1
|
Carrera I, Corzo L, Martínez-Iglesias O, Naidoo V, Cacabelos R. Neuroprotective Effect of Nosustrophine in a 3xTg Mouse Model of Alzheimer's Disease. Pharmaceuticals (Basel) 2023; 16:1306. [PMID: 37765114 PMCID: PMC10535028 DOI: 10.3390/ph16091306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/01/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Neurodegeneration, characterized by the progressive deterioration of neurons and glial cells, is a feature of Alzheimer's disease (AD). The present study aims to demonstrate that the onset and early progression of neurodegenerative processes in transgenic mice models of AD can be delayed by a cocktail of neurotrophic factors and derived peptides named Nosustrophine, a nootropic supplement made by a peptide complex extracted from the young porcine brain, ensuring neuroprotection and improving neuro-functional recovery. Experimental 3xTg-APP/Bin1/COPS5 transgenic mice models of AD were treated with Nosustrophine at two different early ages, and their neuropathological hallmark and behavior response were analyzed. Results showed that Nosustrophine increased the activity of the immune system and reduced pathological changes in the hippocampus and cortex by halting the development of amyloid plaques, mainly seen in mice of 3-4 months of age, indicating that its effect is more preventive than therapeutic. Taken together, the results indicate the potent neuroprotective activity of Nosustrophine and its stimulating effects on neuronal plasticity. This study shows for the first time an effective therapy using nootropic supplements against degenerative diseases, although further investigation is needed to understand their molecular pathways.
Collapse
Affiliation(s)
- Iván Carrera
- EuroEspes Biomedical Research Center, Institute of Medical Science and Genomic Medicine, 15165 Bergondo, Corunna, Spain; (L.C.); (O.M.-I.); (V.N.); (R.C.)
| | | | | | | | | |
Collapse
|
2
|
Li Y, Qin J, Yan J, Zhang N, Xu Y, Zhu Y, Sheng L, Zhu X, Ju S. Differences of physical vs. psychological stress: evidences from glucocorticoid receptor expression, hippocampal subfields injury, and behavioral abnormalities. Brain Imaging Behav 2019; 13:1780-1788. [PMID: 30229371 DOI: 10.1007/s11682-018-9956-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The glucocorticoid receptor (GR) is the main effector of the activation of the hypothalamus-pituitary-adrenal (HPA) axis, which is caused by different types of stress that can be divided into two major categories: physical stress and psychological stress. Given the marked presence of GR in the hippocampus, GR-mediated hippocampal injury might be the core event under stress. The aim of this study was to investigate GR expression, hippocampal injury, and behaviors in rats to explore the differences between these types of stressors. Adult male rats were stressed using a classical model (electrical foot shock and a yoked psychologically stressful situation) to induce physical or psychological stress. The GR expression, injury of hippocampal subfields and behavioral abnormalities were dynamic, as demonstrated using immunofluorescence, 3D magnetic resonance imaging (MRI) and open field exploration (OFE), respectively. In addition, housing in a normal environment for 6 weeks was used to verify the recovery ability of rats. First, GR-mediated hippocampal atrophy and behavioral abnormalities were found in the second week under physical stress, but those changes did not appear until the fourth week under psychological stress. Second, the effects of stress were more pronounced after physical stressors than after psychological stressors in the fourth week, but this trend had reversed by the sixth week, especially in the DG (Dentate Gyrus) subfield. Except for the rats that had experienced 6 weeks of psychological stress, all rats showed significant recovery after 6 weeks of housing in a normal environment. The effects of physical stress appeared early but were relatively moderate, whereas the effects of psychological stress appeared late but were more severe. In addition, GR-mediated serious injury in the DG might be the cause of the DG volume loss and behaviors that could not be reversed.
