1
|
Schwartz HT, Sternberg PW. A sequencing-based screening method identifies regulators of EGFR signaling from nonviable mutants in Caenorhabditis elegans. Sci Signal 2025; 18:eadp9377. [PMID: 39999212 DOI: 10.1126/scisignal.adp9377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 12/06/2024] [Accepted: 02/03/2025] [Indexed: 02/27/2025]
Abstract
Suppressor screens can identify genetic modifiers of biochemical pathways but generally require that the suppressed mutant be viable and fertile. We developed a screening method that obviated this requirement and enabled the identification of mutations that partially suppressed the early developmental arrest and lethality caused by loss of the epidermal growth factor (EGF) receptor ortholog LET-23 in Caenorhabditis elegans. We chemically mutagenized animals carrying the loss-of-function allele let-23(sy15), recovered let-23(sy15) homozygotes that escaped early developmental arrest but were nevertheless inviable, and sequenced their genomes. Testing of candidate causal mutations identified 11 genes that, when mutated, mitigated the early lethality caused by loss of EGF signaling. These included genes encoding homologs of the small guanosine triphosphatase (GTPase) Ras (let-60), which is a downstream effector of LET-23, and of regulators of the small GTPase Rho, including the homolog of the phosphotyrosine-binding protein TENSIN (tns-1). We also recovered suppressing mutations in genes encoding nuclear proteins that protect against DNA damage, including the homolog of MutS homolog 4 (him-14). Genetic experiments were consistent with the repression of Rho activity or the activation of the DNA damage response compensating for the loss of EGF signaling. This sequencing-based, whole-animal screening method may be adapted to other organisms to enable the identification of mutations for which the phenotype does not allow the recovery of viable animals.
Collapse
Affiliation(s)
- Hillel T Schwartz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Paul W Sternberg
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
2
|
Bell AD, Valencia F, Paaby AB. Stabilizing selection and adaptation shape cis and trans gene expression variation in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.15.618466. [PMID: 39464158 PMCID: PMC11507773 DOI: 10.1101/2024.10.15.618466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
An outstanding question in the evolution of gene expression is the relative influence of neutral processes versus natural selection, including adaptive change driven by directional selection as well as stabilizing selection, which may include compensatory dynamics. These forces shape patterns of gene expression variation within and between species, including the regulatory mechanisms governing expression in cis and trans. In this study, we interrogate intraspecific gene expression variation among seven wild C. elegans strains, with varying degrees of genomic divergence from the reference strain N2, leveraging this system's unique advantages to comprehensively evaluate gene expression evolution. By capturing allele-specific and between-strain changes in expression, we characterize the regulatory architecture and inheritance mode of gene expression variation within C. elegans and assess their relationship to nucleotide diversity, genome evolutionary history, gene essentiality, and other biological factors. We conclude that stabilizing selection is a dominant influence in maintaining expression phenotypes within the species, and the discovery that genes with higher overall expression tend to exhibit fewer expression differences supports this conclusion, as do widespread instances of cis differences compensated in trans. Moreover, analyses of human expression data replicate our finding that higher expression genes have less variable expression. We also observe evidence for directional selection driving expression divergence, and that expression divergence accelerates with increasing genomic divergence. To provide community access to the data from this first analysis of allele-specific expression in C. elegans, we introduce an interactive web application, where users can submit gene-specific queries to view expression, regulatory pattern, inheritance mode, and other information: https://wildworm.biosci.gatech.edu/ase/.
Collapse
Affiliation(s)
- Avery Davis Bell
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA
| | - Francisco Valencia
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA
| | - Annalise B. Paaby
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA
| |
Collapse
|
3
|
Schwartz HT, Tan CH, Peraza J, Raymundo KLT, Sternberg PW. Molecular identification of a peroxidase gene controlling body size in the entomopathogenic nematode Steinernema hermaphroditum. Genetics 2024; 226:iyad209. [PMID: 38078889 PMCID: PMC11491526 DOI: 10.1093/genetics/iyad209] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 12/01/2023] [Indexed: 02/08/2024] Open
Abstract
The entomopathogenic nematode Steinernema hermaphroditum was recently rediscovered and is being developed as a genetically tractable experimental system for the study of previously unexplored biology, including parasitism of its insect hosts and mutualism with its bacterial endosymbiont Xenorhabdus griffiniae. Through whole-genome re-sequencing and genetic mapping we have for the first time molecularly identified the gene responsible for a mutationally defined phenotypic locus in an entomopathogenic nematode. In the process we observed an unexpected mutational spectrum following ethyl methansulfonate mutagenesis in this species. We find that the ortholog of the essential Caenorhabditis elegans peroxidase gene skpo-2 controls body size and shape in S. hermaphroditum. We confirmed this identification by generating additional loss-of-function mutations in the gene using CRISPR-Cas9. We propose that the identification of skpo-2 will accelerate gene targeting in other Steinernema entomopathogenic nematodes used commercially in pest control, as skpo-2 is X-linked and males hemizygous for loss of its function can mate, making skpo-2 an easily recognized and maintained marker for use in co-CRISPR.
