1
|
Suree N, Koizumi N, Sahakyan A, Shimizu S, An DS. A novel HIV-1 reporter virus with a membrane-bound Gaussia princeps luciferase. J Virol Methods 2012; 183:49-56. [PMID: 22483780 DOI: 10.1016/j.jviromet.2012.03.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 03/15/2012] [Accepted: 03/21/2012] [Indexed: 10/28/2022]
Abstract
HIV-1 reporter viruses are a critical tool for investigating HIV-1 infection. By having a reporter gene incorporated into the HIV-1 genome, the expressed reporter protein acts as a specific tag, thus enabling specific detection of HIV-1 infected cells. Currently existing HIV-1 reporter viruses utilize reporters for the detection of HIV-1 infected cells by a single assay. A reporter virus enabling the detection of viral particles as well as HIV-1 infected cells by two assays can be more versatile for many applications. In this report, a novel reporter HIV-1 was generated by introducing a membrane-anchored form of the Gaussia princeps luciferase gene (mGluc) upstream of the nef gene in the HIV-1(NL4-3) genome using a picornaviral 2A-like sequence. The resulting HIV-1(NL4-3mGluc) virus expresses G. princeps luciferase efficiently on viral membrane and the cell surface of infected human T cell lines and primary peripheral blood mononuclear cells. This HIV-1 reporter is replication competent and the reporter gene mGluc is expressed during multiple rounds of infection. Importantly, viral particles can be detected by bioluminescence and infected cells can be detected simultaneously by bioluminescence and flow cytometric assays. With the versatility of two sensitive detection methods, this novel luciferase reporter has many applications such as cell-based screening for anti-HIV-1 agents or studies of HIV-1 pathogenicity.
Collapse
Affiliation(s)
- Nuttee Suree
- School of Nursing, University of California, Los Angeles, UCLA AIDS Institute, Los Angeles, CA 90095, USA
| | | | | | | | | |
Collapse
|
2
|
Gavegnano C, Schinazi RF. Antiretroviral therapy in macrophages: implication for HIV eradication. Antivir Chem Chemother 2009; 20:63-78. [PMID: 19843977 PMCID: PMC2978531 DOI: 10.3851/imp1374] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
HIV type-1 (HIV-1) accounts for more than 25 million deaths and nearly 40 million people are infected worldwide. A significant obstacle in clearing virus from infected individuals is latently infected viral reservoirs. Latent HIV-1 can emerge with recrudescence as a productive infection later in disease progression and could provide a source for the emergence of resistant HIV-1. It is widely recognized that macrophages represent a latently infected viral reservoir and are a significant and critical HIV-1 target cell in vivo. Macrophages can be divided into multiple subsets of macrophage-like cells, all of which are susceptible to HIV-1 infection, including dendritic cells, Langerhans cells, alveolar macrophages, mucosal macrophages and microglial cells. Current antiretroviral therapy (ART) often displays differential antiviral activity in macrophages relative to CD4(+) T-lymphocytes. Significant work has been performed to establish antiviral activity of many clinically approved ART in macrophages; however, a direct link between antiviral activity and specific mechanisms responsible for these antiviral effects are incompletely understood. This review identifies many understudied areas of research, along with topics for further research in the field of HIV therapy and eradication. Discussion focuses upon the known cellular pharmacology and antiviral activity of antiretroviral agents in macrophages and its relationship to latency, chronic HIV-1 infection and therapeutic strategies to eradicate systemic HIV-1 infection.
