1
|
Dirkx M, Boyer MP, Pradhan P, Brittingham A, Wilson WA. Expression and characterization of a β-fructofuranosidase from the parasitic protist Trichomonas vaginalis. BMC BIOCHEMISTRY 2014; 15:12. [PMID: 24972630 PMCID: PMC4083873 DOI: 10.1186/1471-2091-15-12] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 06/25/2014] [Indexed: 11/10/2022]
Abstract
BACKGROUND Trichomonas vaginalis, a flagellated protozoan, is the agent responsible for trichomoniasis, the most common nonviral sexually transmitted infection worldwide. A reported 200 million cases are documented each year with far more cases going unreported. However, T. vaginalis is disproportionality under studied, especially considering its basic metabolism. It has been reported that T. vaginalis does not grow on sucrose. Nevertheless, the T. vaginalis genome contains some 11 putative sucrose transporters and a putative β-fructofuranosidase (invertase). Thus, the machinery for both uptake and cleavage of sucrose appears to be present. RESULTS We amplified the β-fructofuranosidase from T. vaginalis cDNA and cloned it into an Escherichia coli expression system. The expressed, purified protein was found to behave similarly to other known β-fructofuranosidases. The enzyme exhibited maximum activity at pH close to 5.0, with activity falling off rapidly at increased or decreased pH. It had a similar K(m) and V(max) to previously characterized enzymes using sucrose as a substrate, was also active towards raffinose, but had no detectable activity towards inulin. CONCLUSIONS T. vaginalis has the coding capacity to produce an active β-fructofuranosidase capable of hydrolyzing di- and trisaccharides containing a terminal, non-reducing fructose residue. Since we cloned this enzyme from cDNA, we know that the gene in question is transcribed. Furthermore, we could detect β-fructofuranosidase activity in T. vaginalis cell lysates. Therefore, the inability of the organism to utilize sucrose as a carbon source cannot be explained by an inability to degrade sucrose.
Collapse
Affiliation(s)
| | | | | | | | - Wayne A Wilson
- Department of Biochemistry & Nutrition, Des Moines University, Des Moines, IA 50312, USA.
| |
Collapse
|
2
|
Hugouvieux-Cotte-Pattat N, Charaoui-Boukerzaza S. Catabolism of raffinose, sucrose, and melibiose in Erwinia chrysanthemi 3937. J Bacteriol 2009; 191:6960-7. [PMID: 19734309 PMCID: PMC2772473 DOI: 10.1128/jb.00594-09] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Accepted: 08/28/2009] [Indexed: 11/20/2022] Open
Abstract
Erwinia chrysanthemi (Dickeya dadantii) is a plant pathogenic bacterium that has a large capacity to degrade the plant cell wall polysaccharides. The present study reports the metabolic pathways used by E. chrysanthemi to assimilate the oligosaccharides sucrose and raffinose, which are particularly abundant plant sugars. E. chrysanthemi is able to use sucrose, raffinose, or melibiose as a sole carbon source for growth. The two gene clusters scrKYABR and rafRBA are necessary for their catabolism. The phenotypic analysis of scr and raf mutants revealed cross-links between the assimilation pathways of these oligosaccharides. Sucrose catabolism is mediated by the genes scrKYAB. While the raf cluster is sufficient to catabolize melibiose, it is incomplete for raffinose catabolism, which needs two additional steps that are provided by scrY and scrB. The scr and raf clusters are controlled by specific repressors, ScrR and RafR, respectively. Both clusters are controlled by the global activator of carbohydrate catabolism, the cyclic AMP receptor protein (CRP). E. chrysanthemi growth with lactose is possible only for mutants with a derepressed nonspecific lactose transport system, which was identified as RafB. RafR inactivation allows the bacteria to the assimilate the novel substrates lactose, lactulose, stachyose, and melibionic acid. The raf genes also are involved in the assimilation of alpha- and beta-methyl-D-galactosides. Mutations in the raf or scr genes did not significantly affect E. chrysanthemi virulence. This could be explained by the large variety of carbon sources available in the plant tissue macerated by E. chrysanthemi.