Collapse
Affiliation(s)
- Hillel T Schwartz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Chieh-Hsiang Tan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jackeline Peraza
- Department of Biology, Barnard College of Columbia University, NewYork, NY 10027, USA
| | | | - Paul W Sternberg
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
4
|
Noble LM, Miah A, Kaur T, Rockman MV. The Ancestral Caenorhabditis elegans Cuticle Suppresses rol-1. G3 (BETHESDA, MD.) 2020; 10:2385-2395. [PMID: 32423919 PMCID: PMC7341120 DOI: 10.1534/g3.120.401336] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 05/09/2020] [Indexed: 12/30/2022]
Abstract
Genetic background commonly modifies the effects of mutations. We discovered that worms mutant for the canonical rol-1 gene, identified by Brenner in 1974, do not roll in the genetic background of the wild strain CB4856. Using linkage mapping, association analysis and gene editing, we determined that N2 carries an insertion in the collagen gene col-182 that acts as a recessive enhancer of rol-1 rolling. From population and comparative genomics, we infer the insertion is derived in N2 and related laboratory lines, likely arising during the domestication of Caenorhabditis elegans, and breaking a conserved protein. The ancestral version of col-182 also modifies the phenotypes of four other classical cuticle mutant alleles, and the effects of natural genetic variation on worm shape and locomotion. These results underscore the importance of genetic background and the serendipity of Brenner's choice of strain.
Collapse
Affiliation(s)
- Luke M Noble
- Institut de Biologie, École Normale Supérieure, CNRS 8197, Inserm U1024, PSL Research University, F-75005 Paris, France
| | - Asif Miah
- Center for Genomics and Systems Biology, Department of Biology, New York University, NY, 10003
| | - Taniya Kaur
- Center for Genomics and Systems Biology, Department of Biology, New York University, NY, 10003
| | - Matthew V Rockman
- Center for Genomics and Systems Biology, Department of Biology, New York University, NY, 10003
| |
Collapse
|
5
|
CRISPR Technology Reveals RAD(51)-ical Mechanisms of Repair in Roundworms: An Educational Primer for Use with "Promotion of Homologous Recombination by SWS-1 in Complex with RAD-51 Paralogs in Caenorhabditis elegans". Genetics 2017; 204:883-891. [PMID: 28114101 DOI: 10.1534/genetics.116.195479] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The mechanisms cells use to maintain genetic fidelity via DNA repair and the accuracy of these processes have garnered interest from scientists engaged in basic research to clinicians seeking improved treatment for cancer patients. Despite the continued advances, many details of DNA repair are still incompletely understood. In addition, the inherent complexity of DNA repair processes, even at the most fundamental level, makes it a challenging topic. This primer is meant to assist both educators and students in using a recent paper, "Promotion of homologous recombination by SWS-1 in complex with RAD-51 paralogs in Caenorhabditis elegans," to understand mechanisms of DNA repair. The goals of this primer are to highlight and clarify several key techniques utilized, with special emphasis on the clustered, regularly interspaced, short palindromic repeats technique and the ways in which it has revolutionized genetics research, as well as to provide questions for deeper in-class discussion.
Collapse
|
6
|
Starnes DL, Lichtenberg SS, Unrine JM, Starnes CP, Oostveen EK, Lowry GV, Bertsch PM, Tsyusko OV. Distinct transcriptomic responses of Caenorhabditis elegans to pristine and sulfidized silver nanoparticles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 213:314-321. [PMID: 26925754 DOI: 10.1016/j.envpol.2016.01.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 12/23/2015] [Accepted: 01/07/2016] [Indexed: 06/05/2023]
Abstract
Manufactured nanoparticles (MNP) rapidly undergo aging processes once released from products. Silver sulfide (Ag2S) is the major transformation product formed during the wastewater treatment process for Ag-MNP. We examined toxicogenomic responses of pristine Ag-MNP, sulfidized Ag-MNP (sAg-MNP), and AgNO3 to a model soil organism, Caenorhabditis elegans. Transcriptomic profiling of nematodes which were exposed at the EC30 for reproduction for AgNO3, Ag-MNP, and sAg-MNP resulted in 571 differentially expressed genes. We independently verified expression of 4 genes (numr-1, rol-8, col-158, and grl-20) using qRT-PCR. Only 11% of differentially expressed genes were common among the three treatments. Gene ontology enrichment analysis also revealed that Ag-MNP and sAg-MNP had distinct toxicity mechanisms and did not share any of the biological processes. The processes most affected by Ag-MNP relate to metabolism, while those processes most affected by sAg-MNP relate to molting and the cuticle, and the most impacted processes for AgNO3 exposed nematodes was stress related. Additionally, as observed from qRT-PCR and mutant experiments, the responses to sAg-MNP were distinct from AgNO3 while some of the effects of pristine MNP were similar to AgNO3, suggesting that effects from Ag-MNP is partially due to dissolved silver ions.