Collapse
Affiliation(s)
- Christina Gavegnano
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Veterans Affairs Medical Center, Decatur, GA, USA
| | - Raymond F Schinazi
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Veterans Affairs Medical Center, Decatur, GA, USA
| |
Collapse
|
3
|
Imbeault M, Lodge R, Ouellet M, Tremblay MJ. Efficient magnetic bead-based separation of HIV-1-infected cells using an improved reporter virus system reveals that p53 up-regulation occurs exclusively in the virus-expressing cell population. Virology 2009; 393:160-7. [PMID: 19692106 DOI: 10.1016/j.virol.2009.07.009] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 07/02/2009] [Accepted: 07/14/2009] [Indexed: 11/27/2022]
Abstract
HIV-1 infection in cell lines is very efficient, since the target population is clonal and highly dividing. However, infection of primary cells such as CD4 T lymphocytes and monocyte-derived macrophages is much more difficult, resulting in a very small percentage of infected cells. In order to study events occurring in productively infected primary cells, we determined that a way to isolate this population from bystander cells was needed. We engineered a novel HIV-1-based reporter virus called NL4-3-IRES-HSA that allows for the magnetic separation of cells infected with fully competent virions. This X4-using virus encodes for the heat-stable antigen (HSA/murine CD24) without the deletion of any viral genes by introducing an IRES sequence between HSA and the auxiliary gene Nef. Using commercial magnetic beads, we achieved efficient purification of HIV-1-infected cells (i.e. purity >85% and recovery >90%) from diverse primary cell types at early time points following infection. We used this system to accurately quantify p53 protein levels in both virus-infected and uninfected bystander primary CD4(+) T cells. We show that p53 up-regulation occurs exclusively in the infected population. We devised a strategy that allows for an efficient separation of HIV-1 infected cells from bystanders. We believe that this new reporter virus system will be of great help to study in depth how HIV-1 interacts with its host in a primary cells context.
Collapse
Affiliation(s)
- Michaël Imbeault
- Centre de Recherche en Infectiologie, Centre Hospitalier de l'Université Laval, and Faculté de Médecine, Université Laval, Québec, Canada G1V 4G2
| | | | | | | |
Collapse
|
4
|
Okada H, Zhang X, Ben Fofana I, Nagai M, Suzuki H, Ohashi T, Shida H. Synergistic effect of human CycT1 and CRM1 on HIV-1 propagation in rat T cells and macrophages. Retrovirology 2009; 6:43. [PMID: 19435492 PMCID: PMC2693497 DOI: 10.1186/1742-4690-6-43] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Accepted: 05/12/2009] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND In vivo studies of HIV-1 pathogenesis and testing of antiviral strategies have been hampered by the lack of an immunocompetent small animal model that is highly susceptible to HIV-1 infection. Although transgenic rats that express the HIV-1 receptor complex hCD4 and hCCR5 are susceptible to infection, HIV-1 replicates very poorly in these animals. To demonstrate the molecular basis for developing a better rat model for HIV-1 infection, we evaluated the effect of human CyclinT1 (hCycT1) and CRM1 (hCRM1) on Gag p24 production in rat T cells and macrophages using both established cell lines and primary cells prepared from hCycT1/hCRM1 transgenic rats. RESULTS Expression of hCycT1 augmented Gag production 20-50 fold in rat T cells, but had little effect in macrophages. Expression of hCRM1 enhanced Gag production 10-15 fold in macrophages, but only marginally in T cells. Expression of both factors synergistically enhanced p24 production to levels approximately 10-40% of those detected in human cells. R5 viruses produced in rat T cells and macrophages were fully infectious. CONCLUSION The expression of both hCycT1 and hCRM1 appears to be fundamental to developing a rat model that supports robust propagation of HIV-1.