Collapse
Affiliation(s)
- Nicole Hugouvieux-Cotte-Pattat
- Université de Lyon, Microbiologie Adaptation et Pathogénie UMR5240, batiment Lwoff, 10 rue Dubois, Domaine Scientifique de la Doua, 69622 Villeurbanne Cedex, France.
| | | |
Collapse
|
3
|
Brzuszkiewicz E, Brüggemann H, Liesegang H, Emmerth M, Ölschläger T, Nagy G, Albermann K, Wagner C, Buchrieser C, Emődy L, Gottschalk G, Hacker J, Dobrindt U. How to become a uropathogen: comparative genomic analysis of extraintestinal pathogenic Escherichia coli strains. Proc Natl Acad Sci U S A 2006; 103:12879-84. [PMID: 16912116 PMCID: PMC1568941 DOI: 10.1073/pnas.0603038103] [Citation(s) in RCA: 266] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2006] [Indexed: 01/16/2023] Open
Abstract
Uropathogenic Escherichia coli (UPEC) strain 536 (O6:K15:H31) is one of the model organisms of extraintestinal pathogenic E. coli (ExPEC). To analyze this strain's genetic basis of urovirulence, we sequenced the entire genome and compared the data with the genome sequence of UPEC strain CFT073 (O6:K2:H1) and to the available genomes of nonpathogenic E. coli strain MG1655 (K-12) and enterohemorrhagic E. coli. The genome of strain 536 is approximately 292 kb smaller than that of strain CFT073. Genomic differences between both UPEC are mainly restricted to large pathogenicity islands, parts of which are unique to strain 536 or CFT073. Genome comparison underlines that repeated insertions and deletions in certain parts of the genome contribute to genome evolution. Furthermore, 427 and 432 genes are only present in strain 536 or in both UPEC, respectively. The majority of the latter genes is encoded within smaller horizontally acquired DNA regions scattered all over the genome. Several of these genes are involved in increasing the pathogens' fitness and adaptability. Analysis of virulence-associated traits expressed in the two UPEC O6 strains, together with genome comparison, demonstrate the marked genetic and phenotypic variability among UPEC. The ability to accumulate and express a variety of virulence-associated genes distinguishes ExPEC from many commensals and forms the basis for the individual virulence potential of ExPEC. Accordingly, instead of a common virulence mechanism, different ways exist among ExPEC to cause disease.
Collapse
Affiliation(s)
- Elzbieta Brzuszkiewicz
- *Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-Universität Göttingen, Grisebachstrasse 8, 37077 Göttingen, Germany
- Institute for Molecular Biology of Infectious Diseases, Bayerische Julius-Maximilians-Universität Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| | - Holger Brüggemann
- *Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-Universität Göttingen, Grisebachstrasse 8, 37077 Göttingen, Germany
- Laboratoire de Génomique des Microorganismes Pathogènes, Institut Pasteur, 75724 Paris Cedex 15, France
| | - Heiko Liesegang
- *Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-Universität Göttingen, Grisebachstrasse 8, 37077 Göttingen, Germany
| | - Melanie Emmerth
- Institute for Molecular Biology of Infectious Diseases, Bayerische Julius-Maximilians-Universität Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| | - Tobias Ölschläger
- Institute for Molecular Biology of Infectious Diseases, Bayerische Julius-Maximilians-Universität Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| | - Gábor Nagy
- Institute of Medical Microbiology and Immunology, University of Pécs, Szigeti ut 12, 7624 Pécs, Hungary
| | - Kaj Albermann
- Biomax Informatics AG, Lochhamerstrasse 9, 82152 Martinsried, Germany; and
| | - Christian Wagner
- Biomax Informatics AG, Lochhamerstrasse 9, 82152 Martinsried, Germany; and
| | - Carmen Buchrieser
- Laboratoire de Génomique des Microorganismes Pathogènes, Institut Pasteur, 75724 Paris Cedex 15, France
| | - Levente Emődy
- Institute of Medical Microbiology and Immunology, University of Pécs, Szigeti ut 12, 7624 Pécs, Hungary
| | - Gerhard Gottschalk
- *Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-Universität Göttingen, Grisebachstrasse 8, 37077 Göttingen, Germany
| | - Jörg Hacker