Collapse
Affiliation(s)
- Yuefeng Li
- Department of Radiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
- Department of Radiology, Zhongda Affiliated Hospital of Southeast University, No.87, Dingjiaqiao Road, Nanjing, 210009, Jiangsu Province, China
| | - Jiasheng Qin
- Department of Radiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Jinchuan Yan
- Department of Radiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Ningning Zhang
- Department of Radiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yuhao Xu
- Department of Radiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yan Zhu
- Department of Radiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Liangju Sheng
- Medical College, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xiaolan Zhu
- Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, No.20, Zhengdong Road, Zhenjiang, 212001, Jiangsu Province, China.
| | - Shenghong Ju
- Department of Radiology, Zhongda Affiliated Hospital of Southeast University, No.87, Dingjiaqiao Road, Nanjing, 210009, Jiangsu Province, China.
| |
Collapse
|
3
|
Güney Ş, Dinçer S, Göktaş G, Take-Kaplanoğlu G. Neuroprotective role of delta opioid receptors in hypoxic preconditioning. Turk J Med Sci 2019; 49:1568-1576. [PMID: 31652039 PMCID: PMC7018290 DOI: 10.3906/sag-1810-51] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 08/04/2019] [Indexed: 12/15/2022] Open
Abstract
Background/aim The purpose of the present study was to explore the neuroprotective role of delta opioid receptors (DOR) in the rat cortex in hypoxic preconditioning. Materials and methods Rats were randomly divided into 8 groups: control (C), sham (S), hypoxic preconditioning (PC), severe hypoxia (SH), PC + SH, PC + SH + Saline (PS), PC + SH + DPDPE (DPDPE, selective DOR agonist), PC + SH + NT (NT, Naltrindole, selective DOR antagonist). Drugs were administered intracerebroventrically. Twenty four h after the end of 3 consecutive days of PC (10% O2, 2 h/day), the rats were subjected to severe hypoxia (7% O2 for 3 h). Bcl-2 and cyt-c were measured by western blot, and caspase-3 was observed immunohistochemically. Results Bcl-2 expressions in the PC group were higher than in control, SH, and PC + SH groups. Even though there were no significant differences between the groups in terms of cyt-c levels, caspase-3 immunoreactivity of cortical neurons and glial cells in the severe hypoxia and NT groups were higher than in the control, sham, and hypoxic preconditioning groups. DPDPE administration diminished caspase-3 immunoreactivity compared with all of the severe hypoxia groups. Conclusions These results suggest that cortical cells are resistant to apoptosis via increased expression of Bcl-2 and decreased immunoreactivity of caspase-3 in the cortex, and that DOR is involved in neuroprotection induced by hypoxic preconditioning via the caspase-3 pathway in cortical neurons.
Collapse
Affiliation(s)
- Şevin Güney
- Department of Physiology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Sibel Dinçer
- Department of Physiology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Güleser Göktaş
- Department of Histology and Embryology, Faculty of Medicine, Lokman Hekim University, Ankara, Turkey
| | - Gülnur Take-Kaplanoğlu
- Department of Histology and Embryology, Faculty of Medicine, Gazi University, Ankara, Turkey
| |
Collapse
|
4
|
Li Y, Zhu X, Ju S, Yan J, Wang D, Zhu Y, Zang F. Detection of volume alterations in hippocampal subfields of rats under chronic unpredictable mild stress using 7T MRI: A follow-up study. J Magn Reson Imaging 2017; 46:1456-1463. [PMID: 28225578 DOI: 10.1002/jmri.25667] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 01/27/2017] [Indexed: 12/14/2022] Open
Abstract
