (5′-GNG/C-3′). These results revealed the importance of MtTRC-1 for positively regulating cellulase production. This finding has clarified the complex regulatory pathways involved in cellulolytic enzyme production. IMPORTANCE In the present study, we characterized a novel regulator MtTRC-1 in M. thermophila, which regulated cellulase production through direct transcriptional regulation of the Mthac-1 and Mtcbh-1 genes. Our data demonstrated that MtHAC-1 is a key factor for the cellulase secretion capacity of M. thermophila. Our data indicate that this thermophilic fungus regulates cellulase production through a multilevels network, in which the protein secretory pathway is modulated by MtHAC-1-dependent UPR pathway and the cellulase gene expression is directly regulated in parallel by transcription factors. The conservation of Mttrc1 in filamentous fungi suggests this mechanism may be exploited to engineer filamentous fungal cell factories capable of producing proteins on an industrial scale.
Collapse
|
13
|
Reppke MJ, Gerstner R, Windeisen-Holzhauser E, Richter K, Benz JP. Press water from the mechanical drying of Douglas-fir wood chips has multiple beneficial effects on lignocellulolytic fungi. Fungal Biol Biotechnol 2022; 9:10. [PMID: 35606847 PMCID: PMC9128199 DOI: 10.1186/s40694-022-00141-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/10/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND The mechanical drying of wood chips is an innovative method that improves the heating value of sawmill by-products in an energy-efficient continuous process. The liquid that comes out of the wood chips as press water (PW), however, contains a variety of undissolved as well as dissolved organic substances. The disposal of the PW as wastewater would generate additional costs due to its high organic load, offsetting the benefits in energy costs associated with the enhanced heating value of the wood chips. Our research explored if the organic load in PW could be utilized as a substrate by cellulolytic filamentous fungi. Hence, using the industrially relevant Ascomycete Trichoderma reesei RUT-C30 as well as several Basidiomycete wood-rotting fungi, we examined the potential of press water obtained from Douglas-fir wood chips to be used in the growth and enzyme production media. RESULTS The addition of PW supernatant to liquid cultures of T. reesei RUT-C30 resulted in a significant enhancement of the endoglucanase and endoxylanase activities with a substantially shortened lag-phase. A partial replacement of Ca2+, Mg2+, K+, as well as a complete replacement of Fe2+, Mn2+, Zn2+ by supplementing PW of the liquid media was achieved without negative effects on enzyme production. Concentrations of PW above 50% showed no adverse effects regarding the achievable endoglucanase activity but affected the endoxylanase activity to some extent. Exploring the enhancing potential of several individual PW components after chemical analysis revealed that the observed lag-phase reduction of T. reesei RUT-C30 was not caused by the dissolved sugars and ions, nor the wood particles in the PW sediment, suggesting that other, so far non-identified, compounds are responsible. However, also the growth rate of several basidiomycetes was significantly enhanced by the supplementation of raw PW to the agar medium. Moreover, their cultivation in liquid cultures reduced the turbidity of the PW substantially. CONCLUSIONS PW was identified as a suitable media supplement for lignocellulolytic fungi, including the cellulase and xylanase producer T. reesei RUT-C30 and several wood-degrading basidiomycetes. The possibility to replace several minerals, trace elements and an equal volume of fresh water in liquid media with PW and the ability of fungal mycelia to filter out the suspended solids is a promising way to combine biological wastewater treatment with value-adding biotechnological applications.
Collapse
Affiliation(s)
- Manfred J Reppke
- Professorship of Fungal Biotechnology in Wood Science, Holzforschung München (HFM), TUM School of Life Sciences, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354, Freising, Germany
| | - Rebecca Gerstner
- Professorship of Fungal Biotechnology in Wood Science, Holzforschung München (HFM), TUM School of Life Sciences, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354, Freising, Germany
| | - Elisabeth Windeisen-Holzhauser
- Chair of Wood Science, Holzforschung München (HFM), TUM School of Life Sciences, Technical University of Munich, Winzererstr. 45, 80797, Munich, Germany
| | - Klaus Richter
- Chair of Wood Science, Holzforschung München (HFM), TUM School of Life Sciences, Technical University of Munich, Winzererstr. 45, 80797, Munich, Germany
| | - J Philipp Benz
- Professorship of Fungal Biotechnology in Wood Science, Holzforschung München (HFM), TUM School of Life Sciences, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354, Freising, Germany.
- Institute for Advanced Study, Technical University of Munich, Lichtenbergstraße 2a, 85748, Garching, Germany.
| |
Collapse
|
14
|
Mattam AJ, Chaudhari YB, Velankar HR. Factors regulating cellulolytic gene expression in filamentous fungi: an overview. Microb Cell Fact 2022; 21:44. [PMID: 35317826 PMCID: PMC8939176 DOI: 10.1186/s12934-022-01764-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 02/27/2022] [Indexed: 12/19/2022] Open
Abstract
The growing demand for biofuels such as bioethanol has led to the need for identifying alternative feedstock instead of conventional substrates like molasses, etc. Lignocellulosic biomass is a relatively inexpensive feedstock that is available in abundance, however, its conversion to bioethanol involves a multistep process with different unit operations such as size reduction, pretreatment, saccharification, fermentation, distillation, etc. The saccharification or enzymatic hydrolysis of cellulose to glucose involves a complex family of enzymes called cellulases that are usually fungal in origin. Cellulose hydrolysis requires the synergistic action of several classes of enzymes, and achieving the optimum secretion of these simultaneously remains a challenge. The expression of fungal cellulases is controlled by an intricate network of transcription factors and sugar transporters. Several genetic engineering efforts have been undertaken to modulate the expression of cellulolytic genes, as well as their regulators. This review, therefore, focuses on the molecular mechanism of action of these transcription factors and their effect on the expression of cellulases and hemicellulases.
Collapse
Affiliation(s)
- Anu Jose Mattam
- Hindustan Petroleum Green R and D Centre (HPGRDC), KIADB Industrial Area, Tarabanahalli, Devanagundi, Hoskote, Bangalore, 560067, India
| | - Yogesh Babasaheb Chaudhari
- Hindustan Petroleum Green R and D Centre (HPGRDC), KIADB Industrial Area, Tarabanahalli, Devanagundi, Hoskote, Bangalore, 560067, India
| | - Harshad Ravindra Velankar
- Hindustan Petroleum Green R and D Centre (HPGRDC), KIADB Industrial Area, Tarabanahalli, Devanagundi, Hoskote, Bangalore, 560067, India.
| |
Collapse
|
15
|
Liu G, Qu Y. Integrated engineering of enzymes and microorganisms for improving the efficiency of industrial lignocellulose deconstruction. ENGINEERING MICROBIOLOGY 2021; 1:100005. [PMID: 39629162 PMCID: PMC11610957 DOI: 10.1016/j.engmic.2021.100005] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/17/2021] [Accepted: 10/04/2021] [Indexed: 12/07/2024]
Abstract
Bioconversion of lignocellulosic biomass to fuels and chemicals represents a new manufacturing paradigm that can help address society's energy, resource, and environmental problems. However, the low efficiency and high cost of lignocellulolytic enzymes currently used hinder their use in the industrial deconstruction of lignocellulose. To overcome these challenges, research efforts have focused on engineering the properties, synergy, and production of lignocellulolytic enzymes. First, lignocellulolytic enzymes' catalytic efficiency, stability, and tolerance to inhibitory compounds have been improved through enzyme mining and engineering. Second, synergistic actions between different enzyme components have been strengthened to construct customized enzyme cocktails for the degradation of specific lignocellulosic substrates. Third, biological processes for protein synthesis and cell morphogenesis in microorganisms have been engineered to achieve a high level and low-cost production of lignocellulolytic enzymes. In this review, the relevant progresses and challenges in these fields are summarized. Integrated engineering is proposed to be essential to achieve cost-effective enzymatic deconstruction of lignocellulose in the future.
Collapse
Affiliation(s)
- Guodong Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, China
| | - Yinbo Qu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, China
| |
Collapse
|
16
|
Tomico-Cuenca I, Mach RL, Mach-Aigner AR, Derntl C. An overview on current molecular tools for heterologous gene expression in Trichoderma. Fungal Biol Biotechnol 2021; 8:11. [PMID: 34702369 PMCID: PMC8549263 DOI: 10.1186/s40694-021-00119-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/16/2021] [Indexed: 11/10/2022] Open
Abstract
Fungi of the genus Trichoderma are routinely used as biocontrol agents and for the production of industrial enzymes. Trichoderma spp. are interesting hosts for heterologous gene expression because their saprotrophic and mycoparasitic lifestyles enable them to thrive on a large number of nutrient sources and some members of this genus are generally recognized as safe (GRAS status). In this review, we summarize and discuss several aspects involved in heterologous gene expression in Trichoderma, including transformation methods, genome editing strategies, native and synthetic expression systems and implications of protein secretion. This review focuses on the industrial workhorse Trichoderma reesei because this fungus is the best-studied member of this genus for protein expression and secretion. However, the discussed strategies and tools can be expected to be transferable to other Trichoderma species.
Collapse
Affiliation(s)
- Irene Tomico-Cuenca
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Strasse 1a, 1060, Wien, Austria
| | - Robert L Mach
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Strasse 1a, 1060, Wien, Austria
| | - Astrid R Mach-Aigner
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Strasse 1a, 1060, Wien, Austria
| | - Christian Derntl
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Strasse 1a, 1060, Wien, Austria.
| |
Collapse
|
17
|
Chen Y, Wang W, Liu P, Lin A, Fan X, Wu C, Li N, Wei L, Wei D. The novel repressor Rce2 competes with Ace3 to regulate cellulase gene expression in the filamentous fungus Trichoderma reesei. Mol Microbiol 2021; 116:1298-1314. [PMID: 34608686 DOI: 10.1111/mmi.14825] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/22/2021] [Accepted: 09/27/2021] [Indexed: 11/29/2022]
Abstract
The filamentous fungus Trichoderma reesei is widely used for industrial cellulase production. In T. reesei, cellulase gene expression is tightly controlled by a regulatory network involving multiple transcription factors. Here, we isolated a novel protein, Rce2, using a pull-down assay and mass spectrometry analysis, from a partial carbon catabolite de-repression mutant, T. reesei Rut-C30, cultured under glucose-repressing conditions. Deletion and overexpression of Rce2 in T. reesei wild-type QM6a and mutant Rut-C30 revealed that Rce2 acts as a repressor of cellulase gene expression. DNase I footprinting assays, electrophoretic mobility shift assays, and chromatin immunoprecipitation assays revealed that Rce2 was located in the nucleus and bound to the consensus sequences 5'-(T/A)NNNNCCG-3' and 5'-CGGNNNN(T/A)-3' in the promoters of cellulase-related genes to repress their transcription. Additionally, Rce2 antagonized Ace3 binding to the cbh1 promoter to repress its transcription. However, Rce2 was not involved in Cre1-mediated carbon catabolite repression. These results demonstrate the mechanism through which Rce2 represses the expression of cellulase genes and provide novel insights into the regulatory system of cellulases and methods that can be used for the regulation of gene expression in T. reesei.