- Institute for Molecular Biology of Infectious Diseases, Bayerische Julius-Maximilians-Universität Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| | - Ulrich Dobrindt
- Institute for Molecular Biology of Infectious Diseases, Bayerische Julius-Maximilians-Universität Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| |
Collapse
|
4
|
Barabote RD, Saier MH. Comparative genomic analyses of the bacterial phosphotransferase system. Microbiol Mol Biol Rev 2005; 69:608-34. [PMID: 16339738 PMCID: PMC1306802 DOI: 10.1128/mmbr.69.4.608-634.2005] [Citation(s) in RCA: 209] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report analyses of 202 fully sequenced genomes for homologues of known protein constituents of the bacterial phosphoenolpyruvate-dependent phosphotransferase system (PTS). These included 174 bacterial, 19 archaeal, and 9 eukaryotic genomes. Homologues of PTS proteins were not identified in archaea or eukaryotes, showing that the horizontal transfer of genes encoding PTS proteins has not occurred between the three domains of life. Of the 174 bacterial genomes (136 bacterial species) analyzed, 30 diverse species have no PTS homologues, and 29 species have cytoplasmic PTS phosphoryl transfer protein homologues but lack recognizable PTS permeases. These soluble homologues presumably function in regulation. The remaining 77 species possess all PTS proteins required for the transport and phosphorylation of at least one sugar via the PTS. Up to 3.2% of the genes in a bacterium encode PTS proteins. These homologues were analyzed for family association, range of protein types, domain organization, and organismal distribution. Different strains of a single bacterial species often possess strikingly different complements of PTS proteins. Types of PTS protein domain fusions were analyzed, showing that certain types of domain fusions are common, while others are rare or prohibited. Select PTS proteins were analyzed from different phylogenetic standpoints, showing that PTS protein phylogeny often differs from organismal phylogeny. The results document the frequent gain and loss of PTS protein-encoding genes and suggest that the lateral transfer of these genes within the bacterial domain has played an important role in bacterial evolution. Our studies provide insight into the development of complex multicomponent enzyme systems and lead to predictions regarding the types of protein-protein interactions that promote efficient PTS-mediated phosphoryl transfer.
Collapse
Affiliation(s)
- Ravi D Barabote
- Division of Biological Sciences, University of California at San Diego, La Jolla, California 92093-0116, USA
| | | |
Collapse
|
5
|
Abstract
Escherichia coli and Salmonella enterica serovar Typhimurium exhibit a remarkable versatility in the usage of different sugars as the sole source of carbon and energy, reflecting their ability to make use of the digested meals of mammalia and of the ample offerings in the wild. Degradation of sugars starts with their energy-dependent uptake through the cytoplasmic membrane and is carried on further by specific enzymes in the cytoplasm, destined finally for degradation in central metabolic pathways. As variant as the different sugars are, the biochemical strategies to act on them are few. They include phosphorylation, keto-enol isomerization, oxido/reductions, and aldol cleavage. The catabolic repertoire for using carbohydrate sources is largely the same in E. coli and in serovar Typhimurium. Nonetheless, significant differences are found, even among the strains and substrains of each species. We have grouped the sugars to be discussed according to their first step in metabolism, which is their active transport, and follow their path to glycolysis, catalyzed by the sugar-specific enzymes. We will first discuss the phosphotransferase system (PTS) sugars, then the sugars transported by ATP-binding cassette (ABC) transporters, followed by those that are taken up via proton motive force (PMF)-dependent transporters. We have focused on the catabolism and pathway regulation of hexose and pentose monosaccharides as well as the corresponding sugar alcohols but have also included disaccharides and simple glycosides while excluding polysaccharide catabolism, except for maltodextrins.