Collapse
Affiliation(s)
- Hiroyuki Okada
- Institute for Genetic Medicine, Hokkaido University, Kita-ku, Sapporo 060-0815, Japan
| | - Xianfeng Zhang
- Institute for Genetic Medicine, Hokkaido University, Kita-ku, Sapporo 060-0815, Japan
| | - Ismael Ben Fofana
- Institute for Genetic Medicine, Hokkaido University, Kita-ku, Sapporo 060-0815, Japan
- Microbiology Division, New England Primate Research Center, Harvard Medical School, One Pine Hill Drive, Southborough, Maryland 01772, USA
| | - Mika Nagai
- Institute for Genetic Medicine, Hokkaido University, Kita-ku, Sapporo 060-0815, Japan
| | - Hajime Suzuki
- Institute for Genetic Medicine, Hokkaido University, Kita-ku, Sapporo 060-0815, Japan
| | - Takashi Ohashi
- Institute for Genetic Medicine, Hokkaido University, Kita-ku, Sapporo 060-0815, Japan
| | - Hisatoshi Shida
- Institute for Genetic Medicine, Hokkaido University, Kita-ku, Sapporo 060-0815, Japan
| |
Collapse
|
5
|
Leghmari K, Contreras X, Moureau C, Bahraoui E. HIV-1 Tat protein induces TNF-alpha and IL-10 production by human macrophages: differential implication of PKC-betaII and -delta isozymes and MAP kinases ERK1/2 and p38. Cell Immunol 2008; 254:46-55. [PMID: 18692180 DOI: 10.1016/j.cellimm.2008.06.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Revised: 06/09/2008] [Accepted: 06/26/2008] [Indexed: 01/06/2023]
Abstract
In this study, we demonstrate that HIV-1 Tat protein is able to induce IL-10 and TNF-alpha in human macrophages. We show that N-terminal Tat 1-45 fragment initiates the PKC pathway by acting at the membrane. Inhibition of PKC pathway, by chemical inhibitors or after PMA treatment, abolishes both IL-10 and TNF-alpha production. Among the eight PKC isoforms present in macrophages, we show that only PKC-betaIotaIota and -delta are activated by Tat or Tat 1-45 in human macrophages. However, their selective inhibition affects only IL-10 production. Downstream of PKC, Tat activates the MAP kinases p38 and ERK1/2 and the transcription factor NF-kappaB. Using chemical inhibitors we show that (i) both ERK1/2 MAP kinase and NF-kappaB transcription factor play an important role in IL-10 and TNF-alpha production, in macrophages stimulated by Tat. However, p38 MAP kinase seems to be involved only in IL-10 and not TNF-alpha production.
Collapse
Affiliation(s)
- Kaoutar Leghmari
- Laboratoire d'Immuno-Virologie des Lentivirus des Primates, Université Paul Sabatier 118, Toulouse, France
| | | | | | | |
Collapse
|
6
|
Activation of HIV-1 expression and replication by cGMP dependent protein kinase type 1-beta (PKG1beta). Retrovirology 2007; 4:91. [PMID: 18078512 PMCID: PMC2222664 DOI: 10.1186/1742-4690-4-91] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Accepted: 12/13/2007] [Indexed: 01/07/2023] Open
Abstract
The effect of cGMP (cyclic GMP) dependent protein kinase 1-β (PKG1-β) and cGMP analogues on transcriptional activity and replication of human immunodeficiency virus type 1 (HIV-1) was investigated. Transfection of PKG1β expression plasmid increased expression from an HIV-1 LTR-reporter as well as from an infectious HIV-1 molecular clone, pNL4-3. Treatment of HIV-1 AD8-infected monocyte derived macrophages (MDMs) with cGMP agonists and cGMP antagonists caused respectively increased and decreased virus replication. These findings provide evidence that cGMP and PKG serve to regulate HIV-1 infection in human cells.
Collapse
|
7
|
Qureshi A, Zheng R, Parlett T, Shi X, Balaraman P, Cheloufi S, Murphy B, Guntermann C, Eagles P. Gene silencing of HIV chemokine receptors using ribozymes and single-stranded antisense RNA. Biochem J 2006; 394:511-8. [PMID: 16293105 PMCID: PMC1408682 DOI: 10.1042/bj20051268] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The chemokine receptors CXCR4 and CCR5 are required for HIV-1 to enter cells, and the progression of HIV-1 infection to AIDS involves a switch in the co-receptor usage of the virus from CCR5 to CXCR4. These receptors therefore make attractive candidates for therapeutic intervention, and we have investigated the silencing of their genes by using ribozymes and single-stranded antisense RNAs. In the present study, we demonstrate using ribozymes that a depletion of CXCR4 and CCR5 mRNAs can be achieved simultaneously in human PBMCs (peripheral blood mononuclear cells), cells commonly used by the virus for infection and replication. Ribozyme activity leads to an inhibition of the cell-surface expression of both CCR5 and CXCR4, resulting in a significant inhibition of HIV-1 replication when PBMCs are challenged with the virus. In addition, we show that small single-stranded antisense RNAs can also be used to silence CCR5 and CXCR4 genes when delivered to PBMCs. This silencing is caused by selective degradation of receptor mRNAs.
