1
|
Kalachev AV, Tankovich AE. The dopamine effect on sea urchin larvae depends on their age. Dev Growth Differ 2023; 65:120-131. [PMID: 36645274 DOI: 10.1111/dgd.12839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/18/2022] [Accepted: 01/10/2023] [Indexed: 01/17/2023]
Abstract
Activation of the dopamine type-D2 receptor in late gastrula of sea urchins is known to decrease the growth rate of post-oral arms of larvae, and, as a result, the phenotype of these larvae mimics that of larvae developing in the abundance of food. Our data indicate that the effect of dopamine on sea urchin larvae is stage-dependent. In our experiment, the early four-armed plutei (96 hours post fertilization, hpf) of Strongylocentrotus intermedius had substantially shorter post-oral arms if they developed from the larvae treated with dopamine at the early pluteus stage (48 hpf), when they had already formed the first dopaminergic neurons, as compared to the plutei from the larvae treated with dopamine at the mid to late gastrula stage (24 hpf), when they did not have any neurons yet. The pre-treatment of larvae in 6-hydroxydopamine, a neurotoxic analog of dopamine that specifically disrupts activity of dopaminergic neurons, prevented the development of the short post-oral arms phenotype in larvae. These results confirm the assumption that dopaminergic neurons play an important role in the development of the short post-oral arms phenotype in sea urchin larvae. Another finding of our study is that the dopamine treatment also affects the growth of the body rods and the overall larval body growth. Based on these observations, we suggest researchers to carefully select the developmental stage, pharmacological agents, and incubation time for experimental manipulation of sea urchin larvae phenotypes through dopaminergic nervous system.
Collapse
Affiliation(s)
- Alexander V Kalachev
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| | - Alina E Tankovich
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| |
Collapse
|
2
|
Kalachev AV. Effect of dopamine on early larvae of sea urchins, Mesocentrotus nudus and Strongylocentrotus intermedius. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2020; 334:373-380. [PMID: 32902119 DOI: 10.1002/jez.b.23001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 08/10/2020] [Accepted: 08/22/2020] [Indexed: 11/07/2022]
Abstract
Larvae of many echinoids are known to be phenotypically plastic and capable of changing the growth rate of their post-oral arms depending on the microalgae concentration in their habitat. As literature data show, developing larvae use chemosensation to detect algae in the environment and "adjust" the rate of growth of their post-oral arms through dopamine signaling. According to our results, dopamine has a significant effect on the post-oral arm growth in early larvae of two sea urchin species, Mesocentrotus nudus and Strongylocentrotus intermedius. The dopamine effect depends on concentration: the higher the dopamine concentration in the water, the shorter the post-oral arms. We suggest that the pattern of response to variation in dopamine concentration, manifested by early larvae of both species, is similar to that observed at different concentrations of microalgae.
Collapse
Affiliation(s)
- Alexander V Kalachev
- A. V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| |
Collapse
|
3
|
Dufour S, Quérat B, Tostivint H, Pasqualini C, Vaudry H, Rousseau K. Origin and Evolution of the Neuroendocrine Control of Reproduction in Vertebrates, With Special Focus on Genome and Gene Duplications. Physiol Rev 2019; 100:869-943. [PMID: 31625459 DOI: 10.1152/physrev.00009.2019] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In humans, as in the other mammals, the neuroendocrine control of reproduction is ensured by the brain-pituitary gonadotropic axis. Multiple internal and environmental cues are integrated via brain neuronal networks, ultimately leading to the modulation of the activity of gonadotropin-releasing hormone (GnRH) neurons. The decapeptide GnRH is released into the hypothalamic-hypophysial portal blood system and stimulates the production of pituitary glycoprotein hormones, the two gonadotropins luteinizing hormone and follicle-stimulating hormone. A novel actor, the neuropeptide kisspeptin, acting upstream of GnRH, has attracted increasing attention in recent years. Other neuropeptides, such as gonadotropin-inhibiting hormone/RF-amide related peptide, and other members of the RF-amide peptide superfamily, as well as various nonpeptidic neuromediators such as dopamine and serotonin also provide a large panel of stimulatory or inhibitory regulators. This paper addresses the origin and evolution of the vertebrate gonadotropic axis. Brain-pituitary neuroendocrine axes are typical of vertebrates, the pituitary gland, mediator and amplifier of brain control on peripheral organs, being a vertebrate innovation. The paper reviews, from molecular and functional perspectives, the evolution across vertebrate radiation of some key actors of the vertebrate neuroendocrine control of reproduction and traces back their origin along the vertebrate lineage and in other metazoa before the emergence of vertebrates. A focus is given on how gene duplications, resulting from either local events or from whole genome duplication events, and followed by paralogous gene loss or conservation, might have shaped the evolutionary scenarios of current families of key actors of the gonadotropic axis.