Collapse
Affiliation(s)
- Christoph Mayer
- Fachbereich Biologie, Universität Konstanz, 78457 Konstanz, Germany
| | | |
Collapse
|
6
|
Kim HS, Park HJ, Heu S, Jung J. Molecular and functional characterization of a unique sucrose hydrolase from Xanthomonas axonopodis pv. glycines. J Bacteriol 2004; 186:411-8. [PMID: 14702310 PMCID: PMC305769 DOI: 10.1128/jb.186.2.411-418.2004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A novel sucrose hydrolase (SUH) from Xanthomonas axonopodis pv. glycines, a causative agent of bacterial pustule disease on soybeans, was studied at the functional and molecular levels. SUH was shown to act rather specifically on sucrose (K(m) = 2.5 mM) but not on sucrose-6-phosphate. Protein analysis of purified SUH revealed that, in this monomeric enzyme with an estimated molecular mass of 70,223 +/- 12 Da, amino acid sequences determined for several segments have corresponding nucleotide sequences in XAC3490, a protein-coding gene found in the genome of X. axonopodis pv. citri. Based on this information, the SUH gene, consisting of an open reading frame of 1,935 bp, was cloned by screening a genomic library of X. axonopodis pv. glycines 8ra. Database searches and sequence comparison revealed that SUH has significant homology to some family 13 enzymes, with all of the crucial invariant residues involved in the catalytic mechanism conserved, but it shows no similarity to known invertases belonging to family 32. suh expression in X. axonopodis pv. glycines requires sucrose induction, and insertional mutagenesis resulted in an absence of sucrose-inducible sucrose hydrolase activity in crude protein extracts and a sucrose-negative phenotype. Recombinant SUH, overproduced in Escherichia coli and purified, was shown to have the same enzymatic characteristics in terms of kinetic parameters.
Collapse
Affiliation(s)
- Hong-Suk Kim
- School of Agricultural Biotechnology, Seoul National University, Seoul 151-742, South Korea
| | | | | | | |
Collapse
|
7
|
Jahreis K, Bentler L, Bockmann J, Hans S, Meyer A, Siepelmeyer J, Lengeler JW. Adaptation of sucrose metabolism in the Escherichia coli wild-type strain EC3132. J Bacteriol 2002; 184:5307-16. [PMID: 12218016 PMCID: PMC135337 DOI: 10.1128/jb.184.19.5307-5316.2002] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although Escherichia coli strain EC3132 possesses a chromosomally encoded sucrose metabolic pathway, its growth on low sucrose concentrations (5 mM) is unusually slow, with a doubling time of 20 h. In this report we describe the subcloning and further characterization of the corresponding csc genes and adjacent genes. The csc regulon comprises three genes for a sucrose permease, a fructokinase, and a sucrose hydrolase (genes cscB, cscK, and cscA, respectively). The genes are arranged in two operons and are negatively controlled at the transcriptional level by the repressor CscR. Furthermore, csc gene expression was found to be cyclic AMP-CrpA dependent. A comparison of the genomic sequences of the E. coli strains EC3132, K-12, and O157:H7 in addition to Salmonella enterica serovar Typhimurium LT2 revealed that the csc genes are located in a hot spot region for chromosomal rearrangements in enteric bacteria. The comparison further indicated that the csc genes might have been transferred relatively recently to the E. coli wild-type EC3132 at around the time when the different strains of the enteric bacteria diverged. We found evidence that a mobile genetic element, which used the gene argW for site-specific integration into the chromosome, was probably involved in this horizontal gene transfer and that the csc genes are still in the process of optimal adaptation to the new host. Selection for such adaptational mutants growing faster on low sucrose concentrations gave three different classes of mutants. One class comprised cscR(Con) mutations that expressed all csc genes constitutively. The second class constituted a cscKo operator mutation, which became inducible for csc gene expression at low sucrose concentrations. The third class was found to be a mutation in the sucrose permease that caused an increase in transport activity.