Collapse
MESH Headings
- Cells, Cultured
- DNA-Directed RNA Polymerases/metabolism
- Flow Cytometry
- Gene Expression
- Gene Silencing
- HIV-1/physiology
- Humans
- Leukocytes, Mononuclear/metabolism
- Leukocytes, Mononuclear/virology
- RNA, Antisense/biosynthesis
- RNA, Antisense/genetics
- RNA, Antisense/metabolism
- RNA, Catalytic/biosynthesis
- RNA, Catalytic/genetics
- RNA, Catalytic/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, CCR5/analysis
- Receptors, CCR5/genetics
- Receptors, CCR5/metabolism
- Receptors, CXCR4/analysis
- Receptors, CXCR4/genetics
- Receptors, CXCR4/metabolism
- Viral Proteins/metabolism
- Virus Replication
Collapse
Affiliation(s)
- Amer Qureshi
- *Randall Division of Cell and Molecular Biophysics, King's College London, University of London, Guy's Campus, London Bridge, London SE1 1UL, U.K
- †Department of Immunology, St Bartholomew's and the Royal London School of Medicine and Dentistry, Queen Mary College, University of London, London EC1A 7BE, U.K
| | - Richard Zheng
- †Department of Immunology, St Bartholomew's and the Royal London School of Medicine and Dentistry, Queen Mary College, University of London, London EC1A 7BE, U.K
| | - Terry Parlett
- *Randall Division of Cell and Molecular Biophysics, King's College London, University of London, Guy's Campus, London Bridge, London SE1 1UL, U.K
| | - Xiaoju Shi
- *Randall Division of Cell and Molecular Biophysics, King's College London, University of London, Guy's Campus, London Bridge, London SE1 1UL, U.K
- †Department of Immunology, St Bartholomew's and the Royal London School of Medicine and Dentistry, Queen Mary College, University of London, London EC1A 7BE, U.K
| | - Priyadhashini Balaraman
- *Randall Division of Cell and Molecular Biophysics, King's College London, University of London, Guy's Campus, London Bridge, London SE1 1UL, U.K
- †Department of Immunology, St Bartholomew's and the Royal London School of Medicine and Dentistry, Queen Mary College, University of London, London EC1A 7BE, U.K
| | - Sihem Cheloufi
- *Randall Division of Cell and Molecular Biophysics, King's College London, University of London, Guy's Campus, London Bridge, London SE1 1UL, U.K
| | - Brendan Murphy
- †Department of Immunology, St Bartholomew's and the Royal London School of Medicine and Dentistry, Queen Mary College, University of London, London EC1A 7BE, U.K
| | - Christine Guntermann
- †Department of Immunology, St Bartholomew's and the Royal London School of Medicine and Dentistry, Queen Mary College, University of London, London EC1A 7BE, U.K
| | - Peter Eagles
- *Randall Division of Cell and Molecular Biophysics, King's College London, University of London, Guy's Campus, London Bridge, London SE1 1UL, U.K
- To whom correspondence should be addressed (email )
| |
Collapse
|
8
|
Brown A, Gartner S, Kawano T, Benoit N, Cheng-Mayer C. HLA-A2 down-regulation on primary human macrophages infected with an M-tropic EGFP-tagged HIV-1 reporter virus. J Leukoc Biol 2005; 78:675-85. [PMID: 16000390 DOI: 10.1189/jlb.0505237] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Multiple mechanisms are used by the human immunodeficiency virus type 1 (HIV-1) to interfere with host-cell immune effector functions. The 27-kD Nef protein has been shown to down-modulate specific genes of the major histocompatibility complex class I (MHC-I) on the surface of infected primary T cells, facilitating their escape from lysis by cytolytic T lymphocytes. Macrophages, as the other major immune cell type targeted by the virus, also contribute to the transmission, persistence, and pathogenesis of HIV-1. Yet, whether Nef modulates MHC-I expression on HIV-infected primary macrophages remains unclear. Currently available