Collapse
Affiliation(s)
- Daniel L Starnes
- Department of Plant and Soil Sciences, University of Kentucky, 1100 South Limestone Street, Lexington, KY 40546, United States
| | - Stuart S Lichtenberg
- Department of Plant and Soil Sciences, University of Kentucky, 1100 South Limestone Street, Lexington, KY 40546, United States; Center for Environmental Implications of NanoTechnology (CEINT), P.O. Box 90287, Duke University, Durham, NC 27708-0287, United States
| | - Jason M Unrine
- Department of Plant and Soil Sciences, University of Kentucky, 1100 South Limestone Street, Lexington, KY 40546, United States; Center for Environmental Implications of NanoTechnology (CEINT), P.O. Box 90287, Duke University, Durham, NC 27708-0287, United States
| | - Catherine P Starnes
- Department of Statistics, University of Kentucky, 725 Rose Street, MDS Building 305, Lexington, KY 40536, United States
| | - Emily K Oostveen
- Department of Plant and Soil Sciences, University of Kentucky, 1100 South Limestone Street, Lexington, KY 40546, United States
| | - Gregory V Lowry
- Center for Environmental Implications of NanoTechnology (CEINT), P.O. Box 90287, Duke University, Durham, NC 27708-0287, United States; Department of Civil & Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Paul M Bertsch
- Department of Plant and Soil Sciences, University of Kentucky, 1100 South Limestone Street, Lexington, KY 40546, United States; Center for Environmental Implications of NanoTechnology (CEINT), P.O. Box 90287, Duke University, Durham, NC 27708-0287, United States; Division of Land and Water, CSIRO, Ecosciences Precinct, Brisbane, QLD, Australia
| | - Olga V Tsyusko
- Department of Plant and Soil Sciences, University of Kentucky, 1100 South Limestone Street, Lexington, KY 40546, United States; Center for Environmental Implications of NanoTechnology (CEINT), P.O. Box 90287, Duke University, Durham, NC 27708-0287, United States.
| |
Collapse
|
7
|
Jones MR, Rose AM, Baillie DL. The ortholog of the human proto-oncogene ROS1 is required for epithelial development in C. elegans. Genesis 2013; 51:545-61. [PMID: 23733356 PMCID: PMC4232869 DOI: 10.1002/dvg.22405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 05/16/2013] [Accepted: 05/20/2013] [Indexed: 12/19/2022]
Abstract
The orphan receptor ROS1 is a human proto-oncogene, mutations of which are found in an increasing number of cancers. Little is known about the role of ROS1, however in vertebrates it has been implicated in promoting differentiation programs in specialized epithelial tissues. In this study we show that the C. elegans ortholog of ROS1, the receptor tyrosine kinase ROL-3, has an essential role in orchestrating the morphogenesis and development of specialized epidermal tissues, highlighting a potentially conserved function in coordinating crosstalk between developing epithelial cells. We also provide evidence of a direct relationship between ROL-3, the mucin SRAP-1, and BCC-1, the homolog of mRNA regulating protein Bicaudal-C. This study answers a longstanding question as to the developmental function of ROL-3, identifies three new genes that are expressed and function in the developing epithelium of C. elegans, and introduces the nematode as a potentially powerful model system for investigating the increasingly important, yet poorly understood, human oncogene ROS1. genesis 51:545–561.
Collapse
Affiliation(s)
- Martin R Jones
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada, V6T 1Z4.
| | | | | |
Collapse
|
8
|
Zipperlen P, Nairz K, Rimann I, Basler K, Hafen E, Hengartner M, Hajnal A. A universal method for automated gene mapping. Genome Biol 2005; 6:R19. [PMID: 15693948 PMCID: PMC551539 DOI: 10.1186/gb-2005-6-2-r19] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2004] [Revised: 11/15/2004] [Accepted: 12/09/2004] [Indexed: 11/23/2022] Open
Abstract
A high-throughput method for genotyping by mapping InDels. This method has been used to create fragment-length polymorphism maps for Drosophila and C. elegans. Small insertions or deletions (InDels) constitute a ubiquituous class of sequence polymorphisms found in eukaryotic genomes. Here, we present an automated high-throughput genotyping method that relies on the detection of fragment-length polymorphisms (FLPs) caused by InDels. The protocol utilizes standard sequencers and genotyping software. We have established genome-wide FLP maps for both Caenorhabditis elegans and Drosophila melanogaster that facilitate genetic mapping with a minimum of manual input and at comparatively low cost.
Collapse
Affiliation(s)
- Peder Zipperlen
- Institute of Molecular Biology, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Knud Nairz
- Institute of Zoology, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Ivo Rimann
- Institute of Zoology, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Konrad Basler
- Institute of Molecular Biology, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Ernst Hafen
- Institute of Zoology, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Michael Hengartner
- Institute of Molecular Biology, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Alex Hajnal
- Institute of Zoology, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| |
Collapse
|
9
|
|
10
|
Abrahante JE, Daul AL, Li M, Volk ML, Tennessen JM, Miller EA, Rougvie AE. The Caenorhabditis elegans hunchback-like gene lin-57/hbl-1 controls developmental time and is regulated by microRNAs. Dev Cell 2003; 4:625-37. [PMID: 12737799 DOI: 10.1016/s1534-5807(03)00127-8] [Citation(s) in RCA: 276] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Temporal control of development is an important aspect of pattern formation that awaits complete molecular analysis. We identified lin-57 as a member of the C. elegans heterochronic gene pathway, which ensures that postembryonic developmental events are appropriately timed. Loss of lin-57 function causes the hypodermis to terminally differentiate and acquire adult character prematurely. lin-57 is hbl-1, revealing a role for the worm hunchback homolog in control of developmental time. Significantly, fly hunchback (hb) temporally specifies cell fates in the nervous system. The hbl-1/lin-57 3'UTR is required for postembryonic downregulation in the hypodermis and nervous system and contains multiple putative binding sites for temporally regulated microRNAs, including let-7. Indeed, we find that hbl-1/lin-57 is regulated by let-7, at least in the nervous system. Examination of the hb 3'UTR reveals potential binding sites for known fly miRNAs. Thus, evolutionary conservation of hunchback genes may include temporal control of cell fate specification and microRNA-mediated regulation.