PURPOSE To determine hippocampal subfields volume loss in depression, which was simulated by a rat chronic unpredictable mild stress (CUMS) model. As different cellular and molecular characteristics in hippocampal subfields, these subfields are regarded as differentially vulnerable to processes associated with stress. MATERIALS AND METHODS Twenty male Wistar rats were exposed to various stressors until the model was successfully established. The effects of physical exercise on recovery of hippocampal volume in depressed rats were simulated using the wheel running test (WRT). These rats hippocampal volumes were dynamically measured using T2 -weighted images (T2 WIs) at 7T structural magnetic resonance imaging (MRI). RESULTS After 4 weeks of CUMS (CUMS-4W), the behavioral tests showed that the rat model of depression was successfully established (P < 0.001). In this process, the bilateral CA1 volume was significantly atrophic after 2 weeks of CUMS (CUMS-2W) compared with controls (left: 21.09 ± 2.31 vs. 26.16 ± 3.83 mm3 , P < 0.001; right: 21.05 ± 2.36 vs. 26.12 ± 3.78 mm3 , P < 0.001), whereas the other subfields did not show a similar change (all P > 0.05). The volume of CA3, dentate gyrus (DG), and subiculum displayed atrophy after CUMS-4W (CA3: left:12.23 ± 1.10 mm3 , right: 12.20 ± 1.14 mm3 ; DG: left:8.16 ± 0.58 mm3 , right: 8.18 ± 0.92 mm3 ; subiculum: left: 4.30 ± 0.52 mm3 , right: 4.29 ± 0.44 mm3 ; all P < 0.05). The rats' (CUMS-4W) hippocampal DG volume was restored (left: 10.67 ± 1.60 mm3 , right: 10.71 ± 1.58 mm3 ), and the depression-like behaviors of these rats improved after WRT-4W (P < 0.05). CONCLUSION In general, volume loss was demonstrated in various rat hippocampal subfields during the development and recovery from depression, which were detected by ultrahigh-field MRI. LEVEL OF EVIDENCE 3 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2017;46:1456-1463.
Collapse
Affiliation(s)
- Yuefeng Li
- Department of Radiology, Affiliated Hospital of Jiangsu University, Zhenjiang, P.R. China
- Department of Radiology, Zhongda Affiliated Hospital of Southeast University, Nanjing, P.R. China
| | - Xiaolan Zhu
- Department of Obstetrics and Gynecology, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, P.R. China
| | - Shenghong Ju
- Department of Radiology, Zhongda Affiliated Hospital of Southeast University, Nanjing, P.R. China
| | - Jinchuan Yan
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, P.R. China
| | - Dongqing Wang
- Department of Radiology, Affiliated Hospital of Jiangsu University, Zhenjiang, P.R. China
| | - Yan Zhu
- Department of Radiology, Affiliated Hospital of Jiangsu University, Zhenjiang, P.R. China
| | - Fengchao Zang
- Department of Radiology, Zhongda Affiliated Hospital of Southeast University, Nanjing, P.R. China
| |
Collapse
|
5
|
Hartings JA, Shuttleworth CW, Kirov SA, Ayata C, Hinzman JM, Foreman B, Andrew RD, Boutelle MG, Brennan KC, Carlson AP, Dahlem MA, Drenckhahn C, Dohmen C, Fabricius M, Farkas E, Feuerstein D, Graf R, Helbok R, Lauritzen M, Major S, Oliveira-Ferreira AI, Richter F, Rosenthal ES, Sakowitz OW, Sánchez-Porras R, Santos E, Schöll M, Strong AJ, Urbach A, Westover MB, Winkler MK, Witte OW, Woitzik J, Dreier JP. The continuum of spreading depolarizations in acute cortical lesion development: Examining Leão's legacy. J Cereb Blood Flow Metab 2017; 37:1571-1594. [PMID: 27328690 PMCID: PMC5435288 DOI: 10.1177/0271678x16654495] [Citation(s) in RCA: 291] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A modern understanding of how cerebral cortical lesions develop after acute brain injury is based on Aristides Leão's historic discoveries of spreading depression and asphyxial/anoxic depolarization. Treated as separate entities for decades, we now appreciate that these events define a continuum of spreading mass depolarizations, a concept that is central to understanding their pathologic effects. Within minutes of acute severe ischemia, the onset of persistent depolarization triggers the breakdown of ion homeostasis and development of cytotoxic edema. These persistent changes are diagnosed as diffusion restriction in magnetic resonance imaging and define the ischemic core. In delayed lesion growth, transient spreading depolarizations arise spontaneously in the ischemic penumbra and induce further persistent depolarization and excitotoxic damage, progressively expanding the ischemic core. The causal role of these waves in lesion development has been proven by real-time monitoring of electrophysiology, blood flow, and cytotoxic edema. The spreading depolarization continuum further applies to other models of acute cortical lesions, suggesting that it is a universal principle of cortical lesion development. These pathophysiologic concepts establish a working hypothesis for translation to human disease, where complex patterns of depolarizations are observed in acute brain injury and appear to mediate and signal ongoing secondary damage.