Collapse
Affiliation(s)
- Knut Jahreis
- Arbeitsgruppe Genetik, Fachbereich Biologie/Chemie, Universität Osnabrück, D-49069 Osnabrück, Germany.
| | | | | | | | | | | | | |
Collapse
|
8
|
Bogs J, Geider K. Molecular analysis of sucrose metabolism of Erwinia amylovora and influence on bacterial virulence. J Bacteriol 2000; 182:5351-8. [PMID: 10986236 PMCID: PMC110976 DOI: 10.1128/jb.182.19.5351-5358.2000] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sucrose is an important storage and transport sugar of plants and an energy source for many phytopathogenic bacteria. To analyze regulation and biochemistry of sucrose metabolism of the fire blight pathogen Erwinia amylovora, a chromosomal fragment which enabled Escherichia coli to utilize sucrose as sole carbon source was cloned. By transposon mutagenesis, the scr regulon of E. amylovora was tagged, and its nucleotide sequence was determined. Five open reading frames, with the genes scrK, scrY, scrA, scrB, and scrR, had high homology to genes of the scr regulons from Klebsiella pneumoniae and plasmid pUR400. scrB and scrR of E. amylovora were fused to a histidine tag and to the maltose-binding protein (MalE) of E. coli, respectively. ScrB (53 kDa) catalyzed the hydrolysis of sucrose with a K(m) of 125 mM. Binding of a MalE-ScrR fusion protein to an scrYAB promoter fragment was shown by gel mobility shifts. This complex dissociated in the presence of fructose but not after addition of sucrose. Expression of the scr regulon was studied with an scrYAB promoter-green fluorescent protein gene fusion and measured by flow cytometry and spectrofluorometry. The operon was affected by catabolite repression and induced by sucrose or fructose. The level of gene induction correlated to the sucrose concentration in plant tissue, as shown by flow cytometry. Sucrose mutants created by site-directed mutagenesis did not produce significant fire blight symptoms on apple seedlings, indicating the importance of sucrose metabolism for colonization of host plants by E. amylovora.
Collapse
Affiliation(s)
- J Bogs
- Max-Planck-Institut für Zellbiologie, Rosenhof, D-68526 Ladenburg, Germany
| | | |
Collapse
|
9
|
Luesink EJ, Marugg JD, Kuipers OP, de Vos WM. Characterization of the divergent sacBK and sacAR operons, involved in sucrose utilization by Lactococcus lactis. J Bacteriol 1999; 181:1924-6. [PMID: 10074089 PMCID: PMC93595 DOI: 10.1128/jb.181.6.1924-1926.1999] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The divergently transcribed sacBK and sacAR operons, which are involved in the utilization of sucrose by Lactococcus lactis NZ9800, were examined by transcriptional and gene inactivation studies. Northern analyses of RNA isolated from cells grown at the expense of different carbon sources revealed three sucrose-inducible transcripts: one of 3.2 kb containing sacB and sacK, a second of 3.4 kb containing sacA and sacR, and a third of 1.8 kb containing only sacR. The inactivation of the sacR gene by replacement recombination resulted in the constitutive transcription of the sacBK and sacAR operons in the presence of different carbon sources, indicating that SacR acts as a repressor of transcription.