Collapse
Affiliation(s)
- Juan E Abrahante
- Department of Genetics, University of Minnesota, 6-160 Jackson Hall, 321 Church Street SE, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Peixoto CA, Alves LC, de Melo JV, de Souza W. Ultrastructural analyses of the Caenorhabditis elegans sqt-1(sc13) left roller mutant. J Parasitol 2000; 86:269-74. [PMID: 10780544 DOI: 10.1645/0022-3395(2000)086[0269:uaotce]2.0.co;2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The sqt-1 gene is 1 of the several loci in Caenorhabditis elegans that primarily affects organismal morphology. Certain mutations in the sqt-1 gene can produce left roller animals, i.e., they rotate around their long axis and move in circular paths. We describe the morphological alterations seen in the cuticle of the left roller sqt-1(sc13). Deep-etched replica analyses showed that the fibrous layer is composed of a unique strand of parallel fibers, instead of the 2 meeting at an angle of 60 degrees as observed in the wild-type strain. In addition, honeycomb elements, fibers organized in a pentagonal fashion above the fibrous layer, completely fill the intermediate layer that is empty spaces in the wild type. These morphological alterations are likely to be involved in generating the helical twist of the sqt-1(sc13) left roller mutant.
Collapse
Affiliation(s)
- C A Peixoto
- Departamento de Patologia e Biologia Celular, Centro de Pesquisas Aggeu Magalhães, Fundação Oswaldo Cruz, Recife, Brazil
| | | | | | | |
Collapse
|
12
|
Abstract
Collagen is a structural protein used in the generation of a wide variety of animal extracellular matrices. The exoskeleton of the free-living nematode, Caenorhabditis elegans, is a complex collagen matrix that is tractable to genetic research. Mutations in individual cuticle collagen genes can cause exoskeletal defects that alter the shape of the animal. The complete sequence of the C. elegans genome indicates upwards of 150 distinct collagen genes that probably contribute to this structure. During the synthesis of this matrix, individual collagen genes are expressed in distinct temporal periods, which might facilitate the formation of specific interactions between distinct collagens.
Collapse
Affiliation(s)
- I L Johnstone
- Wellcome Centre for Molecular Parasitology, Anderson College, University of Glasgow, UK.
| |
Collapse
|
13
|
Petalcorin MI, Oka T, Koga M, Ogura K, Wada Y, Ohshima Y, Futai M. Disruption of clh-1, a chloride channel gene, results in a wider body of Caenorhabditis elegans. J Mol Biol 1999; 294:347-55. [PMID: 10610763 DOI: 10.1006/jmbi.1999.3241] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We cloned the clh-1 gene coding for a putative ClC chloride channel in Caenorhabditis elegans. The gene product exhibited a high degree of homology with human ClC-1 and ClC-2. The clh-1 gene was predominantly expressed in the hypodermis, including seam cells. Null mutations of clh-1 caused a significantly wider body and an abnormal alae structure. High osmolarity in the culture medium restored the normal body width of the clh-1 mutants. These results suggest that the clh-1 gene contributes to maintenance of the body width through regulation of osmolarity.
Collapse
Affiliation(s)
- M I Petalcorin
- Division of Biological Sciences Institute of Scientific and Industrial Research, Osaka University, CREST of the Japan Science and Technology Corporation, Osaka, 567-0047, Japan
| | | | | | | | | | | | | |
Collapse
|
14
|
Nishiwaki K. Mutations affecting symmetrical migration of distal tip cells in Caenorhabditis elegans. Genetics 1999; 152:985-97. [PMID: 10388818 PMCID: PMC1460665 DOI: 10.1093/genetics/152.3.985] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The rotational symmetry of the Caenorhabditis elegans gonad arms is generated by the symmetrical migration of two distal tip cells (DTCs), located on the anterior and posterior ends of the gonad primordium. Mutations that cause asymmetrical migration of the two DTCs were isolated. All seven mutations were recessive and assigned to six different complementation groups. vab-3(k121) and vab-3(k143) affected anterior DTC migration more frequently than posterior, although null mutants showed no bias. The other five mutations, mig-14(k124), mig-17(k113), mig-18(k140), mig-19(k142), and mig-20(k148), affected posterior DTC migration more frequently than anterior. These observations imply that the migration of each DTC is regulated differently. mig-14 and mig-19 also affected the migration of other cells in the posterior body region. Four distinct types of DTC migration abnormalities were defined on the basis of the mutant phenotypes. vab-3; mig-14 double mutants exhibited the types of DTC migration defects seen for vab-3 single mutants. Combination of mig-17 and mig-18 or mig-19, which are characterized by the same types of posterior DTC migration defects, exhibited strong enhancement of anterior DTC migration defects, suggesting that they affect the same or parallel pathways regulating anterior DTC migration.