Collapse
Affiliation(s)
- Jed A Hartings
- 1 Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA.,2 Mayfield Clinic, Cincinnati, OH, USA
| | - C William Shuttleworth
- 3 Department of Neuroscience, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Sergei A Kirov
- 4 Department of Neurosurgery and Brain and Behavior Discovery Institute, Medical College of Georgia, Augusta, GA, USA
| | - Cenk Ayata
- 5 Neurovascular Research Unit, Department of Radiology, and Stroke Service and Neuroscience Intensive Care Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jason M Hinzman
- 1 Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Brandon Foreman
- 6 Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - R David Andrew
- 7 Department of Biomedical & Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Martyn G Boutelle
- 8 Department of Bioengineering, Imperial College London, London, United Kingdom
| | - K C Brennan
- 9 Department of Neurology, University of Utah, Salt Lake City, UT, USA.,10 Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT, USA
| | - Andrew P Carlson
- 11 Department of Neurosurgery, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Markus A Dahlem
- 12 Department of Physics, Humboldt University of Berlin, Berlin, Germany
| | | | - Christian Dohmen
- 14 Department of Neurology, University of Cologne, Cologne, Germany
| | - Martin Fabricius
- 15 Department of Clinical Neurophysiology, Rigshospitalet, Glostrup, Denmark
| | - Eszter Farkas
- 16 Department of Medical Physics and Informatics, Faculty of Medicine, and Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Delphine Feuerstein
- 17 Multimodal Imaging of Brain Metabolism, Max-Planck-Institute for Metabolism Research, Cologne, Germany
| | - Rudolf Graf
- 17 Multimodal Imaging of Brain Metabolism, Max-Planck-Institute for Metabolism Research, Cologne, Germany
| | - Raimund Helbok
- 18 Medical University of Innsbruck, Department of Neurology, Neurocritical Care Unit, Innsbruck, Austria
| | - Martin Lauritzen
- 15 Department of Clinical Neurophysiology, Rigshospitalet, Glostrup, Denmark.,19 Department of Neuroscience and Pharmacology and Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| | - Sebastian Major
- 13 Department of Neurology, Charité University Medicine, Berlin, Germany.,20 Center for Stroke Research Berlin, Charité University Medicine, Berlin, Germany.,21 Department of Experimental Neurology, Charité University Medicine, Berlin, Germany
| | - Ana I Oliveira-Ferreira
- 20 Center for Stroke Research Berlin, Charité University Medicine, Berlin, Germany.,21 Department of Experimental Neurology, Charité University Medicine, Berlin, Germany
| | - Frank Richter
- 22 Institute of Physiology/Neurophysiology, Jena University Hospital, Jena, Germany
| | - Eric S Rosenthal
- 5 Neurovascular Research Unit, Department of Radiology, and Stroke Service and Neuroscience Intensive Care Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Oliver W Sakowitz
- 23 Department of Neurosurgery, Klinikum Ludwigsburg, Ludwigsburg, Germany.,24 Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Renán Sánchez-Porras
- 24 Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Edgar Santos
- 24 Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Michael Schöll
- 24 Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Anthony J Strong
- 25 Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London
| | - Anja Urbach
- 26 Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - M Brandon Westover