Collapse
Affiliation(s)
- Yumeng Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Wei Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Pei Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Aibo Lin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Xingjia Fan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Chuan Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Ni Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Liujing Wei
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Dongzhi Wei
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
18
|
Xia C, Gao L, Li Z, Liu G, Song X. Functional analysis of the transcriptional activator XlnR of Penicillium oxalicum. J Appl Microbiol 2021; 132:1112-1120. [PMID: 34467597 DOI: 10.1111/jam.15276] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 07/31/2021] [Accepted: 08/23/2021] [Indexed: 12/01/2022]
Abstract
AIMS The aim of this article is to study the functional features of Penicillium oxalicum transcriptional activator XlnR. METHODS AND RESULTS The yeast reporter system was used to identify transcriptional activation domain of XlnR in P. oxalicum. The expression cassette was introduced into the xlnR locus of P. oxalicum by homologous recombination. In this study, several putative structural domains in P. oxalicum XlnR were predicted by bioinformatics analysis, and the transcriptional activation domain (351-694 region) was identified in XlnR relying on reporter gene system in yeast. In addition, the amino acid at XlnR 871 site (alanine) located in the regulatory region could influence the regulatory activity of XlnR directly. When the alanine at XlnR 871 site was replaced by stronger hydrophobic amino acid (e.g. valine or isoleucine), the regulatory activity will be greatly improved, especially for the regulation of hemicellulase genes expression. When alanine at XlnR 871 site was mutated to a hydrophilic amino acid (e.g. aspartic acid or arginine), the regulatory activity of XlnR will be reduced. CONCLUSIONS The 351-694 region of P. oxalicum XlnR was identified as transcriptional activation domain, and the regulatory activity of XlnR was greatly influenced by hydrophobicity of amino acid at 871 site of XlnR in P. oxalicum. SIGNIFICANCE AND IMPACT OF THE STUDY The results will provide an effective target site to regulate the activity of XlnR and improve cellulase production of P. oxalicum.
Collapse
Affiliation(s)
- Chengqiang Xia
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong Province, China.,College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi Province, China
| | - Liwei Gao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong Province, China
| | - Zhonghai Li
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Guodong Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong Province, China.,National Glycoengineering Research Center, Shandong University, Qingdao, Shandong Province, China
| | - Xin Song
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong Province, China.,National Glycoengineering Research Center, Shandong University, Qingdao, Shandong Province, China
| |
Collapse
|
19
|
Chen X, Song B, Liu M, Qin L, Dong Z. Understanding the Role of Trichoderma reesei Vib1 in Gene Expression during Cellulose Degradation. J Fungi (Basel) 2021; 7:jof7080613. [PMID: 34436152 PMCID: PMC8397228 DOI: 10.3390/jof7080613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 11/17/2022] Open
Abstract
Vib1, a member of the Ndt80/PhoG-like transcription factor family, has been shown to be essential for cellulase production of Trichoderma reesei. Here, we combined transcriptomic and genetic analyses to gain mechanistic insights into the roles of Vib1 during cellulose degradation. Our transcriptome analysis showed that the vib1 deletion caused 586 genes with decreased expression and 431 genes with increased expression on cellulose. The downregulated genes were enriched for Gene Ontology terms associated with carbohydrate metabolism, transmembrane transport, oxidoreductase activity, and transcription factor activity. Of the 258 genes induced by cellulose, 229 showed no or decreased expression in Δvib1 on cellulose, including almost all (hemi)cellulase genes, crucial sugar transporter genes (IDs:69957, 3405), and the genes encoding main transcriptional activators Xyr1 and Ace3. Additionally, Vib1 also regulated the expression of genes involved in secondary metabolism. Further comparison of the transcriptomes of Δvib1 and Δxyr1 in cellulose revealed that the genes regulated by Vib1 had much overlap with Xyr1 targets especially for the gene set induced by cellulose, presumably whose expression requires the cooperativity between Vib1 and Xyr1. Genetic evidence indicated that Vib1 regulates cellulase gene expression partially via Xyr1. Our results will provide new clues for strain improvement.
Collapse
Affiliation(s)
- Xiuzhen Chen
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (X.C.); (B.S.); (M.L.)
| | - Bingran Song
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (X.C.); (B.S.); (M.L.)
| | - Minglu Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (X.C.); (B.S.); (M.L.)
| | - Lina Qin
- National and Local Joint Engineering Research Center of Industrial Microbiology and Fermentation Technology, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China;
| | - Zhiyang Dong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (X.C.); (B.S.); (M.L.)
- Correspondence:
| |
Collapse
|
20
|
Trichoderma reesei ACE4, a Novel Transcriptional Activator Involved in the Regulation of Cellulase Genes during Growth on Cellulose. Appl Environ Microbiol 2021; 87:e0059321. [PMID: 34047636 DOI: 10.1128/aem.00593-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The filamentous fungus Trichoderma reesei is a model strain for cellulase production. Cellulase gene expression in T. reesei is controlled by multiple transcription factors. Here, we identified by comparative genomic screening a novel transcriptional activator, ACE4 (activator of cellulase expression 4), that positively regulates cellulase gene expression on cellulose in T. reesei. Disruption of the ace4 gene significantly decreased expression of four main cellulase genes and the essential cellulase transcription factor-encoding gene ace3. Overexpression of ace4 increased cellulase production by approximately 22% compared to that in the parental strain. Further investigations using electrophoretic mobility shift assays, DNase I footprinting assays, and chromatin immunoprecipitation assays indicated that ACE4 directly binds to the promoter of cellulase genes by recognizing the two adjacent 5'-GGCC-3' sequences. Additionally, ACE4 directly binds to the promoter of ace3 and, in turn, regulates the expression of ACE3 to facilitate cellulase production. Collectively, these results demonstrate an important role for ACE4 in regulating cellulase gene expression, which will contribute to understanding the mechanism underlying cellulase expression in T. reesei. IMPORTANCE T. reesei is commonly utilized in industry to produce cellulases, enzymes that degrade lignocellulosic biomass for the production of bioethanol and bio-based products. T. reesei is capable of rapidly initiating the biosynthesis of cellulases in the presence of cellulose, which has made it useful as a model fungus for studying gene expression in eukaryotes. Cellulase gene expression is controlled through multiple transcription factors at the transcriptional level. However, the molecular mechanisms by which transcription is controlled remain unclear. In the present study, we identified a novel transcription factor, ACE4, which regulates cellulase expression on cellulose by binding to the promoters of cellulase genes and the cellulase activator gene ace3. Our study not only expands the general functional understanding of the novel transcription factor ACE4 but also provides evidence for the regulatory mechanism mediating gene expression in T. reesei.
Collapse
|
21
|
The F-box protein gene exo- 1 is a target for reverse engineering enzyme hypersecretion in filamentous fungi. Proc Natl Acad Sci U S A 2021; 118:2025689118. [PMID: 34168079 DOI: 10.1073/pnas.2025689118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Carbohydrate active enzymes (CAZymes) are vital for the lignocellulose-based biorefinery. The development of hypersecreting fungal protein production hosts is therefore a major aim for both academia and industry. However, despite advances in our understanding of their regulation, the number of promising candidate genes for targeted strain engineering remains limited. Here, we resequenced the genome of the classical hypersecreting Neurospora crassa mutant exo-1 and identified the causative point of mutation to reside in the F-box protein-encoding gene, NCU09899. The corresponding deletion strain displayed amylase and invertase activities exceeding those of the carbon catabolite derepressed strain Δcre-1, while glucose repression was still mostly functional in Δexo-1 Surprisingly, RNA sequencing revealed that while plant cell wall degradation genes are broadly misexpressed in Δexo-1, only a small fraction of CAZyme genes and sugar transporters are up-regulated, indicating that EXO-1 affects specific regulatory factors. Aiming to elucidate the underlying mechanism of enzyme hypersecretion, we found the high secretion of amylases and invertase in Δexo-1 to be completely dependent on the transcriptional regulator COL-26. Furthermore, misregulation of COL-26, CRE-1, and cellular carbon and nitrogen metabolism was confirmed by proteomics. Finally, we successfully transferred the hypersecretion trait of the exo-1 disruption by reverse engineering into the industrially deployed fungus Myceliophthora thermophila using CRISPR-Cas9. Our identification of an important F-box protein demonstrates the strength of classical mutants combined with next-generation sequencing to uncover unanticipated candidates for engineering. These data contribute to a more complete understanding of CAZyme regulation and will facilitate targeted engineering of hypersecretion in further organisms of interest.
Collapse
|
22
|
Peng M, Khosravi C, Lubbers RJM, Kun RS, Aguilar Pontes MV, Battaglia E, Chen C, Dalhuijsen S, Daly P, Lipzen A, Ng V, Yan J, Wang M, Visser J, Grigoriev IV, Mäkelä MR, de Vries RP. CreA-mediated repression of gene expression occurs at low monosaccharide levels during fungal plant biomass conversion in a time and substrate dependent manner. ACTA ACUST UNITED AC 2021; 7:100050. [PMID: 33778219 PMCID: PMC7985698 DOI: 10.1016/j.tcsw.2021.100050] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 02/28/2021] [Accepted: 02/28/2021] [Indexed: 12/15/2022]
Abstract
Carbon catabolite repression enables fungi to utilize the most favourable carbon source in the environment, and is mediated by a key regulator, CreA, in most fungi. CreA-mediated regulation has mainly been studied at high monosaccharide concentrations, an uncommon situation in most natural biotopes. In nature, many fungi rely on plant biomass as their major carbon source by producing enzymes to degrade plant cell wall polysaccharides into metabolizable sugars. To determine the role of CreA when fungi grow in more natural conditions and in particular with respect to degradation and conversion of plant cell walls, we compared transcriptomes of a creA deletion and reference strain of the ascomycete Aspergillus niger during growth on sugar beet pulp and wheat bran. Transcriptomics, extracellular sugar concentrations and growth profiling of A. niger on a variety of carbon sources, revealed that also under conditions with low concentrations of free monosaccharides, CreA has a major effect on gene expression in a strong time and substrate composition dependent manner. In addition, we compared the CreA regulon from five fungi during their growth on crude plant biomass or cellulose. It showed that CreA commonly regulated genes related to carbon metabolism, sugar transport and plant cell wall degrading enzymes across different species. We therefore conclude that CreA has a crucial role for fungi also in adapting to low sugar concentrations as occurring in their natural biotopes, which is supported by the presence of CreA orthologs in nearly all fungi.