Collapse
Affiliation(s)
- K Nishiwaki
- PRESTO, Japan Science and Technology Corporation and Fundamental Research Laboratories, NEC Corporation, Miyukigaoka, Tsukuba 305, Japan.
| |
Collapse
|
15
|
van der Keyl H, Kim H, Espey R, Oke CV, Edwards MK. Caenorhabditis elegans sqt-3 mutants have mutations in the col-1 collagen gene. Dev Dyn 1994; 201:86-94. [PMID: 7803850 DOI: 10.1002/aja.1002010109] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
sqt-3 mutants of Caenorhabditis elegans form dumpy larvae and adults and display allele-specific defects in locomotion, fertility, and viability. We have determined that the sqt-3 locus encodes COL-1 collagen. We physically mapped the col-1 gene to a cosmid on chromosome V whose position is consistent with the location of the sqt-3 gene. We also observed morphological defects in sqt-3 mutants at stages that correlate with the mRNA expression patterns of col-1. Sequence analysis of the col-1 gene in the three temperature-sensitive mutants revealed that each allele of sqt-3 has a unique missense mutation causing arginine or glutamic acid to replace glycine in a Gly-X-Y triple helical domain. These glycine substitutions may result in longer non-collagenous domains, which may decrease the thermal stability or impart additional flexibility to mutant trimers. In addition, we describe four corrections to the published sequence of col-1, including one fifteen nucleotide addition that completes a conserved domain in the amino terminal coding region.
Collapse
Affiliation(s)
- H van der Keyl
- Department of Biology, Haverford College, Pennsylvania 19041
| | | | | | | | | |
Collapse
|
16
|
Abstract
The cuticle of the nematode Caenorhabditis elegans forms the barrier between the animal and its environment. In addition to being a protective layer, it is an exoskeleton which is important in maintaining and defining the normal shape of the nematode. The cuticle is an extracellular matrix consisting predominantly of small collagen-like proteins that are extensively crosslinked. Although it also contains other protein and non-protein compounds that undoubtedly play a significant part in its function, the specific role of collagen in cuticle structure and morphology is considered here. The C. elegans genome contains between 50 and 150 collagen genes, most of which are believed to encode cuticular collagens. Mutations that result in cuticular defects and grossly altered body form have been identified in more than 40 genes. Six of these genes are now known to encode cuticular collagens, a finding that confirms the importance of this group of structural proteins to the formation of the cuticle and the role of the cuticle as an exoskeleton in shaping the worm. It is likely that many more of the genes identified by mutations giving altered body form, will be collagen genes. Mutations in the cuticular collagen genes provide a powerful tool for investigating the mechanisms by which this group of proteins interact to form the nematode cuticle.
Collapse
|
17
|
Barbazuk WB, Johnsen RC, Baillie DL. The generation and genetic analysis of suppressors of lethal mutations in the Caenorhabditis elegans rol-3(V) gene. Genetics 1994; 136:129-43. [PMID: 8138151 PMCID: PMC1205765 DOI: 10.1093/genetics/136.1.129] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The Caenorhabditis elegans rol-3(e754) mutation is a member of a general class of mutations affecting gross morphology, presumably through disruption of the nematode cuticle. Adult worms homozygous for rol-3(e754) exhibit rotation about their long axis associated with a left-hand twisted cuticle, musculature, gut and ventral nerve cord. Our laboratory previously isolated 12 recessive lethal alleles of rol-3. All these lethal alleles cause an arrest in development at either early or mid-larval stages, suggesting that the rol-3 gene product performs an essential developmental function. Furthermore, through the use of the heterochronic mutants lin-14 and lin-29, we have established that the expression of rol-3(e754)'s adult specific visible function is not dependent on the presence of an adult cuticle. In an attempt to understand rol-3's developmental role we sought to identify other genes whose products interact with that of rol-3. Toward this end, we generated eight EMS induced and two gamma irradiation-induced recessive suppressors of the temperature sensitive (ts) mid-larval lethal phenotype of rol-3(s1040ts). These suppressors define two complementation groups srl-1 II and srl-2 III; and, while they suppress the rol-3(s1040) lethality, they do not suppress the adult specific visible rolling phenotype. Furthermore, there is a complex genetic interaction between srl-2 and srl-1 such that srl-2(s2506) fails to complement all srl alleles tested. These results suggest that srl-1 and srl-2 may share a common function and, thus, possibly constitute members of the same gene family. Mutations in both srl-1 and srl-2 produce no obvious hermaphrodite phenotypes in the absence of rol-3(s1040ts); however, males homozygous for either srl-1 or srl-2 display aberrant tail morphology. We present evidence suggesting that the members of srl-2 are not allele specific with respect to their suppression of rol-3 lethality, and that rol-3 may act in some way to influence proper posterior morphogenesis. Finally, based on our genetic analysis of rol-3 and the srl mutations, we present a model whereby the wild-type products of the srl loci act in a concerted manner to negatively regulate the rol-3 gene.