- 5 Neurovascular Research Unit, Department of Radiology, and Stroke Service and Neuroscience Intensive Care Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Maren Kl Winkler
- 20 Center for Stroke Research Berlin, Charité University Medicine, Berlin, Germany
| | - Otto W Witte
- 26 Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany.,27 Brain Imaging Center, Jena University Hospital, Jena, Germany
| | - Johannes Woitzik
- 20 Center for Stroke Research Berlin, Charité University Medicine, Berlin, Germany.,28 Department of Neurosurgery, Charité University Medicine, Berlin, Germany
| | - Jens P Dreier
- 13 Department of Neurology, Charité University Medicine, Berlin, Germany.,20 Center for Stroke Research Berlin, Charité University Medicine, Berlin, Germany.,21 Department of Experimental Neurology, Charité University Medicine, Berlin, Germany
| |
Collapse
|
6
|
Abstract
Brain injury during development can have severe, long-term consequences. Using an array of animal models, we have an understanding of the etiology of perinatal brain injury. However, we have only recently begun to address the consequences of endogenous factors such as genetic sex and developmental steroid hormone milieu. Our limited understanding has sometimes led researchers to make over-generalizing and potentially dangerous statements regarding treatment for brain injury. Therefore this review acts as a cautionary tale, speaking to our need to understand the effects of sex and steroid hormone environment on the response to brain trauma in the neonate.
Collapse
Affiliation(s)
- Joseph Nuñez
- Neuroscience Program, Michigan State University, 108 Giltner Hall, East Lansing, MI 48824, USA.
| |
Collapse
|
7
|
Chao D, Xia Y. Ionic storm in hypoxic/ischemic stress: can opioid receptors subside it? Prog Neurobiol 2009; 90:439-70. [PMID: 20036308 DOI: 10.1016/j.pneurobio.2009.12.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2009] [Revised: 09/10/2009] [Accepted: 12/17/2009] [Indexed: 12/17/2022]
Abstract
Neurons in the mammalian central nervous system are extremely vulnerable to oxygen deprivation and blood supply insufficiency. Indeed, hypoxic/ischemic stress triggers multiple pathophysiological changes in the brain, forming the basis of hypoxic/ischemic encephalopathy. One of the initial and crucial events induced by hypoxia/ischemia is the disruption of ionic homeostasis characterized by enhanced K(+) efflux and Na(+)-, Ca(2+)- and Cl(-)-influx, which causes neuronal injury or even death. Recent data from our laboratory and those of others have shown that activation of opioid receptors, particularly delta-opioid receptors (DOR), is neuroprotective against hypoxic/ischemic insult. This protective mechanism may be one of the key factors that determine neuronal survival under hypoxic/ischemic condition. An important aspect of the DOR-mediated neuroprotection is its action against hypoxic/ischemic disruption of ionic homeostasis. Specially, DOR signal inhibits Na(+) influx through the membrane and reduces the increase in intracellular Ca(2+), thus decreasing the excessive leakage of intracellular K(+). Such protection is dependent on a PKC-dependent and PKA-independent signaling pathway. Furthermore, our novel exploration shows that DOR attenuates hypoxic/ischemic disruption of ionic homeostasis through the inhibitory regulation of Na(+) channels. In this review, we will first update current information regarding the process and features of hypoxic/ischemic disruption of ionic homeostasis and then discuss the opioid-mediated regulation of ionic homeostasis, especially in hypoxic/ischemic condition, and the underlying mechanisms.