Collapse
Affiliation(s)
- Mao Peng
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Claire Khosravi
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Ronnie J M Lubbers
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Roland S Kun
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Maria Victoria Aguilar Pontes
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Evy Battaglia
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Cindy Chen
- USA Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, United States
| | - Sacha Dalhuijsen
- Microbiology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Paul Daly
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Anna Lipzen
- USA Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, United States
| | - Vivian Ng
- USA Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, United States
| | - Juying Yan
- USA Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, United States
| | - Mei Wang
- USA Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, United States
| | - Jaap Visser
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Igor V Grigoriev
- USA Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, United States.,Department of Plant and Microbial Biology, University of California Berkeley, 111 Koshland Hall, Berkeley, CA 94720, USA
| | - Miia R Mäkelä
- Department of Microbiology, University of Helsinki, Viikinkaari 9, Helsinki, Finland
| | - Ronald P de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute, & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| |
Collapse
|
23
|
Carbon Catabolite Repression Governs Diverse Physiological Processes and Development in Aspergillus nidulans. mBio 2021; 13:e0373421. [PMID: 35164551 PMCID: PMC8844935 DOI: 10.1128/mbio.03734-21] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Carbon catabolite repression (CCR) is a common phenomenon of microorganisms that enable efficient utilization of carbon nutrients, critical for the fitness of microorganisms in the wild and for pathogenic species to cause infection. In most filamentous fungal species, the conserved transcription factor CreA/Cre1 mediates CCR. Previous studies demonstrated a primary function for CreA/Cre1 in carbon metabolism; however, the phenotype of creA/cre1 mutants indicated broader roles. The global function and regulatory mechanism of this wide-domain transcription factor has remained elusive. Here, we applied two powerful genomics methods (transcriptome sequencing and chromatin immunoprecipitation sequencing) to delineate the direct and indirect roles of Aspergillus nidulans CreA across diverse physiological processes, including secondary metabolism, iron homeostasis, oxidative stress response, development, N-glycan biosynthesis, unfolded protein response, and nutrient and ion transport. The results indicate intricate connections between the regulation of carbon metabolism and diverse cellular functions. Moreover, our work also provides key mechanistic insights into CreA regulation and identifies CreA as a master regulator controlling many transcription factors of different regulatory networks. The discoveries for this highly conserved transcriptional regulator in a model fungus have important implications for CCR in related pathogenic and industrial species. IMPORTANCE The ability to scavenge and use a wide range of nutrients for growth is crucial for microorganisms' survival in the wild. Carbon catabolite repression (CCR) is a transcriptional regulatory phenomenon of both bacteria and fungi to coordinate the expression of genes required for preferential utilization of carbon sources. Since carbon metabolism is essential for growth, CCR is central to the fitness of microorganisms. In filamentous fungi, CCR is mediated by the conserved transcription factor CreA/Cre1, whose function in carbon metabolism has been well established. However, the global roles and regulatory mechanism of CreA/Cre1 are poorly defined. This study uncovers the direct and indirect functions of CreA in the model organism Aspergillus nidulans over diverse physiological processes and development and provides mechanistic insights into how CreA controls different regulatory networks. The work also reveals an interesting functional divergence between filamentous fungal and yeast CreA/Cre1 orthologues.
Collapse
|
24
|
Wang L, Zhang W, Cao Y, Zheng F, Zhao G, Lv X, Meng X, Liu W. Interdependent recruitment of CYC8/TUP1 and the transcriptional activator XYR1 at target promoters is required for induced cellulase gene expression in Trichoderma reesei. PLoS Genet 2021; 17:e1009351. [PMID: 33606681 PMCID: PMC7894907 DOI: 10.1371/journal.pgen.1009351] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/12/2021] [Indexed: 11/19/2022] Open
Abstract
Cellulase production in filamentous fungus Trichoderma reesei is highly responsive to various environmental cues involving multiple positive and negative regulators. XYR1 (Xylanase regulator 1) has been identified as the key transcriptional activator of cellulase gene expression in T. reesei. However, the precise mechanism by which XYR1 achieves transcriptional activation of cellulase genes is still not fully understood. Here, we identified the TrCYC8/TUP1 complex as a novel coactivator for XYR1 in T. reesei. CYC8/TUP1 is the first identified transcriptional corepressor complex mediating repression of diverse genes in Saccharomyces cerevisiae. Knockdown of Trcyc8 or Trtup1 resulted in markedly impaired cellulase gene expression in T. reesei. We found that TrCYC8/TUP1 was recruited to cellulase gene promoters upon cellulose induction and this recruitment is dependent on XYR1. We further observed that repressed Trtup1 or Trcyc8 expression caused a strong defect in XYR1 occupancy and loss of histone H4 at cellulase gene promoters. The defects in XYR1 binding and transcriptional activation of target genes in Trtup1 or Trcyc8 repressed cells could not be overcome by XYR1 overexpression. Our results reveal a novel coactivator function for TrCYC8/TUP1 at the level of activator binding, and suggest a mechanism in which interdependent recruitment of XYR1 and TrCYC8/TUP1 to cellulase gene promoters represents an important regulatory circuit in ensuring the induced cellulase gene expression. These findings thus contribute to unveiling the intricate regulatory mechanism underlying XYR1-mediated cellulase gene activation and also provide an important clue that will help further improve cellulase production by T. reesei.
Collapse
Affiliation(s)
- Lei Wang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong, People’s Republic of China
| | - Weixin Zhang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong, People’s Republic of China
| | - Yanli Cao
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong, People’s Republic of China
| | - Fanglin Zheng
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong, People’s Republic of China
| | - Guolei Zhao
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong, People’s Republic of China
| | - Xinxing Lv
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong, People’s Republic of China
| | - Xiangfeng Meng
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong, People’s Republic of China
| | - Weifeng Liu
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong, People’s Republic of China
| |
Collapse
|
25
|
Pirayre A, Duval L, Blugeon C, Firmo C, Perrin S, Jourdier E, Margeot A, Bidard F. Glucose-lactose mixture feeds in industry-like conditions: a gene regulatory network analysis on the hyperproducing Trichoderma reesei strain Rut-C30. BMC Genomics 2020; 21:885. [PMID: 33302864 PMCID: PMC7731781 DOI: 10.1186/s12864-020-07281-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 11/25/2020] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND The degradation of cellulose and hemicellulose molecules into simpler sugars such as glucose is part of the second generation biofuel production process. Hydrolysis of lignocellulosic substrates is usually performed by enzymes produced and secreted by the fungus Trichoderma reesei. Studies identifying transcription factors involved in the regulation of cellulase production have been conducted but no overview of the whole regulation network is available. A transcriptomic approach with mixtures of glucose and lactose, used as a substrate for cellulase induction, was used to help us decipher missing parts in the network of T. reesei Rut-C30. RESULTS Experimental results on the Rut-C30 hyperproducing strain confirmed the impact of sugar mixtures on the enzymatic cocktail composition. The transcriptomic study shows a temporal regulation of the main transcription factors and a lactose concentration impact on the transcriptional profile. A gene regulatory network built using BRANE Cut software reveals three sub-networks related to i) a positive correlation between lactose concentration and cellulase production, ii) a particular dependence of the lactose onto the β-glucosidase regulation and iii) a negative regulation of the development process and growth. CONCLUSIONS This work is the first investigating a transcriptomic study regarding the effects of pure and mixed carbon sources in a fed-batch mode. Our study expose a co-orchestration of xyr1, clr2 and ace3 for cellulase and hemicellulase induction and production, a fine regulation of the β-glucosidase and a decrease of growth in favor of cellulase production. These conclusions provide us with potential targets for further genetic engineering leading to better cellulase-producing strains in industry-like conditions.
Collapse
Affiliation(s)
- Aurélie Pirayre
- IFP Energies nouvelles, 1 et 4 avenue de Bois-Préau, Rueil-Malmaison, 92852, France.
| | - Laurent Duval
- IFP Energies nouvelles, 1 et 4 avenue de Bois-Préau, Rueil-Malmaison, 92852, France
- Laboratoire d'Informatique Gaspard-Monge (LIGM), ESIEE Paris, Université-Gustave Eiffel, Marne-la-Vallée, F-77454, France
| | - Corinne Blugeon
- Genomic facility, Institut de Biologie de l'ENS (IBENS), Département de biologie, École normale supérieure, CNRS, INSERM, Université PSL, Paris, 75005, France
| | - Cyril Firmo
- Genomic facility, Institut de Biologie de l'ENS (IBENS), Département de biologie, École normale supérieure, CNRS, INSERM, Université PSL, Paris, 75005, France
| | - Sandrine Perrin
- Genomic facility, Institut de Biologie de l'ENS (IBENS), Département de biologie, École normale supérieure, CNRS, INSERM, Université PSL, Paris, 75005, France
| | - Etienne Jourdier
- IFP Energies nouvelles, 1 et 4 avenue de Bois-Préau, Rueil-Malmaison, 92852, France
| | - Antoine Margeot
- IFP Energies nouvelles, 1 et 4 avenue de Bois-Préau, Rueil-Malmaison, 92852, France
| | - Frédérique Bidard
- IFP Energies nouvelles, 1 et 4 avenue de Bois-Préau, Rueil-Malmaison, 92852, France
| |
Collapse
|
26
|
Zheng F, Yang R, Cao Y, Zhang W, Lv X, Meng X, Zhong Y, Chen G, Zhou Q, Liu W. Engineering Trichoderma reesei for Hyperproduction of Cellulases on Glucose to Efficiently Saccharify Pretreated Corncobs. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:12671-12682. [PMID: 33140639 DOI: 10.1021/acs.jafc.0c04663] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The filamentous fungus Trichoderma reesei (teleomorph Hypocrea jecorina) is widely used as a cellulase producer in the industry. Herein, we describe the rational engineering of the publicly available T. reesei QM9414 strain to achieve a remarkable high-level production of cellulase on glucose. Overexpression of the key cellulase regulator XYR1 by the copper-repressible promoter Ptcu1 was first implemented to achieve a full cellulase production in the context of catabolite repression (CCR) while eliminating the requirement of inducing sugars for enzyme production. The T. reesei bgl1 gene was further overexpressed to compensate for its low β-glucosidase activity on glucose. This overexpression resulted in a 102% increase in FPase activity compared with the CCR-released RUT-C30 strain cultured on Avicel. Moreover, the saccharification efficiency toward pretreated corncob residues by crude enzymes from the engineered strain on glucose increased by 85% compared with that treated by enzymes from RUT-C30 cultivated on Avicel. The engineered T. reesei strain thus shows great potential as a viable alternative to deliver commercial cellulases after further optimization for efficient saccharification of agricultural waste.