Collapse
Affiliation(s)
- W B Barbazuk
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | | | | |
Collapse
|
18
|
Levy AD, Yang J, Kramer JM. Molecular and genetic analyses of the Caenorhabditis elegans dpy-2 and dpy-10 collagen genes: a variety of molecular alterations affect organismal morphology. Mol Biol Cell 1993; 4:803-17. [PMID: 8241567 PMCID: PMC300994 DOI: 10.1091/mbc.4.8.803] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
We have identified and cloned the Caenorhabditis elegans dpy-2 and dpy-10 genes and determined that they encode collagens. Genetic data suggested that these genes are important in morphogenesis and possibly other developmental events. These data include the morphologic phenotypes exhibited by mutants, unusual genetic interactions with the sqt-1 collagen gene, and suppression of mutations in the glp-1 and mup-1 genes. The proximity of the dpy-2 and dpy-10 genes (3.5 kilobase) and the structural similarity of their encoded proteins (41% amino acid identity) indicate that dpy-2 and dpy-10 are the result of a gene duplication event. The genes do not, however, appear to be functionally redundant, because a dpy-10 null mutant is not rescued by the dpy-2 gene. In addition, full complementation between dpy-2 and dpy-10 can be demonstrated with all recessive alleles tested in trans. Sequence analysis of several mutant alleles of each gene was performed to determine the nature of the molecular defects that can cause the morphologic phenotypes. Glycine substitutions within the Gly-X-Y portion of the collagens can result in dumpy (Dpy), dumpy, left roller (DLRol), or temperature-sensitive DLRol phenotypes. dpy-10(cn64), a dominant temperature-sensitive DLRol allele, creates an Arg-to-Cys substitution in the amino non-Gly-X-Y portion of the protein. Three dpy-10 alleles contain Tc1 insertions in the coding region of the gene. dpy-10(cg36) (DRLol) creates a nonsense codon near the end of the Gly-X-Y region. The nature of this mutation, combined with genetic data, indicates that DLRol is the null phenotype of dpy-10. The Dpy phenotype results from reduced function of the dpy-10 collagen gene. Our results indicate that a variety of molecular defects in these collagens can result in severe morphologic changes in C. elegans.
Collapse
Affiliation(s)
- A D Levy
- Department of Cell, Molecular, and Structural Biology, Northwestern University Medical School, Chicago, Illinois 60611
| | | | | |
Collapse
|
19
|
Cox GN. Molecular biology of the cuticle collagen gene families of Caenorhabditis elegans and Haemonchus contortus. Acta Trop 1990; 47:269-81. [PMID: 1978527 DOI: 10.1016/0001-706x(90)90028-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- G N Cox
- Synergen Inc., Boulder, CO 80301
| |
Collapse
|
20
|
The Caenorhabditis elegans rol-6 gene, which interacts with the sqt-1 collagen gene to determine organismal morphology, encodes a collagen. Mol Cell Biol 1990. [PMID: 1970117 DOI: 10.1128/mcb.10.5.2081] [Citation(s) in RCA: 192] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The rol-6 gene is one of the more than 40 loci in Caenorhabditis elegans that primarily affect organismal morphology. Certain mutations in the rol-6 gene produce animals that have the right roller phenotype, i.e., they are twisted into a right-handed helix. The rol-6 gene interacts with another gene that affects morphology, sqt-1; a left roller allele of sqt-1 acts as a dominant suppressor of a right roller allele of rol-6. The sqt-1 gene has previously been shown to encode a collagen. We isolated and sequenced the rol-6 gene and found that it also encodes a collagen. The rol-6 gene was identified by physical mapping of overlapping chromosomal deficiencies that cover the gene and by identification of an allele-specific restriction site alteration. The amino acid sequence of the collagen encoded by rol-6 is more similar to that of the sqt-1 collagen than to any of the other ten C. elegans cuticle collagen sequences compared. The locations of cysteine residues flanking the Gly-X-Y repeat regions of rol-6 and sqt-1 are identical, but differ from those in the other collagens. The sequence similarities between rol-6 and sqt-1 indicate that they represent a new collagen subfamily in C. elegans. These findings suggest that these two collagens physically interact, possibly explaining the genetic interaction seen between the rol-6 and sqt-1 genes.