Collapse
Affiliation(s)
- Dongman Chao
- Yale University School of Medicine, Department of Pediatrics, New Haven, CT 06520, USA
| | | |
Collapse
|
8
|
Kang X, Chao D, Gu Q, Ding G, Wang Y, Balboni G, Lazarus LH, Xia Y. delta-Opioid receptors protect from anoxic disruption of Na+ homeostasis via Na+ channel regulation. Cell Mol Life Sci 2009; 66:3505-16. [PMID: 19756387 PMCID: PMC3061309 DOI: 10.1007/s00018-009-0136-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Revised: 08/03/2009] [Accepted: 08/18/2009] [Indexed: 12/30/2022]
Abstract
Hypoxic/ischemic disruption of ionic homeostasis is a critical trigger of neuronal injury/death in the brain. There is, however, no promising strategy against such pathophysiologic change to protect the brain from hypoxic/ischemic injury. Here, we present a novel finding that activation of delta-opioid receptors (DOR) reduced anoxic Na+ influx in the mouse cortex, which was completely blocked by DOR antagonism with naltrindole. Furthermore, we co-expressed DOR and Na+ channels in Xenopus oocytes and showed that DOR expression and activation indeed play an inhibitory role in Na+ channel regulation by decreasing the amplitude of sodium currents and increasing activation threshold of Na+ channels. Our results suggest that DOR protects from anoxic disruption of Na+ homeostasis via Na+ channel regulation. These data may potentially have significant impacts on understanding the intrinsic mechanism of neuronal responses to stress and provide clues for better solutions of hypoxic/ischemic encephalopathy, and for the exploration of acupuncture mechanism since acupuncture activates opioid system.
Collapse
Affiliation(s)
- Xuezhi Kang
- Shanghai Research Center for Acupuncture and Meridians, Shanghai, China
| | - Dongman Chao
- Yale University School of Medicine, 333 Cedar Street, LMP 3107, New Haven, CT 06520 USA
| | - Quanbao Gu
- Shanghai Research Center for Acupuncture and Meridians, Shanghai, China
| | - Guanghong Ding
- Shanghai Research Center for Acupuncture and Meridians, Shanghai, China
| | - Yingwei Wang
- Shanghai Jiaotong University College of Medicine, Shanghai, China
| | | | - Lawrence H. Lazarus
- National Institute of Environmental Health Sciences, Research Triangle Park, USA
| | - Ying Xia
- Yale University School of Medicine, 333 Cedar Street, LMP 3107, New Haven, CT 06520 USA
| |
Collapse
|
9
|
Schock SC, Leblanc D, Hakim AM, Thompson CS. ATP release by way of connexin 36 hemichannels mediates ischemic tolerance in vitro. Biochem Biophys Res Commun 2008; 368:138-44. [PMID: 18211823 DOI: 10.1016/j.bbrc.2008.01.054] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Accepted: 01/15/2008] [Indexed: 11/28/2022]
Abstract
Spreading depression (SD) is a self-propagating wave of neuronal and glial depolarization that may occur in virtually any gray matter region in the brain. One consequence of SD is an increased tolerance to ischemia. It has been shown that during cortical SD ATP is released into the extracellular space and activation of purinergic receptors leads to the induction of ischemic tolerance. In the present study we show that depolarization of cultured neurons induces ischemic tolerance which is mediated by purinergic receptor activation. Depolarization causes the release of ATP into the extracellular medium, which may be prevented by treatment with the connexin hemichannel blockers flufenamic acid and quinine, but not the pannexin hemichannel blocker carbenoxolone. Knockdown of connexin 36 expression by siRNA greatly reduces the amount of ATP released during depolarization and the subsequent degree of ischemic tolerance. We conclude that during depolarization neurons release ATP by way of connexin 36 hemichannels.