Collapse
Affiliation(s)
- Fanglin Zheng
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, No.72 Binhai Road, Qingdao, Shandong 266237, P. R. China
| | - Renfei Yang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, No.72 Binhai Road, Qingdao, Shandong 266237, P. R. China
| | - Yanli Cao
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, No.72 Binhai Road, Qingdao, Shandong 266237, P. R. China
| | - Weixin Zhang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, No.72 Binhai Road, Qingdao, Shandong 266237, P. R. China
| | - Xinxing Lv
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, No.72 Binhai Road, Qingdao, Shandong 266237, P. R. China
| | - Xiangfeng Meng
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, No.72 Binhai Road, Qingdao, Shandong 266237, P. R. China
| | - Yaohua Zhong
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, No.72 Binhai Road, Qingdao, Shandong 266237, P. R. China
| | - Guanjun Chen
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, No.72 Binhai Road, Qingdao, Shandong 266237, P. R. China
| | - Qingxin Zhou
- Shandong Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Institute of Agro-Food Science and Technology, No.202 Gongye North Road, Jinan 250100, P. R. China
- College of Life Science, Shandong Normal University, No.88 Wenhua East Road, Jinan 250014, P. R. China
| | - Weifeng Liu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, No.72 Binhai Road, Qingdao, Shandong 266237, P. R. China
| |
Collapse
|
27
|
Derntl C, Mach R, Mach-Aigner A. Application of the human estrogen receptor within a synthetic transcription factor in Trichoderma reesei. Fungal Biol Biotechnol 2020; 7:12. [PMID: 32765896 PMCID: PMC7396459 DOI: 10.1186/s40694-020-00102-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/17/2020] [Indexed: 12/28/2022] Open
Abstract
Background Synthetic gene expression systems offer a possibility for controllable and targeted induction of the expression of genes of interest, which is a fundamental technique necessary for basic research and industrial applications. The human estrogen receptor α contains a ligand binding domain that enforces dimerization and nuclear import upon binding of the inducer 17β-estradiol. In this study, we tested the potential of this ligand binding domain to be used in filamentous fungi as an auto-regulatory domain in a synthetic transcription factor. Results We constructed the synthetic transcription factor SynX by fusing the DNA-binding domain of Xyr1 (Xylanase Regulator 1), the transactivation domain of Ypr1 (Yellow Pigment Regulator 1), and the ligand binding domain of the human estrogen receptor α. SynX is able to strongly induce the gene expression of xylanases and an aldose reductase by addition of 17β-estradiol, but SynX does not induce gene expression of cellulases. Importantly, the induction of xylanase activities is mostly carbon source independent and can be fine-tuned by controlling the concentration of 17β-estradiol. Conclusion The ability of SynX to induce gene expression of xylanase encoding genes by addition of 17β-estradiol demonstrates that the ligand binding domain of the human estrogen receptor α works in filamentous fungi, and that it can be combined with a transactivation domain other than the commonly used transactivation domain of herpes simplex virion protein VP16.
Collapse
Affiliation(s)
- Christian Derntl
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Strasse 1a, 1060 Vienna, Austria
| | - Robert Mach
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Strasse 1a, 1060 Vienna, Austria
| | - Astrid Mach-Aigner
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Strasse 1a, 1060 Vienna, Austria
| |
Collapse
|
28
|
Han L, Tan Y, Ma W, Niu K, Hou S, Guo W, Liu Y, Fang X. Precision Engineering of the Transcription Factor Cre1 in Hypocrea jecorina ( Trichoderma reesei) for Efficient Cellulase Production in the Presence of Glucose. Front Bioeng Biotechnol 2020; 8:852. [PMID: 32850722 PMCID: PMC7399057 DOI: 10.3389/fbioe.2020.00852] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/02/2020] [Indexed: 01/07/2023] Open
Abstract
In Trichoderma reesei, carbon catabolite repression (CCR) significantly downregulates the transcription of cellulolytic enzymes, which is usually mediated by the zinc finger protein Cre1. It was found that there is a conserved region at the C-terminus of Cre1/CreA in several cellulase-producing fungi that contains up to three continuous S/T phosphorylation sites. Here, S387, S388, T389, and T390 at the C-terminus of Cre1 in T. reesei were mutated to valine for mimicking an unphosphorylated state, thereby generating the transformants Tr_Cre1S387V, Tr_Cre1S388V, Tr_Cre1T389V, and Tr_Cre1T390V, respectively. Transcription of cel7a in Tr_ Cre1S388V was markedly higher than that of the parent strain when grown in glucose-containing media. Under these conditions, both filter paperase (FPase) and p-nitrophenyl-β-D-cellobioside (pNPCase) activities, as well as soluble proteins from Tr_Cre1S388V were significantly increased by up to 2- to 3-fold compared with that of other transformants and the parent strain. The results suggested that S388 is critical site of phosphorylation for triggering CCR at the terminus of Cre1. To our knowledge, this is the first report demonstrating an improvement of cellulase production in T. reesei under CCR by mimicking dephosphorylation at the C-terminus of Cre1. Taken together, we developed a precision engineering strategy based on the modification of phosphorylation sites of Cre1 transcription factor to enhance the production of cellulase in T. reesei under CCR.
Collapse
Affiliation(s)
- Lijuan Han
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yinshuang Tan
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Wei Ma
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Kangle Niu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Shaoli Hou
- Shandong Henglu Biological Technology Co., Ltd., Jinan, China
| | - Wei Guo
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yucui Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Xu Fang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
29
|
Han L, Liu K, Ma W, Jiang Y, Hou S, Tan Y, Yuan Q, Niu K, Fang X. Redesigning transcription factor Cre1 for alleviating carbon catabolite repression in Trichoderma reesei. Synth Syst Biotechnol 2020; 5:230-235. [PMID: 32695894 PMCID: PMC7365963 DOI: 10.1016/j.synbio.2020.07.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 06/17/2020] [Accepted: 07/04/2020] [Indexed: 12/14/2022] Open
Abstract
Carbon catabolite repression (CCR), which is mainly mediated by Cre1 and triggered by glucose, leads to a decrease in cellulase production in Trichoderma reesei. Many studies have focused on modifying Cre1 for alleviating CCR. Based on the homologous alignment of CreA from wild-type Penicillium oxalicum 114–2 (Po-0) and cellulase hyperproducer JUA10-1(Po-1), we constructed a C-terminus substitution strain—Po-2—with decreased transcriptional levels of cellulase and enhanced CCR. Results revealed that the C-terminal domain of CreAPo−1 plays an important role in alleviating CCR. Furthermore, we replaced the C-terminus of Cre1 with that of CreAPo−1 in T. reesei (Tr-0) and generated Tr-1. As a control, the C-terminus of Cre1 was truncated and Tr-2 was generated. The transcriptional profiles of these transformants revealed that the C-terminal chimera greatly improves cellulase transcription in the presence of glucose and thus upregulates cellulase in the presence of glucose and weakens CCR, consistent with truncating the C-terminus of Cre1 in Tr-0. Therefore, we propose constructing a C-terminal chimera as a new strategy to improve cellulase production and alleviate CCR in the presence of glucose.
Collapse
Affiliation(s)
- Lijuan Han
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Kuimei Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China.,Rongcheng Campus, Harbin University of Science and Technology, Weihai, 264300, China
| | - Wei Ma
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Yi Jiang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Shaoli Hou
- Shandong Henglu Biological Technology Co., Ltd, Jinan, 250000, China
| | - Yinshuang Tan
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Quanquan Yuan
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Kangle Niu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Xu Fang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China.,Shandong Henglu Biological Technology Co., Ltd, Jinan, 250000, China
| |
Collapse
|
30
|
Wang BT, Hu S, Yu XY, Jin L, Zhu YJ, Jin FJ. Studies of Cellulose and Starch Utilization and the Regulatory Mechanisms of Related Enzymes in Fungi. Polymers (Basel) 2020; 12:polym12030530. [PMID: 32121667 PMCID: PMC7182937 DOI: 10.3390/polym12030530] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/14/2020] [Accepted: 02/16/2020] [Indexed: 12/24/2022] Open
Abstract
Polysaccharides are biopolymers made up of a large number of monosaccharides joined together by glycosidic bonds. Polysaccharides are widely distributed in nature: Some, such as peptidoglycan and cellulose, are the components that make up the cell walls of bacteria and plants, and some, such as starch and glycogen, are used as carbohydrate storage in plants and animals. Fungi exist in a variety of natural environments and can exploit a wide range of carbon sources. They play a crucial role in the global carbon cycle because of their ability to break down plant biomass, which is composed primarily of cell wall polysaccharides, including cellulose, hemicellulose, and pectin. Fungi produce a variety of enzymes that in combination degrade cell wall polysaccharides into different monosaccharides. Starch, the main component of grain, is also a polysaccharide that can be broken down into monosaccharides by fungi. These monosaccharides can be used for energy or as precursors for the biosynthesis of biomolecules through a series of enzymatic reactions. Industrial fermentation by microbes has been widely used to produce traditional foods, beverages, and biofuels from starch and to a lesser extent plant biomass. This review focuses on the degradation and utilization of plant homopolysaccharides, cellulose and starch; summarizes the activities of the enzymes involved and the regulation of the induction of the enzymes in well-studied filamentous fungi.
Collapse
|
31
|
Ega SL, Drendel G, Petrovski S, Egidi E, Franks AE, Muddada S. Comparative Analysis of Structural Variations Due to Genome Shuffling of Bacillus Subtilis VS15 for Improved Cellulase Production. Int J Mol Sci 2020; 21:ijms21041299. [PMID: 32075107 PMCID: PMC7072954 DOI: 10.3390/ijms21041299] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/29/2019] [Accepted: 10/29/2019] [Indexed: 12/23/2022] Open
Abstract
Cellulose is one of the most abundant and renewable biomass products used for the production of bioethanol. Cellulose can be efficiently hydrolyzed by Bacillus subtilis VS15, a strain isolate obtained from decomposing logs. A genome shuffling approach was implemented to improve the cellulase activity of Bacillus subtilis VS15. Mutant strains were created using ethyl methyl sulfonate (EMS), N-Methyl-N′ nitro-N-nitrosoguanidine (NTG), and ultraviolet light (UV) followed by recursive protoplast fusion. After two rounds of shuffling, the mutants Gb2, Gc8, and Gd7 were produced that had an increase in cellulase activity of 128%, 148%, and 167%, respectively, in comparison to the wild type VS15. The genetic diversity of the shuffled strain Gd7 and wild type VS15 was compared at whole genome level. Genomic-level comparisons identified a set of eight genes, consisting of cellulase and regulatory genes, of interest for further analyses. Various genes were identified with insertions and deletions that may be involved in improved celluase production in Gd7. Strain Gd7 maintained the capability of hydrolyzing wheatbran to glucose and converting glucose to ethanol by fermentation with Saccharomyces cerevisiae of the wild type VS17. This ability was further confirmed by the acidified potassium dichromate (K2Cr2O7) method.