Collapse
|
21
|
Kramer JM, French RP, Park EC, Johnson JJ. The Caenorhabditis elegans rol-6 gene, which interacts with the sqt-1 collagen gene to determine organismal morphology, encodes a collagen. Mol Cell Biol 1990; 10:2081-9. [PMID: 1970117 PMCID: PMC360555 DOI: 10.1128/mcb.10.5.2081-2089.1990] [Citation(s) in RCA: 108] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The rol-6 gene is one of the more than 40 loci in Caenorhabditis elegans that primarily affect organismal morphology. Certain mutations in the rol-6 gene produce animals that have the right roller phenotype, i.e., they are twisted into a right-handed helix. The rol-6 gene interacts with another gene that affects morphology, sqt-1; a left roller allele of sqt-1 acts as a dominant suppressor of a right roller allele of rol-6. The sqt-1 gene has previously been shown to encode a collagen. We isolated and sequenced the rol-6 gene and found that it also encodes a collagen. The rol-6 gene was identified by physical mapping of overlapping chromosomal deficiencies that cover the gene and by identification of an allele-specific restriction site alteration. The amino acid sequence of the collagen encoded by rol-6 is more similar to that of the sqt-1 collagen than to any of the other ten C. elegans cuticle collagen sequences compared. The locations of cysteine residues flanking the Gly-X-Y repeat regions of rol-6 and sqt-1 are identical, but differ from those in the other collagens. The sequence similarities between rol-6 and sqt-1 indicate that they represent a new collagen subfamily in C. elegans. These findings suggest that these two collagens physically interact, possibly explaining the genetic interaction seen between the rol-6 and sqt-1 genes.
Collapse
Affiliation(s)
- J M Kramer
- Department of Biological Sciences, University of Illinois, Chicago 60680
| | | | | | | |
Collapse
|
22
|
Politz SM, Philipp M, Estevez M, O'Brien PJ, Chin KJ. Genes that can be mutated to unmask hidden antigenic determinants in the cuticle of the nematode Caenorhabditis elegans. Proc Natl Acad Sci U S A 1990; 87:2901-5. [PMID: 1691498 PMCID: PMC53801 DOI: 10.1073/pnas.87.8.2901] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Rabbit antisera directed against a mixture of proteins solubilized from the wild-type adult Caenorhabditis elegans cuticle were used to isolate mutants, induced by ethyl methanesulfonate treatment, that exhibit alterations in surface antigenicity by immunofluorescence. Genetic mapping and complementation data for four such mutations define two genes, srf-2(I) and srf-3(IV). The mutant phenotypes observed by immunofluorescence appear to result from unmasking of antigenic determinants that are normally hidden in the wild-type cuticle. In support of this hypothesis, surface radioiodination experiments indicate that components labeled on the wild-type surface are missing or less readily labeled on the surface of srf-2 and srf-3 mutants.
Collapse
Affiliation(s)
- S M Politz
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, MA 01609
| | | | | | | | | |
Collapse
|
23
|
Kramer JM, Johnson JJ, Edgar RS, Basch C, Roberts S. The sqt-1 gene of C. elegans encodes a collagen critical for organismal morphogenesis. Cell 1988; 55:555-65. [PMID: 3180220 DOI: 10.1016/0092-8674(88)90214-0] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Different mutations in the sqt-1 gene of C. elegans can lengthen, shorten, or helically twist the entire animal. We have cloned the sqt-1 gene and have shown that it encodes a collagen. sqt-1 was localized to a 35 kb region of DNA by physical mapping of chromosomal deficiencies. A transposon (Tc1)-induced mutation of sqt-1 was generated and utilized to identify the sqt-1 gene within this 35 kb region. Sequence analysis of the sqt-1 gene shows that it encodes a 32 kd collagen polypeptide that is similar in size and structure to other members of the C. elegans collagen family. The Tc1 insertion mutant has no detectable sqt-1 transcripts, yet it is morphologically normal, indicating that the null phenotype of sqt-1 is wild type. These results demonstrate that collagen mutations can have dramatic effects on organismal morphology.
Collapse
Affiliation(s)
- J M Kramer
- Laboratory for Cell, Molecular, and Developmental Biology, University of Illinois, Chicago 60680
| | | | | | | | | |
Collapse
|
24
|
Hirsh D, Cox GN, Kramer JM, Stinchcomb D, Jefferson R. Structure and expression of the collagen genes of C. elegans. Ann N Y Acad Sci 1985; 460:163-71. [PMID: 3868944 DOI: 10.1111/j.1749-6632.1985.tb51164.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
25
|
Stage-specific patterns of collagen gene expression during development of Caenorhabditis elegans. Mol Cell Biol 1985. [PMID: 2983191 DOI: 10.1128/mcb.5.2.363] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Collagens are the major protein components of the Caenorhabditis elegans cuticle and are encoded by a large family of 40 to 150 closely related but nonidentical genes. We have determined temporal patterns of mRNA accumulation for a large number of collagen genes by screening recombinant phages and plasmids containing cloned collagen genes under high stringency conditions with 32P-labeled cDNA preparations specific for eggs or three postembryonic molts. We find that collagen mRNA levels are regulated both temporally and quantitatively during C. elegans development. Most genes studied exhibit one of four patterns of mRNA accumulation which correlate with changes in cuticle morphology and collagen protein composition during development. Our results suggest that, in general, there is a progressive activation of new collagen genes during normal development.