Collapse
Affiliation(s)
- Sarah C Schock
- Department of Cellular and Molecular Medicine, University of Ottawa, Ont., Canada
| | | | | | | |
Collapse
|
10
|
Henninger N, Heimann A, Kempski O. Electrophysiology and neuronal integrity following systemic arterial hypotension in a rat model of unilateral carotid artery occlusion. Brain Res 2007; 1163:119-29. [PMID: 17632088 DOI: 10.1016/j.brainres.2007.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2007] [Revised: 05/31/2007] [Accepted: 06/01/2007] [Indexed: 10/23/2022]
Abstract
Patients with carotid artery stenosis may be particularly susceptible to hypotension-associated cerebral ischemia and subsequent neurological sequelae. Measuring somatosensory evoked potentials (SEP), electroencephalogram (EEG), direct current (DC) potential, and histology, we compared the temporal evolution of cortical functional perturbations as well as neuronal integrity in a model of unilateral carotid artery occlusion and systemic hypobaric hypotension (HH) at the lower limit of cerebral blood flow autoregulation (50 mm Hg). Serial measurements of EEG power spectra as well as SEP-amplitudes and latencies of N10.3 were performed before, during, and up to 60 min after 30 min-HH (n=7) or the control condition (n=7) in male Wistar rats. In two additional groups (with [n=7] or without [n=7] HH), cortical spreading depressions (CSD) were elicited to ascertain their contribution to brain injury. Hematoxilin-Eosin (H&E) staining was used to assess neuronal cell death at 5 days after surgery. Relative to baseline, HH attenuated ipsilateral EEG power spectrum (by maximally 62%), increased SEP-latencies (by approximately 6-10%) and amplitudes (by approximately 57-70%), and induced selective neuronal cell death in the cerebral cortex and hippocampus (P<0.05 vs. contralateral). Spontaneous CSD occurred in approximately 30% of HH-animals. Repolarization of the DC-potential during HH was significantly prolonged relative to normotensive conditions (10.3+/-11.5 min, P<0.001). Our model may help to understand underlying pathophysiology and improve outcome in a clinical subset of patients with carotid artery stenosis and transient systemic hypotension.
Collapse
Affiliation(s)
- Nils Henninger
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| | | | | |
Collapse
|
11
|
Hester I, McKee S, Pelletier P, Thompson C, Storbeck C, Mears A, Schulz JB, Hakim AA, Sabourin LA. Transient expression of Nxf, a bHLH-PAS transactivator induced by neuronal preconditioning, confers neuroprotection in cultured cells. Brain Res 2007; 1135:1-11. [PMID: 17214977 DOI: 10.1016/j.brainres.2006.11.083] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2006] [Revised: 11/09/2006] [Accepted: 11/28/2006] [Indexed: 11/30/2022]
Abstract
Cortical spreading depression (CSD) induces waves of neuronal depolarization that confer neuroprotection to subsequent ischemic events in the rat brain. To gain insights into the molecular mechanisms elicited by CSD, we used representational difference analysis (RDA) to identify mRNAs induced by potassium depolarization in vivo. Using this approach, we have isolated a cDNA encoding the SIM2-related bHLH-PAS protein Nxf. Our results confirm that Nxf mRNA and protein are rapidly and transiently expressed in cortical neurons following CSD. Reporter assays show that Nxf is a transcriptional activator that associates with the bHLH-PAS sub-class co-factor ARNT2. Adenovirus-mediated expression of epitope-tagged Nxf results in cell death and the direct activation of the Bax gene in cultured cells. However, RNA interference studies show that endogenous Nxf is required for optimal neuroprotection by preconditioning in cultured F-11 cells. Together, our data indicate that Nxf is a novel bHLH-PAS transactivator transiently induced by preconditioning and that its sustained expression is detrimental. The identification of Nxf may represent an important step in our understanding of the molecular mechanisms of brain preconditioning and injury.