Collapse
Affiliation(s)
| | - Gene Drendel
- Department of Physiology, Anatomy and Microbiology, College of Science, Health and Engineering, La Trobe University, Melbourne, Victoria 3086, Australia; (G.D.); (S.P.); (E.E.); (A.E.F.)
| | - Steve Petrovski
- Department of Physiology, Anatomy and Microbiology, College of Science, Health and Engineering, La Trobe University, Melbourne, Victoria 3086, Australia; (G.D.); (S.P.); (E.E.); (A.E.F.)
| | - Eleonora Egidi
- Department of Physiology, Anatomy and Microbiology, College of Science, Health and Engineering, La Trobe University, Melbourne, Victoria 3086, Australia; (G.D.); (S.P.); (E.E.); (A.E.F.)
- Hawkesbury Institute for the Environment, Western Sydney University, Sydney, NSW 2750, Australia
| | - Ashley E. Franks
- Department of Physiology, Anatomy and Microbiology, College of Science, Health and Engineering, La Trobe University, Melbourne, Victoria 3086, Australia; (G.D.); (S.P.); (E.E.); (A.E.F.)
- Centre for Future Landscapes, College of Science, Health and Engineering, La Trobe University, Melbourne, VI 3086, Australia
| | - Sudhamani Muddada
- Department of Biotechnology, K L E F University, Guntur 522 502, India;
- Correspondence: ; Tel.: +91-970-3470-598
| |
Collapse
|
32
|
The GATA-Type Transcriptional Factor Are1 Modulates the Expression of Extracellular Proteases and Cellulases in Trichoderma reesei. Int J Mol Sci 2019; 20:ijms20174100. [PMID: 31443450 PMCID: PMC6747117 DOI: 10.3390/ijms20174100] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/20/2019] [Accepted: 08/20/2019] [Indexed: 02/08/2023] Open
Abstract
Trichoderma reesei is a biotechnologically important filamentous fungus with the remarkable ability to secrete large amounts of enzymes, whose production is strongly affected by both the carbon and nitrogen sources. While the carbon metabolism regulators are extensively studied, the regulation of enzyme production by the nitrogen metabolism regulators is still poorly understood. In this study, the GATA transcription factor Are1, which is an orthologue of the Aspergillus global nitrogen regulator AREA, was identified and characterized for its functions in regulation of both protease and cellulase production in T. reesei. Deletion of the are1 gene abolished the capability to secrete proteases, and complementation of the are1 gene rescued the ability to produce proteases. Quantitative RT-PCR analysis revealed that the transcripts of protease genes apw1 and apw2 were also significantly reduced in the Δare1 strain when grown in the medium with peptone as the nitrogen source. In addition, deletion of are1 resulted in decreased cellulase production in the presence of (NH4)2SO4. Consistent with the reduction of cellulase production, the transcription levels of the major cellulase genes, including cbh1, cbh2, egl1, and egl2, were dramatically decreased in Δare1. Sequence analysis showed that all promoter regions of the tested protease and cellulase genes contain the consensus GATA elements. However, the expression levels of the major cellulase transcription activator Xyr1 and the repressor Cre1 had no significant difference between Δare1 and the parental strain QM9414, indicating that the regulatory mechanism deserves further investigation. Taken together, these results demonstrate the important role of Are1 in the regulation of protease and cellulase production in T. reesei, although these processes depend on the kind of nitrogen sources. The findings in this study contribute to the understanding of the regulation network of carbon and nitrogen sources in filamentous fungi.
Collapse
|
33
|
Liu P, Lin A, Zhang G, Zhang J, Chen Y, Shen T, Zhao J, Wei D, Wang W. Enhancement of cellulase production in Trichoderma reesei RUT-C30 by comparative genomic screening. Microb Cell Fact 2019; 18:81. [PMID: 31077201 PMCID: PMC6509817 DOI: 10.1186/s12934-019-1131-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/02/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cellulolytic enzymes produced by the filamentous fungus Trichoderma reesei are commonly used in biomass conversion. The high cost of cellulase is still a significant challenge to commercial biofuel production. Improving cellulase production in T. reesei for application in the cellulosic biorefinery setting is an urgent priority. RESULTS Trichoderma reesei hyper-cellulolytic mutant SS-II derived from the T. reesei NG14 strain exhibited faster growth rate and more efficient lignocellulosic biomass degradation than those of RUT-C30, another hyper-cellulolytic strain derived from NG14. To identify any genetic changes that occurred in SS-II, we sequenced its genome using Illumina MiSeq. In total, 184 single nucleotide polymorphisms and 40 insertions and deletions were identified. SS-II sequencing revealed 107 novel mutations and a full-length wild-type carbon catabolite repressor 1 gene (cre1). To combine the mutations of RUT-C30 and SS-II, the sequence of one confirmed beneficial mutation in RUT-C30, cre196, was introduced in SS-II to replace full-length cre1, forming the mutant SS-II-cre196. The total cellulase production of SS-II-cre196 was decreased owing to the limited growth of SS-II-cre196. In contrast, 57 genes mutated only in SS-II were selected and knocked out in RUT-C30. Of these, 31 were involved in T. reesei growth or cellulase production. Cellulase activity was significantly increased in five deletion strains compared with that in two starter strains, RUT-C30 and SS-II. Cellulase production of T. reesei Δ108642 and Δ56839 was significantly increased by 83.7% and 70.1%, respectively, compared with that of RUT-C30. The amount of glucose released from pretreated corn stover hydrolyzed by the crude enzyme from Δ108642 increased by 11.9%. CONCLUSIONS The positive attribute confirmed in one cellulase hyper-producing strain does not always work efficiently in another cellulase hyper-producing strain, owing to the differences in genetic background. Genome re-sequencing revealed novel mutations that might affect cellulase production and other pathways indirectly related to cellulase formation. Our strategy of combining the mutations of two strains successfully identified a number of interesting phenotypes associated with cellulase production. These findings will contribute to the creation of a gene library that can be used to investigate the involvement of various genes in the regulation of cellulase production.
Collapse
Affiliation(s)
- Pei Liu
- State Key Lab of Bioreactor Engineering, East China University of Science and Technology, P.O.B. 311, 130 Meilong Road, Shanghai, 200237 China
| | - Aibo Lin
- State Key Lab of Bioreactor Engineering, East China University of Science and Technology, P.O.B. 311, 130 Meilong Road, Shanghai, 200237 China
| | - Guoxiu Zhang
- State Key Lab of Bioreactor Engineering, East China University of Science and Technology, P.O.B. 311, 130 Meilong Road, Shanghai, 200237 China
| | - Jiajia Zhang
- State Key Lab of Bioreactor Engineering, East China University of Science and Technology, P.O.B. 311, 130 Meilong Road, Shanghai, 200237 China
| | - Yumeng Chen
- State Key Lab of Bioreactor Engineering, East China University of Science and Technology, P.O.B. 311, 130 Meilong Road, Shanghai, 200237 China
| | - Tao Shen
- Sunson Industry Group Co, Ltd, Beijing, China
| | - Jian Zhao
- State Key Lab of Bioreactor Engineering, East China University of Science and Technology, P.O.B. 311, 130 Meilong Road, Shanghai, 200237 China
| | - Dongzhi Wei
- State Key Lab of Bioreactor Engineering, East China University of Science and Technology, P.O.B. 311, 130 Meilong Road, Shanghai, 200237 China
| | - Wei Wang
- State Key Lab of Bioreactor Engineering, East China University of Science and Technology, P.O.B. 311, 130 Meilong Road, Shanghai, 200237 China
| |
Collapse
|
34
|
Novel genetic tools that enable highly pure protein production in Trichoderma reesei. Sci Rep 2019; 9:5032. [PMID: 30902998 PMCID: PMC6430808 DOI: 10.1038/s41598-019-41573-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 03/08/2019] [Indexed: 01/31/2023] Open
Abstract
Trichoderma reesei is an established protein production host with high natural capacity to secrete enzymes. The lack of efficient genome engineering approaches and absence of robust constitutive gene expression systems limits exploitation of this organism in some protein production applications. Here we report engineering of T. reesei for high-level production of highly enriched lipase B of Candida antarctica (calB) using glucose as a carbon source. Multiplexed CRISPR/Cas9 in combination with the use of our recently established synthetic expression system (SES) enabled accelerated construction of strains, which produced high amounts of highly pure calB. Using SES, calB production levels in cellulase-inducing medium were comparable to the levels obtained by using the commonly employed inducible cbh1 promoter, where a wide spectrum of native enzymes were co-produced. Due to highly constitutive expression provided by the SES, it was possible to carry out the production in cellulase-repressing glucose medium leading to around 4 grams per liter of fully functional calB and simultaneous elimination of unwanted background enzymes.