Collapse
|
26
|
Kramer JM, Cox GN, Hirsh D. Expression of the Caenorhabditis elegans collagen genes col-1 and col-2 is developmentally regulated. J Biol Chem 1985. [DOI: 10.1016/s0021-9258(18)89683-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
27
|
Stage-specific patterns of collagen gene expression during development of Caenorhabditis elegans. Mol Cell Biol 1985; 5:363-72. [PMID: 2983191 PMCID: PMC366719 DOI: 10.1128/mcb.5.2.363-372.1985] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Collagens are the major protein components of the Caenorhabditis elegans cuticle and are encoded by a large family of 40 to 150 closely related but nonidentical genes. We have determined temporal patterns of mRNA accumulation for a large number of collagen genes by screening recombinant phages and plasmids containing cloned collagen genes under high stringency conditions with 32P-labeled cDNA preparations specific for eggs or three postembryonic molts. We find that collagen mRNA levels are regulated both temporally and quantitatively during C. elegans development. Most genes studied exhibit one of four patterns of mRNA accumulation which correlate with changes in cuticle morphology and collagen protein composition during development. Our results suggest that, in general, there is a progressive activation of new collagen genes during normal development.
Collapse
|
28
|
Abstract
We analyzed the number and organization of collagen genes in the nematode Caenorhabditis elegans. Genomic Southern blot hybridization experiments and recombinant phage library screenings indicated that C. elegans has between 40 and 150 distinct collagen genes. A large number of recombinant phages containing collagen genes were isolated from C. elegans DNA libraries. Physical mapping studies indicated that most phage contained a single small collagen gene less than 3 kilobases in size. A few phage contained multiple collagen hybridizing regions and may contain a larger collagen gene or several tightly linked small collagen genes. No overlaps were observed between phages containing different collagen genes, implying that the genes are dispersed in the C. elegans genome. Consistent with the small size of most collagen genes, we found that the predominant class of collagen mRNA in C. elegans is 1.2 to 1.4 kilobases in length. Genomic Southern blot experiments under stringent hybridization conditions revealed considerable sequence diversity among collagen genes. Our data suggest that most collagen genes are unique or are present in only a few copies.
Collapse
|
29
|
Ouazana R, Garrone R, Godet J. Characterization of morphological and biochemical defects in the cuticle of a dumpy mutant of Caenorhabditis elegans. ACTA ACUST UNITED AC 1985. [DOI: 10.1016/0305-0491(85)90276-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
30
|
Abstract
We analyzed the number and organization of collagen genes in the nematode Caenorhabditis elegans. Genomic Southern blot hybridization experiments and recombinant phage library screenings indicated that C. elegans has between 40 and 150 distinct collagen genes. A large number of recombinant phages containing collagen genes were isolated from C. elegans DNA libraries. Physical mapping studies indicated that most phage contained a single small collagen gene less than 3 kilobases in size. A few phage contained multiple collagen hybridizing regions and may contain a larger collagen gene or several tightly linked small collagen genes. No overlaps were observed between phages containing different collagen genes, implying that the genes are dispersed in the C. elegans genome. Consistent with the small size of most collagen genes, we found that the predominant class of collagen mRNA in C. elegans is 1.2 to 1.4 kilobases in length. Genomic Southern blot experiments under stringent hybridization conditions revealed considerable sequence diversity among collagen genes. Our data suggest that most collagen genes are unique or are present in only a few copies.
Collapse
|
31
|
Hosono R, Hirahara K, Kuno S, Kurihara T. Mutants ofCaenorhabditis elegans with dumpy and rounded head phenotype. ACTA ACUST UNITED AC 1982. [DOI: 10.1002/jez.1402240203] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
32
|
Cox GN, Kusch M, Edgar RS. Cuticle of Caenorhabditis elegans: its isolation and partial characterization. J Cell Biol 1981; 90:7-17. [PMID: 7251677 PMCID: PMC2111847 DOI: 10.1083/jcb.90.1.7] [Citation(s) in RCA: 266] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The adult cuticle of the soil nematode, Caenorhabditis elegans, is a proteinaceous extracellular structure elaborated by the underlying layer of hypodermal cells during the final molt in the animal's life cycle. The cuticle is composed of an outer cortical layer connected by regularly arranged struts to an inner basal layer. The cuticle can be isolated largely intact and free of all cellular material by sonication and treatment with 1% sodium dodecyl sulfate (SDS). Purified cuticles exhibit a negative material in the basal cuticle layer. The cuticle layers differ in their solubility in sulfhydryl reducing agents, susceptibility to various proteolytic enzymes and amino acid composition. The struts, basal layer, and internal cortical layer are composed of collagen proteins that are extensively cross-linked by disulfide bonds. The external cortical layer appears to contain primarily noncollagen proteins that are extensively cross-linked by nonreducible covalent bonds. The collagen proteins extracted from the cuticle with a reducing agent can be separated by SDS-polyacrylamide gel electrophoresis into eight major species differing in apparent molecular weight.
Collapse
|
33
|
Hosono R. A study of morphology ofCaenorhabditis elegans: A mutant ofCaenorhabditis elegans with dumpy and temperature-sensitive roller phenotype. ACTA ACUST UNITED AC 1980. [DOI: 10.1002/jez.1402130109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
34
|
A morphological temperature-sensitive mutant of the nematodeCaenorhabditis elegans var. Bergerac. ACTA ACUST UNITED AC 1978. [DOI: 10.1007/bf01944657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|