Collapse
Affiliation(s)
- Ian Hester
- University of Ottawa, Department of Cellular and Molecular Medicine, Ottawa, ON, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Sarabi A, Chang CF, Wang Y, Tomac AC, Hoffer BJ, Morales M. Differential expression of the cell line-derived neurotrophic factor (GDNF) receptor GFRalpha1 in heterozygous Gfralpha1 null-mutant mice after stroke. Neurosci Lett 2003; 341:241-5. [PMID: 12697293 DOI: 10.1016/s0304-3940(03)00195-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Exogenous administration of glial cell line-derived neurotrophic factor (GDNF) reduces ischemia-induced cerebral infarction. Cerebral ischemia induces gene expression of GDNF, GDNF-receptor alpha-1 (GFRalpha-1) and c-Ret, suggesting that a GDNF signaling cascade mechanism may be involved in endogenous neuroprotection during ischemia. In the present study, we examined if this endogenous neuroprotective pathway was altered in Gfralpha-1 deficient mice. Since mice homozygous for the Gfralpha-1 deletion (-/-) die within 24 h of birth, stroke-induced changes in the levels of Gfralpha-1 mRNA were studied in Gfralpha-1 heterozygous (+/-) mice and their wild-type (+/+) littermates. The right middle cerebral artery was transiently ligated for 45 min in anesthetized mice. Animals were killed at 0, 6, 12 and 24 h after the onset of reperfusion and levels of Gfralpha-1 mRNA were measured by in situ hybridization histochemistry. Previously, we showed that Gfralpha-1 (+/-) mice are more vulnerable to focal cerebral ischemia. In the present study, we found that basal levels of GFRalpha-1 mRNA were at similar low levels in cortex and striatum in adult Gfralpha-1 (+/+) and Gfralpha-1 (+/-) mice and that ischemia/reperfusion induced up-regulation of Gfralpha-1 mRNA in the lesioned and contralateral sides of cortex and striatum in both Gfralpha-1 (+/+) and GFRalpha-1 (+/-) mice. However, the ischemia/reperfusion induction of Gfralpha-1 mRNA was significantly higher in the cortex of wild type mice, as compared to Gfralpha-1 (+/-) mice. Moreover, the increased expression of Gfralpha-1 in striatum after reperfusion occurred earlier in the GFRalpha-1 (+/+) than in the Gfralpha-1 (+/-) mice. These results indicate that after ischemia, there is a differential up-regulation of Gfralpha-1 expression in Gfralpha-1 (+/+) and Gfralpha-1 (+/-) mice. Since GDNF has neuroprotective effects, the reduced up-regulation of Gfralpha-1 in Gfralpha-1 (+/-) mice at early time points after ischemia suggests that the responsiveness to GDNF and GDNF receptor mediated neuroprotection is attenuated in these genetically modified animals and may underlie their greater vulnerability.
Collapse
Affiliation(s)
- A Sarabi
- National Institute on Drug Abuse, IRP Department, Cellular Neurophysiology Section, NIH, 5500 Nathan Shock Drive, Baltimore, MD 21224, USA
| | | | | | | | | | | |
Collapse
|
13
|
Abstract
Spreading depression (SD) and the related hypoxic SD-like depolarization (HSD) are characterized by rapid and nearly complete depolarization of a sizable population of brain cells with massive redistribution of ions between intracellular and extracellular compartments, that evolves as a regenerative, "all-or-none" type process, and propagates slowly as a wave in brain tissue. This article reviews the characteristics of SD and HSD and the main hypotheses that have been proposed to explain them. Both SD and HSD are composites of concurrent processes. Antagonists of N-methyl-D-aspartate (NMDA) channels or voltage-gated Na(+) or certain types of Ca(2+) channels can postpone or mitigate SD or HSD, but it takes a combination of drugs blocking all known major inward currents to effectively prevent HSD. Recent computer simulation confirmed that SD can be produced by positive feedback achieved by increase of extracellular K(+) concentration that activates persistent inward currents which then activate K(+) channels and release more K(+). Any slowly inactivating voltage and/or K(+)-dependent inward current could generate SD-like depolarization, but ordinarily, it is brought about by the cooperative action of the persistent Na(+) current I(Na,P) plus NMDA receptor-controlled current. SD is ignited when the sum of persistent inward currents exceeds persistent outward currents so that total membrane current turns inward. The degree of depolarization is not determined by the number of channels available, but by the feedback that governs the SD process. Short bouts of SD and HSD are well tolerated, but prolonged depolarization results in lasting loss of neuron function. Irreversible damage can, however, be avoided if Ca(2+) influx into neurons is prevented.
Collapse
Affiliation(s)
- G G Somjen
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA.
| |
Collapse
|