Collapse
Affiliation(s)
- E J Luesink
- Microbial Ingredients Section, NIZO Food Research, 6710 BA Ede, The Netherlands
| | | | | | | |
Collapse
|
10
|
Carter J, Hutton S, Sriprakash KS, Kemp DJ, Lum G, Savage J, Bowden FJ. Culture of the causative organism of donovanosis (Calymmatobacterium granulomatis) in HEp-2 cells. J Clin Microbiol 1997; 35:2915-7. [PMID: 9350758 PMCID: PMC230086 DOI: 10.1128/jcm.35.11.2915-2917.1997] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We report successful culture of Calymmatobacterium granulomatis by standard cell culture methods. Swabs were obtained from lesions in three patients with a clinical diagnosis of donovanosis. For two patients, there was histological confirmation of the disease (i.e., the presence of Donovan bodies in Giemsa-stained smears). Specimens were inoculated onto cycloheximide-treated HEp-2 cell monolayers in RPMI 1640 medium (supplemented with fetal calf serum, NaHCO3, vancomycin hydrochloride, and benzylpenicillin). At 48 h, organisms resembling Donovan bodies were identified in monolayer cultures from all three specimens. The organisms appeared as pleomorphic bacilli with characteristic bipolar staining and "safety pin" appearance. Using a PCR designed to differentiate C. granulomatis from the Klebsiella species (which have a high degree of molecular homology), we were able to demonstrate that the cultured organisms produced a PCR product identical to that obtained from the original swab specimens. It is now possible to test in vitro susceptibility of C. granulomatis to antibiotics and to provide a ready source of DNA and antigenic material to enable the development of serological tests and, possibly in the future, a vaccine.
Collapse
Affiliation(s)
- J Carter
- Menzies School of Health Research, Darwin, Northern Territory, Australia
| | | | | | | | | | | | | |
Collapse
|
11
|
Li Y, Ferenci T. Gene organisation and regulatory sequences in the sucrose utilisation cluster of Bacillus stearothermophilus NUB36. Gene X 1997; 195:195-200. [PMID: 9305764 DOI: 10.1016/s0378-1119(97)00139-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The nucleotide sequence of the surP and surT genes in a sucrose-utilisation cluster cloned from Bacillus stearothermophilus NUB36 was determined. The surP gene encoded a protein of 466 amino acid residues and shared 60-62% amino acid identity with the sucrose-specific enzyme II components of the phosphotransferase system of Bacillus subtilis, Salmonella typhimurium and Klebsiella pneumoniae. SurP, like other sucrose EIIs, lacked the hydrophilic domain containing the first (IIA) phosphorylation site. The surT gene encoded a 278 amino acid polypeptide which showed 63.1% and 54% amino acid identity to the B. subtilis antiterminators SacT and SacY, respectively. A region containing a palindromic structure preceding surP was highly homologous to the regulatory transcription termination regions of the sacPA and sacB operons of B. subtilis and the bgl operon of Escherichia coli. Hence the sucrose gene cluster of B. stearothermophilus NUB36 is very similar to the B. subtilis sacPA operon in terms of gene order and regulatory organisation.
Collapse
Affiliation(s)
- Y Li
- Department of Microbiology, University of Sydney, NSW, Australia
| | | |
Collapse
|
12
|
Hochhut B, Jahreis K, Lengeler JW, Schmid K. CTnscr94, a conjugative transposon found in enterobacteria. J Bacteriol 1997; 179:2097-102. [PMID: 9079891 PMCID: PMC178942 DOI: 10.1128/jb.179.7.2097-2102.1997] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Conjugational transposons are important for horizontal gene transfer in gram-positive and gram-negative bacteria, but have not been reported yet for enteric bacteria. Salmonella senftenberg 5494-57 has previously been shown to transfer by conjugation genes for a sucrose fermentation pathway which were located on a DNA element called scr-94. We report here that the corresponding scr genes for a phosphoenolpyruvate-dependent sucrose:phosphotransferase system and a sucrose metabolic pathway are located on a large (ca. 100 kb) conjugative transposon renamed CTnscr94. The self-transmissible element integrates at two specific attachment sites in a RecA-independent way into the chromosome of Escherichia coli K-12 strains. One site was identified within pheV, the structural gene for a tRNA(Phe). Sequencing of both ends of CTnscr94 revealed the presence of the 3' part of pheV on one end such that after integration of the element, a complete pheV gene is retained. CTnscr94 represents, to our knowledge, the first conjugational transposon found in enteric bacteria.
Collapse
Affiliation(s)
- B Hochhut
- Arbeitsgruppe Genetik, Fachbereich Biologie/Chemie, Universität Osnabrück, Germany
| | | | | | | |
Collapse
|