Collapse
|
35
|
Llanos A, Déjean S, Neugnot-Roux V, François JM, Parrou JL. Carbon sources and XlnR-dependent transcriptional landscape of CAZymes in the industrial fungus Talaromyces versatilis: when exception seems to be the rule. Microb Cell Fact 2019; 18:14. [PMID: 30691469 PMCID: PMC6348686 DOI: 10.1186/s12934-019-1062-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 01/13/2019] [Indexed: 11/19/2022] Open
Abstract
Background Research on filamentous fungi emphasized the remarkable redundancy in genes encoding hydrolytic enzymes, the similarities but also the large differences in their expression, especially through the role of the XlnR/XYR1 transcriptional activator. The purpose of this study was to evaluate the specificities of the industrial fungus Talaromyces versatilis, getting clues into the role of XlnR and the importance of glucose repression at the transcriptional level, to provide further levers for cocktail production. Results By studying a set of 62 redundant genes representative of several categories of enzymes, our results underlined the huge plasticity of transcriptional responses when changing nutritional status. As a general trend, the more heterogeneous the substrate, the more efficient to trigger activation. Genetic modifications of xlnR led to significant reorganisation of transcriptional patterns. Just a minimal set of genes actually fitted in a simplistic model of regulation by a transcriptional activator, and this under specific substrates. On the contrary, the diversity of xlnR+ versus ΔxlnR responses illustrated the existence of complex and unpredicted patterns of co-regulated genes that were highly dependent on the culture condition, even between genes that encode members of a functional category of enzymes. They notably revealed a dual, substrate-dependant repressor-activator role of XlnR, with counter-intuitive transcripts regulations that targeted specific genes. About glucose, it appeared as a formal repressive sugar as we observed a massive repression of most genes upon glucose addition to the mycelium grown on wheat straw. However, we also noticed a positive role of this sugar on the basal expression of a few genes, (notably those encoding cellulases), showing again the strong dependence of these regulatory mechanisms upon promoter and nutritional contexts. Conclusions The diversity of transcriptional patterns appeared to be the rule, while common and stable behaviour, both within gene families and with fungal literature, the exception. The setup of a new biotechnological process to reach optimized, if not customized expression patterns of enzymes, hence appeared tricky just relying on published data that can lead, in the best scenario, to approximate trends. We instead encourage preliminary experimental assays, carried out in the context of interest to reassess gene responses, as a mandatory step before thinking in (genetic) strategies for the improvement of enzyme production in fungi.![]() Electronic supplementary material The online version of this article (10.1186/s12934-019-1062-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Agustina Llanos
- LISBP, Université de Toulouse, INSA, INRA, CNRS, Toulouse, France.,Adisseo France S.A.S, 135 Avenue de Rangueil, 31077, Toulouse, France
| | - Sébastien Déjean
- Institut de Mathématiques de Toulouse, UMR5219-Université de Toulouse; CNRS-UPS, 31062, Toulouse Cedex 9, France
| | | | - Jean M François
- LISBP, Université de Toulouse, INSA, INRA, CNRS, Toulouse, France
| | - Jean-Luc Parrou
- LISBP, Université de Toulouse, INSA, INRA, CNRS, Toulouse, France.
| |
Collapse
|
36
|
Borin GP, Carazzolle MF, Dos Santos RAC, Riaño-Pachón DM, Oliveira JVDC. Gene Co-expression Network Reveals Potential New Genes Related to Sugarcane Bagasse Degradation in Trichoderma reesei RUT-30. Front Bioeng Biotechnol 2018; 6:151. [PMID: 30406095 PMCID: PMC6204389 DOI: 10.3389/fbioe.2018.00151] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/03/2018] [Indexed: 12/11/2022] Open
Abstract
The biomass-degrading fungus Trichoderma reesei has been considered a model for cellulose degradation, and it is the primary source of the industrial enzymatic cocktails used in second-generation (2G) ethanol production. However, although various studies and advances have been conducted to understand the cellulolytic system and the transcriptional regulation of T. reesei, the whole set of genes related to lignocellulose degradation has not been completely elucidated. In this study, we inferred a weighted gene co-expression network analysis based on the transcriptome dataset of the T. reesei RUT-C30 strain aiming to identify new target genes involved in sugarcane bagasse breakdown. In total, ~70% of all the differentially expressed genes were found in 28 highly connected gene modules. Several cellulases, sugar transporters, and hypothetical proteins coding genes upregulated in bagasse were grouped into the same modules. Among them, a single module contained the most representative core of cellulolytic enzymes (cellobiohydrolase, endoglucanase, β-glucosidase, and lytic polysaccharide monooxygenase). In addition, functional analysis using Gene Ontology (GO) revealed various classes of hydrolytic activity, cellulase activity, carbohydrate binding and cation:sugar symporter activity enriched in these modules. Several modules also showed GO enrichment for transcription factor activity, indicating the presence of transcriptional regulators along with the genes involved in cellulose breakdown and sugar transport as well as other genes encoding proteins with unknown functions. Highly connected genes (hubs) were also identified within each module, such as predicted transcription factors and genes encoding hypothetical proteins. In addition, various hubs contained at least one DNA binding site for the master activator Xyr1 according to our in silico analysis. The prediction of Xyr1 binding sites and the co-expression with genes encoding carbohydrate active enzymes and sugar transporters suggest a putative role of these hubs in bagasse cell wall deconstruction. Our results demonstrate a vast range of new promising targets that merit additional studies to improve the cellulolytic potential of T. reesei strains and to decrease the production costs of 2G ethanol.
Collapse
Affiliation(s)
- Gustavo Pagotto Borin
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, Brazil.,Programa de Pós-Graduação em Genética e Biologia Molecular, Instituto de Biologia, Universidade de Campinas (UNICAMP), Campinas, Brazil
| | - Marcelo Falsarella Carazzolle
- Laboratório de Genômica e Expressão (LGE), Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | | | | | - Juliana Velasco de Castro Oliveira
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, Brazil.,Programa de Pós-Graduação em Genética e Biologia Molecular, Instituto de Biologia, Universidade de Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
37
|
Fitz E, Wanka F, Seiboth B. The Promoter Toolbox for Recombinant Gene Expression in Trichoderma reesei. Front Bioeng Biotechnol 2018; 6:135. [PMID: 30364340 PMCID: PMC6193071 DOI: 10.3389/fbioe.2018.00135] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 09/12/2018] [Indexed: 01/05/2023] Open
Abstract
The ascomycete Trichoderma reesei is one of the main fungal producers of cellulases and xylanases based on its high production capacity. Its enzymes are applied in food, feed, and textile industry or in lignocellulose hydrolysis in biofuel and biorefinery industry. Over the last years, the demand to expand the molecular toolbox for T. reesei to facilitate genetic engineering and improve the production of heterologous proteins grew. An important instrument to modify the expression of key genes are promoters to initiate and control their transcription. To date, the most commonly used promoter for T. reesei is the strong inducible promoter of the main cellobiohydrolase cel7a. Beside this one, there is a number of alternative inducible promoters derived from other cellulase- and xylanase encoding genes and a few constitutive promoters. With the advances in genomics and transcriptomics the identification of new constitutive and tunable promoters with different expression strength was simplified. In this review, we will discuss new developments in the field of promoters and compare their advantages and disadvantages. Synthetic expression systems constitute a new option to control gene expression and build up complex gene circuits. Therefore, we will address common structural features of promoters and describe options for promoter engineering and synthetic design of promoters. The availability of well-characterized gene expression control tools is essential for the analysis of gene function, detection of bottlenecks in gene networks and yield increase for biotechnology applications.
Collapse
Affiliation(s)
- Elisabeth Fitz
- Research Division Biochemical Technology, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria.,Austrian Centre of Industrial Biotechnology (ACIB) GmbH, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria
| | - Franziska Wanka
- Austrian Centre of Industrial Biotechnology (ACIB) GmbH, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria
| | - Bernhard Seiboth
- Research Division Biochemical Technology, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria.,Austrian Centre of Industrial Biotechnology (ACIB) GmbH, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria
| |
Collapse
|
38
|
Rassinger A, Gacek-Matthews A, Strauss J, Mach RL, Mach-Aigner AR. Truncation of the transcriptional repressor protein Cre1 in Trichoderma reesei Rut-C30 turns it into an activator. Fungal Biol Biotechnol 2018; 5:15. [PMID: 30151221 PMCID: PMC6100732 DOI: 10.1186/s40694-018-0059-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 08/02/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The filamentous fungus Trichoderma reesei (T. reesei) is a natural producer of cellulolytic and xylanolytic enzymes and is therefore industrially used. Many industries require high amounts of enzymes, in particular cellulases. Strain improvement strategies by random mutagenesis yielded the industrial ancestor strain Rut-C30. A key property of Rut-C30 is the partial release from carbon catabolite repression caused by a truncation of the repressor Cre1 (Cre1-96). In the T. reesei wild-type strain a full cre1 deletion leads to pleiotropic effects and strong growth impairment, while the truncated cre1-96 enhances cellulolytic activity without the effect of growth deficiencies. However, it is still unclear which function Cre1-96 has in Rut-C30. RESULTS In this study, we deleted and constitutively expressed cre1-96 in Rut-C30. We found that the presence of Cre1-96 in Rut-C30 is crucial for its cellulolytic and xylanolytic performance under inducing conditions. In the case of the constitutively expressed Cre1-96, the cellulase activity could further be improved approximately twofold. The deletion of cre1-96 led to growth deficiencies and morphological abnormalities. An in silico domain prediction revealed that Cre1-96 has all necessary properties that a classic transactivator needs. Consequently, we investigated the cellular localization of Cre1-96 by fluorescence microscopy using an eYFP-tag. Cre1-96 is localized in the fungal nuclei under both, inducing and repressing conditions. Furthermore, chromatin immunoprecipitation revealed an enrichment of Cre1-96 in the upstream regulatory region of the main transactivator of cellulases and xylanases, Xyr1. Interestingly, transcript levels of cre1-96 show the same patterns as the ones of xyr1 under inducing conditions. CONCLUSIONS The findings suggest that the truncation turns Cre1 into an activating regulator, which primarily exerts its role by approaching the upstream regulatory region of xyr1. The conversion of repressor proteins to potential activators in other biotechnologically used filamentous fungi can be applied to increase their enzyme production capacities.
Collapse
Affiliation(s)
- Alice Rassinger
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Str. 1a, 1060 Vienna, Austria
| | - Agnieszka Gacek-Matthews
- Fungal Genetics and Genomics Lab, Department of Applied Genetics and Cell Biology, BOKU-University of Natural Resources and Life Sciences, Konrad Lorenz Str. 24, 3430 Tulln/Donau, Austria
- Institute of Microbiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - Joseph Strauss
- Fungal Genetics and Genomics Lab, Department of Applied Genetics and Cell Biology, BOKU-University of Natural Resources and Life Sciences, Konrad Lorenz Str. 24, 3430 Tulln/Donau, Austria
| | - Robert L. Mach
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Str. 1a, 1060 Vienna, Austria
| | - Astrid R. Mach-Aigner
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Str. 1a, 1060 Vienna, Austria
| |
Collapse
|
39
|
Baker SE. Protein hyperproduction in fungi by design. Appl Microbiol Biotechnol 2018; 102:8621-8628. [PMID: 30078136 PMCID: PMC6153651 DOI: 10.1007/s00253-018-9265-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/17/2018] [Accepted: 07/19/2018] [Indexed: 12/16/2022]
Abstract
The secretion of enzymes used by fungi to digest their environment has been exploited by humans for centuries for food and beverage production. More than a century after the first biotechnology patent, we know that the enzyme cocktails secreted by these amazing organisms have tremendous use across a number of industrial processes. Secreting the maximum titer of enzymes is critical to the economic feasibility of these processes. Traditional mutagenesis and screening approaches have generated the vast majority of strains used by industry for the production of enzymes. Until the emergence of economical next generation DNA sequencing platforms, the majority of the genes mutated in these screens remained uncharacterized at the sequence level. In addition, mutagenesis comes with a cost to an organism’s fitness, making tractable rational strain design approaches an attractive alternative. As an alternative to traditional mutagenesis and screening, controlled manipulation of multiple genes involved in processes that impact the ability of a fungus to sense its environment, regulate transcription of enzyme-encoding genes, and efficiently secrete these proteins will allow for rational design of improved fungal protein production strains.