infectious HIV-1 molecular clones, which express a reporter gene, only infect T cells and/or do not express Nef. To overcome these limitations, we generated macrophage-tropic green fluorescent protein (GFP)-tagged HIV-1 viruses, which express the complete viral genome, and used these to assess the expression of human leukocyte antigen (HLA)-A2 on the surface of productively infected macrophages. The reporter viral genomes were replication-competent and stable, as Nef, p24 antigen, and GFP expression could be detected by immunostaining of infected, monocyte-derived macrophages (MDM) after more than 2 months postinfection. Fluorescence-activated cell sorter analyses of infected macrophages and T cells revealed that although wild-type reporter virus infection induced a statistically significant decrease in the density of surface HLA-A2, down-regulation of HLA-A2 was not seen in cells infected with reporter viruses encoding a frameshift or a single point mutation in Nef at prolines 74P and P80. The impact of Nef on HLA-A2 surface expression in MDM was also confirmed by confocal microscopy. These results suggest that the mechanisms of HLA-A2 down-modulation are similar in primary T cells and macrophages.
Collapse
Affiliation(s)
- Amanda Brown
- Department of Neurology, Meyer 6-181, 600 North Wolfe Street, Baltimore, MD 21287, USA.
| | | | | | | | | |
Collapse
|
9
|
Kibler KV, Miyazato A, Yedavalli VSRK, Dayton AI, Jacobs BL, Dapolito G, Kim SJ, Jeang KT. Polyarginine inhibits gp160 processing by furin and suppresses productive human immunodeficiency virus type 1 infection. J Biol Chem 2004; 279:49055-63. [PMID: 15371436 DOI: 10.1074/jbc.m403394200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Correct endoproteolytic maturation of gp160 is essential for the infectivity of human immunodeficiency virus type 1. This processing of human immunodeficiency virus-1 envelope protein, gp160, into gp120 and gp41 has been attributed to the activity of the cellular subtilisin-like proprotein convertase furin. The prototypic furin recognition cleavage site is Arg-X-Arg/Lys-Arg. Arg-Arg-Arg-Arg-Arg-Arg or longer iterations of polyarginine have been shown to be competitive inhibitors of substrate cleavage by furin. Here, we tested polyarginine for inhibition of productive human immunodeficiency virus-1-infection in T-cell lines, primary peripheral blood mononuclear cells, and macrophages. We found that polyarginine inhibited significantly human immunodeficiency virus-1 replication at concentrations that were benign to cell cultures ex vivo and mice in vivo. Using a fluorogenic assay, we demonstrated that polyarginine potently inhibited substrate-specific proteolytic cleavage by furin. Moreover, we verified that authentic processing of human immunodeficiency virus-1 gp160 synthesized in human cells from an infectious human immunodeficiency virus-1 (HIV-1) molecular clone was effectively blocked by polyarginine. Taken together, our data support that inhibitors of proteolytic processing of gp160 may be useful for combating human immunodeficiency virus-1 and that polyarginine represents a lead example of such inhibitors.
Collapse
Affiliation(s)
- Karen V Kibler
- Laboratory of Molecular Microbiology, NIAID, National Institutes of Health, Bethesda, Maryland 20892-0460, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Neuveut C, Scoggins RM, Camerini D, Markham RB, Jeang KT. Requirement for the second coding exon of Tat in the optimal replication of macrophage-tropic HIV-1. J Biomed Sci 2003. [DOI: 10.1007/bf02256316] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
11
|
Biomedical vignette. J Biomed Sci 2002. [DOI: 10.1007/bf02254983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|