Collapse
Affiliation(s)
- Scott E Baker
- Department of Energy Joint BioEnergy Institute, Emeryville, CA, 94608, USA.
- Biosystems Design and Simulation Group, Environmental Molecular Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| |
Collapse
|
40
|
Inducible promoters and functional genomic approaches for the genetic engineering of filamentous fungi. Appl Microbiol Biotechnol 2018; 102:6357-6372. [PMID: 29860590 PMCID: PMC6061484 DOI: 10.1007/s00253-018-9115-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/17/2018] [Accepted: 05/18/2018] [Indexed: 12/15/2022]
Abstract
In industry, filamentous fungi have a prominent position as producers of economically relevant primary or secondary metabolites. Particularly, the advent of genetic engineering of filamentous fungi has led to a growing number of molecular tools to adopt filamentous fungi for biotechnical applications. Here, we summarize recent developments in fungal biology, where fungal host systems were genetically manipulated for optimal industrial applications. Firstly, available inducible promoter systems depending on carbon sources are mentioned together with various adaptations of the Tet-Off and Tet-On systems for use in different industrial fungal host systems. Subsequently, we summarize representative examples, where diverse expression systems were used for the production of heterologous products, including proteins from mammalian systems. In addition, the progressing usage of genomics and functional genomics data for strain improvement strategies are addressed, for the identification of biosynthesis genes and their related metabolic pathways. Functional genomic data are further used to decipher genomic differences between wild-type and high-production strains, in order to optimize endogenous metabolic pathways that lead to the synthesis of pharmaceutically relevant end products. Lastly, we discuss how molecular data sets can be used to modify products for optimized applications.
Collapse
|
41
|
|
42
|
Fasoyin OE, Wang B, Qiu M, Han X, Chung KR, Wang S. Carbon catabolite repression gene creA regulates morphology, aflatoxin biosynthesis and virulence in Aspergillus flavus. Fungal Genet Biol 2018; 115:41-51. [DOI: 10.1016/j.fgb.2018.04.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 04/08/2018] [Accepted: 04/11/2018] [Indexed: 11/24/2022]
|
43
|
Zhang J, Zhang G, Wang W, Wang W, Wei D. Enhanced cellulase production in Trichoderma reesei RUT C30 via constitution of minimal transcriptional activators. Microb Cell Fact 2018; 17:75. [PMID: 29773074 PMCID: PMC5956553 DOI: 10.1186/s12934-018-0926-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 05/11/2018] [Indexed: 01/06/2023] Open
Abstract
Background Cellulase can convert lignocellulosic feedstocks into fermentable sugars, which can be used for the industrial production of biofuels and chemicals. The high cost of cellulase production remains a challenge for lignocellulose breakdown. Trichoderma reesei RUT C30 serves as a well-known industrial workhorse for cellulase production. Therefore, the enhancement of cellulase production by T. reesei RUT C30 is of great importance. Results Two sets of novel minimal transcriptional activators (DBDace2-VP16 and DBDcre1-VP16) were designed and expressed in T. reesei RUT C30. Expression of DBDace2-VP16 and DBDcre1-VP16 improved cellulase production under induction (avicel or lactose) and repression (glucose) conditions, respectively. The strain TMTA66 under avicel and TMTA139 under glucose with the highest cellulase activities outperformed other transformants and the parental strain under the corresponding conditions. For TMTA66 strains, the highest FPase activity was approximately 1.3-fold greater than that of the parental strain RUT C30 at 120 h of cultivation in a shake flask using avicel as the sole carbon source. The FPase activity (U/mg biomass) in TMTA139 strains was approximately 26.5-fold higher than that of the parental strain RUT C30 at 72 h of cultivation in a shake flask using glucose as the sole carbon source. Furthermore, the crude enzymes produced in the 7-L fermenter from TMTA66 and TMTA139 supplemented with commercial β-glucosidase hydrolyzed pretreated corn stover effectively. Conclusions These results show that replacing natural transcription factors with minimal transcriptional activators is a powerful strategy to enhance cellulase production in T. reesei. Our current study also offers an alternative genetic engineering strategy for the enhanced production of industrial products by other fungi. Electronic supplementary material The online version of this article (10.1186/s12934-018-0926-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jiajia Zhang
- State Key Lab of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, P.O.B. 311, Shanghai, 200237, China
| | - Guoxiu Zhang
- State Key Lab of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, P.O.B. 311, Shanghai, 200237, China
| | - Wei Wang
- State Key Lab of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Wei Wang
- State Key Lab of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, P.O.B. 311, Shanghai, 200237, China.
| | - Dongzhi Wei
- State Key Lab of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, P.O.B. 311, Shanghai, 200237, China
| |
Collapse
|
44
|
Sista Kameshwar AK, Qin W. Analyzing Phanerochaete chrysosporium gene expression patterns controlling the molecular fate of lignocellulose degrading enzymes. Process Biochem 2018. [DOI: 10.1016/j.procbio.2017.10.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
45
|
Hassan L, Reppke MJ, Thieme N, Schweizer SA, Mueller CW, Benz JP. Comparing the physiochemical parameters of three celluloses reveals new insights into substrate suitability for fungal enzyme production. Fungal Biol Biotechnol 2017; 4:10. [PMID: 29119000 PMCID: PMC5669031 DOI: 10.1186/s40694-017-0039-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 10/23/2017] [Indexed: 11/30/2022] Open
Abstract
Background The industrial applications of cellulases are mostly limited by the costs associated with their production. Optimized production pathways are therefore desirable. Based on their enzyme inducing capacity, celluloses are commonly used in fermentation media. However, the influence of their physiochemical characteristics on the production process is not well understood. In this study, we examined how physical, structural and chemical properties of celluloses influence cellulase and hemicellulase production in an industrially-optimized and a non-engineered filamentous fungus: Trichoderma reesei RUT-C30 and Neurospora crassa. The performance was evaluated by quantifying gene induction, protein secretion and enzymatic activities. Results Among the three investigated substrates, the powdered cellulose was found to be the most impure, and the residual hemicellulosic content was efficiently perceived by the fungi. It was furthermore found to be the least crystalline substrate and consequently was the most readily digested cellulose in vitro. In vivo however, only RUT-C30 was able to take full advantage of these factors. When comparing carbon catabolite repressed and de-repressed strains of T. reesei and N. crassa, we found that cre1/cre-1 is at least partially responsible for this observation, but that the different wiring of the molecular signaling networks is also relevant. Conclusions Our findings indicate that crystallinity and hemicellulose content are major determinants of performance. Moreover, the genetic background between WT and modified strains greatly affects the ability to utilize the cellulosic substrate. By highlighting key factors to consider when choosing the optimal cellulosic product for enzyme production, this study has relevance for the optimization of a critical step in the biotechnological (hemi-) cellulase production process. Electronic supplementary material The online version of this article (10.1186/s40694-017-0039-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lara Hassan
- HFM, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Manfred J Reppke
- HFM, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Nils Thieme
- HFM, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Steffen A Schweizer
- Chair of Soil Science, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Carsten W Mueller
- Chair of Soil Science, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - J Philipp Benz
- HFM, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| |
Collapse
|
46
|
Druzhinina IS, Kubicek CP. Genetic engineering of Trichoderma reesei cellulases and their production. Microb Biotechnol 2017; 10:1485-1499. [PMID: 28557371 PMCID: PMC5658622 DOI: 10.1111/1751-7915.12726] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 04/11/2017] [Accepted: 04/11/2017] [Indexed: 11/26/2022] Open
Abstract
Lignocellulosic biomass, which mainly consists of cellulose, hemicellulose and lignin, is the most abundant renewable source for production of biofuel and biorefinery products. The industrial use of plant biomass involves mechanical milling or chipping, followed by chemical or physicochemical pretreatment steps to make the material more susceptible to enzymatic hydrolysis. Thereby the cost of enzyme production still presents the major bottleneck, mostly because some of the produced enzymes have low catalytic activity under industrial conditions and/or because the rate of hydrolysis of some enzymes in the secreted enzyme mixture is limiting. Almost all of the lignocellulolytic enzyme cocktails needed for the hydrolysis step are produced by fermentation of the ascomycete Trichoderma reesei (Hypocreales). For this reason, the structure and mechanism of the enzymes involved, the regulation of their expression and the pathways of their formation and secretion have been investigated in T. reesei in considerable details. Several of the findings thereby obtained have been used to improve the formation of the T. reesei cellulases and their properties. In this article, we will review the achievements that have already been made and also show promising fields for further progress.
Collapse
Affiliation(s)
- Irina S. Druzhinina
- Microbiology GroupResearch Area Biochemical TechnologyInstitute of Chemical, Environmental and Biological EngineeringTU WienViennaAustria
| | - Christian P. Kubicek
- Microbiology GroupResearch Area Biochemical TechnologyInstitute of Chemical, Environmental and Biological EngineeringTU WienViennaAustria
- Present address:
Steinschötelgasse 7Wien1100Austria
| |
Collapse
|
47
|
Borin GP, Sanchez CC, de Santana ES, Zanini GK, Dos Santos RAC, de Oliveira Pontes A, de Souza AT, Dal'Mas RMMTS, Riaño-Pachón DM, Goldman GH, Oliveira JVDC. Comparative transcriptome analysis reveals different strategies for degradation of steam-exploded sugarcane bagasse by Aspergillus niger and Trichoderma reesei. BMC Genomics 2017; 18:501. [PMID: 28666414 PMCID: PMC5493111 DOI: 10.1186/s12864-017-3857-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 06/09/2017] [Indexed: 12/12/2022] Open
Abstract
Background Second generation (2G) ethanol is produced by breaking down lignocellulosic biomass into fermentable sugars. In Brazil, sugarcane bagasse has been proposed as the lignocellulosic residue for this biofuel production. The enzymatic cocktails for the degradation of biomass-derived polysaccharides are mostly produced by fungi, such as Aspergillus niger and Trichoderma reesei. However, it is not yet fully understood how these microorganisms degrade plant biomass. In order to identify transcriptomic changes during steam-exploded bagasse (SEB) breakdown, we conducted a RNA-seq comparative transcriptome profiling of both fungi growing on SEB as carbon source. Results Particular attention was focused on CAZymes, sugar transporters, transcription factors (TFs) and other proteins related to lignocellulose degradation. Although genes coding for the main enzymes involved in biomass deconstruction were expressed by both fungal strains since the beginning of the growth in SEB, significant differences were found in their expression profiles. The expression of these enzymes is mainly regulated at the transcription level, and A. niger and T. reesei also showed differences in TFs content and in their expression. Several sugar transporters that were induced in both fungal strains could be new players on biomass degradation besides their role in sugar uptake. Interestingly, our findings revealed that in both strains several genes that code for proteins of unknown function and pro-oxidant, antioxidant, and detoxification enzymes were induced during growth in SEB as carbon source, but their specific roles on lignocellulose degradation remain to be elucidated. Conclusions This is the first report of a time-course experiment monitoring the degradation of pretreated bagasse by two important fungi using the RNA-seq technology. It was possible to identify a set of genes that might be applied in several biotechnology fields. The data suggest that these two microorganisms employ different strategies for biomass breakdown. This knowledge can be exploited for the rational design of enzymatic cocktails and 2G ethanol production improvement. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3857-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gustavo Pagotto Borin
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Av Giuseppe Maximo Scolfaro 10000, Campinas, São Paulo, Caixa Postal 6170, 13083-970, Brazil
| | - Camila Cristina Sanchez
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Av Giuseppe Maximo Scolfaro 10000, Campinas, São Paulo, Caixa Postal 6170, 13083-970, Brazil
| | - Eliane Silva de Santana
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Av Giuseppe Maximo Scolfaro 10000, Campinas, São Paulo, Caixa Postal 6170, 13083-970, Brazil
| | - Guilherme Keppe Zanini
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Av Giuseppe Maximo Scolfaro 10000, Campinas, São Paulo, Caixa Postal 6170, 13083-970, Brazil
| | - Renato Augusto Corrêa Dos Santos
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Av Giuseppe Maximo Scolfaro 10000, Campinas, São Paulo, Caixa Postal 6170, 13083-970, Brazil
| | - Angélica de Oliveira Pontes
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Av Giuseppe Maximo Scolfaro 10000, Campinas, São Paulo, Caixa Postal 6170, 13083-970, Brazil
| | - Aline Tieppo de Souza
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Av Giuseppe Maximo Scolfaro 10000, Campinas, São Paulo, Caixa Postal 6170, 13083-970, Brazil
| | - Roberta Maria Menegaldo Tavares Soares Dal'Mas
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Av Giuseppe Maximo Scolfaro 10000, Campinas, São Paulo, Caixa Postal 6170, 13083-970, Brazil
| | - Diego Mauricio Riaño-Pachón
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Av Giuseppe Maximo Scolfaro 10000, Campinas, São Paulo, Caixa Postal 6170, 13083-970, Brazil.,Current address: Laboratório de Biologia de Sistemas Regulatórios, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748 - Butantã - São Paulo - SP, São Paulo, CEP 05508-000, Brazil
| | - Gustavo Henrique Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av do Café S/N, Ribeirão Preto, CEP, São Paulo, 14040-903, Brazil
| | - Juliana Velasco de Castro Oliveira
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Av Giuseppe Maximo Scolfaro 10000, Campinas, São Paulo, Caixa Postal 6170, 13083-970, Brazil.
| |
Collapse
|
48
|
Cao Y, Zheng F, Wang L, Zhao G, Chen G, Zhang W, Liu W. Rce1, a novel transcriptional repressor, regulates cellulase gene expression by antagonizing the transactivator Xyr1 in Trichoderma reesei. Mol Microbiol 2017; 105:65-83. [PMID: 28378498 DOI: 10.1111/mmi.13685] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2017] [Indexed: 11/28/2022]
Abstract
Cellulase gene expression in the model cellulolytic fungus Trichoderma reesei is supposed to be controlled by an intricate regulatory network involving multiple transcription factors. Here, we identified a novel transcriptional repressor of cellulase gene expression, Rce1. Disruption of the rce1 gene not only facilitated the induced expression of cellulase genes but also led to a significant delay in terminating the induction process. However, Rce1 did not participate in Cre1-mediated catabolite repression. Electrophoretic mobility shift (EMSA) and DNase I footprinting assays in combination with chromatin immunoprecipitation (ChIP) demonstrated that Rce1 could bind directly to a cbh1 (cellobiohydrolase 1-encoding) gene promoter region containing a cluster of Xyr1 binding sites. Furthermore, competitive binding assays revealed that Rce1 antagonized Xyr1 from binding to the cbh1 promoter. These results indicate that intricate interactions exist between a variety of transcription factors to ensure tight and energy-efficient regulation of cellulase gene expression in T. reesei. This study also provides important clues regarding increased cellulase production in T. reesei.
Collapse
Affiliation(s)
- Yanli Cao
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, No. 27 Shanda South Road, Jinan, Shandong, 250100, P. R. China
| | - Fanglin Zheng
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, No. 27 Shanda South Road, Jinan, Shandong, 250100, P. R. China
| | - Lei Wang
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, No. 27 Shanda South Road, Jinan, Shandong, 250100, P. R. China
| | - Guolei Zhao
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, No. 27 Shanda South Road, Jinan, Shandong, 250100, P. R. China
| | - Guanjun Chen
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, No. 27 Shanda South Road, Jinan, Shandong, 250100, P. R. China
| | - Weixin Zhang
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, No. 27 Shanda South Road, Jinan, Shandong, 250100, P. R. China
| | - Weifeng Liu
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, No. 27 Shanda South Road, Jinan, Shandong, 250100, P. R. China
| |
Collapse
|
49
|
Xiong L, Kameshwar AKS, Chen X, Guo Z, Mao C, Chen S, Qin W. The ACEII recombinant Trichoderma reesei QM9414 strains with enhanced xylanase production and its applications in production of xylitol from tree barks. Microb Cell Fact 2016; 15:215. [PMID: 28031033 PMCID: PMC5192574 DOI: 10.1186/s12934-016-0614-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 12/06/2016] [Indexed: 01/08/2023] Open
Abstract
Background ACEII transcription factor plays a significant role in regulating the expression of cellulase and hemicellulase encoding genes. Apart from ACEII, transcription factors such as XYR1, CRE1, HAP2/3/5 complex and ACEI function in a coordinated pattern for regulating the gene expression of cellulases and hemicellulases. Studies have demonstrated that ACEII gene deletion results in decreased total cellulase and xylanase activities with reduced transcript levels of lignocellulolytic enzymes. Results In this study, we have successfully transformed the ACEII transcription factor encoding gene in Trichoderma reesei to significantly improve its degrading abilities. Transformation experiments on parental strain T. reesei QM9414 has resulted in five genetically engineered strains T/Ace2-2, T/Ace2-5, T/Ace2-8, T/Ace5-4 and T/Ace10-1. Among which, T/Ace2-2 has exhibited significant increase in enzyme activity by twofolds, when compared to parental strain. The T/Ace2-2 was cultured on growth substrates containing 2% bark supplemented with (a) sugar free + MA medium (b) glucose + MA medium and (c) xylose + MA medium. The bark degradation efficiency of genetically modified T/Ace2-2 strain was assessed by analyzing the xylitol production yield using HPAEC. By 6th day, about 10.52 g/l of xylitol was produced through enzymatic conversion of bark (2% bark + MA + xylose) by the T/Ace2-2 strain and by 7th day the conversion rate was found to be 0.21 g/g. Obtained results confirmed that bark growth medium supplemented with d-xylose has profoundly increased the conversion rate of bark by T/Ace2-2 strain when compared to sugar free and glucose supplemented growth media. Results obtained from scanning electron microscopy has endorsed our current results. Bark samples inoculated with T/Ace2-2 strain has showed large number of degraded cells with clearly visible cavities and fractures, by exposing the microfibrillar interwoven complex. Conclusion We propose a cost effective and ecofriendly method for the degradation of lignocellulosic biomass such as bark to produce xylitol by using genetically modified T. reesei. Efficient conversion rate and production yield obtained in our current study provides a great scope for the xylitol industries, as our method bypasses the pretreatment of bark achieving clean and low-cost xylitol production.
Collapse
Affiliation(s)
- Lili Xiong
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu City, 610031, Sichuan Province, China.,Department of Biology, Lakehead University, Thunder Bay, ON, P7B 5E1, Canada
| | | | - Xi Chen
- State Key Laboratory for Agrobiotechnology and College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhiyun Guo
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu City, 610031, Sichuan Province, China
| | - Canquan Mao
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu City, 610031, Sichuan Province, China
| | - Sanfeng Chen
- State Key Laboratory for Agrobiotechnology and College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Wensheng Qin
- Department of Biology, Lakehead University, Thunder Bay, ON, P7B 5E1, Canada.
| |
Collapse
|
50
|
RNA Sequencing Reveals Xyr1 as a Transcription Factor Regulating Gene Expression beyond Carbohydrate Metabolism. BIOMED RESEARCH INTERNATIONAL 2016; 2016:4841756. [PMID: 28116297 PMCID: PMC5223008 DOI: 10.1155/2016/4841756] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 11/06/2016] [Indexed: 12/04/2022]
Abstract
Xyr1 has been demonstrated to be the main transcription activator of (hemi)cellulases in the well-known cellulase producer Trichoderma reesei. This study comprehensively investigates the genes regulated by Xyr1 through RNA sequencing to produce the transcription profiles of T. reesei Rut-C30 and its xyr1 deletion mutant (Δxyr1), cultured on lignocellulose or glucose. xyr1 deletion resulted in 467 differentially expressed genes on inducing medium. Almost all functional genes involved in (hemi)cellulose degradation and many transporters belonging to the sugar porter family in the major facilitator superfamily (MFS) were downregulated in Δxyr1. By contrast, all differentially expressed protease, lipase, chitinase, some ATP-binding cassette transporters, and heat shock protein-encoding genes were upregulated in Δxyr1. When cultured on glucose, a total of 281 genes were expressed differentially in Δxyr1, most of which were involved in energy, solute transport, lipid, amino acid, and monosaccharide as well as secondary metabolism. Electrophoretic mobility shift assays confirmed that the intracellular β-glucosidase bgl2, the putative nonenzymatic cellulose-attacking gene cip1, the MFS lactose transporter lp, the nmrA-like gene, endo T, the acid protease pepA, and the small heat shock protein hsp23 were probable Xyr1-targets. These results might help elucidate the regulation system for synthesis and secretion of (hemi)cellulases in T. reesei Rut-C30.
Collapse
|