Collapse
Affiliation(s)
- Sylvie Dufour
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| | - Bruno Quérat
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| | - Hervé Tostivint
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| | - Catherine Pasqualini
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| | - Hubert Vaudry
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| | - Karine Rousseau
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| |
Collapse
|
4
|
Agafonova IG, Moskovkina TV. Low-dose action of tryptanthrin and its derivatives against developing embryos of the sea urchin Strongylocentrotus intermedius. ENVIRONMENTAL MONITORING AND ASSESSMENT 2018; 190:502. [PMID: 30088156 DOI: 10.1007/s10661-018-6808-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 06/17/2018] [Indexed: 06/08/2023]
Abstract
Nine tryptanthrin derivatives, including tryptanthrin itself, were synthesized using different methods, including oxidation of the corresponding isatins to obtain 1-4, the reaction of tryptanthrin 1 with hydrazine and its derivatives to obtain 5-7, and aldol condensation of 1 with acetone and methylethylketone to obtain 8 and 9. The action of 1-9 in doses corresponding to the IC50 against developing embryos of the sea urchin Strongylocentrotus intermedius and in the sperm test allowed us to estimate to potency of all the compounds and to determine which were cytotoxic. In addition, these studies showed that compounds 3, 4, 8, and 9 had a stimulatory effect at lower doses. In particular, the tryptanthrin derivatives stimulated the larval stages of development in surviving embryos at concentrations lower than the IC50.
Collapse
Affiliation(s)
- Irina G Agafonova
- G. B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Pr. 100-letya Vladivostoku 159, Vladivostok, Russian Federation, 690022.
| | - Taisiya V Moskovkina
- Far Eastern Federal University, Sukhanova St. 8, Vladivostok, Russian Federation, 690091
| |
Collapse
|
5
|
Chaiyamoon A, Tinikul R, Chaichotranunt S, Poomthong T, Suphamungmee W, Sobhon P, Tinikul Y. Distribution and dynamic expression of serotonin and dopamine in the nervous system and ovary of Holothuria scabra during ovarian maturation. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2018; 204:391-407. [PMID: 29344679 DOI: 10.1007/s00359-018-1247-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 01/11/2018] [Accepted: 01/11/2018] [Indexed: 12/16/2022]
Abstract
In the present study, the distribution and dynamic expression of serotonin and dopamine in the nervous system and ovary of the sea cucumber, Holothuria scabra, during different ovarian stages were investigated. We found that serotonin-immunoreactivity was more intense in the neurons and neuropils of the outer ectoneural part, the inner hyponeural part, and the wall of hyponeural canal of radial nerve cord during the mature stages of ovarian cycle, whereas dopamine-immunoreactivity was detected at a higher intensity in these tissues during the early stages. Both neurotransmitters were detected in the ectoneural part of the nerve ring. In the ovary, serotonin intensity was more intense in the cytoplasm of late oocytes, while dopamine-immunoreactivity was more intense in the early stages. The changes in the levels serotonin in the radial nerve cord and oocytes are incremental towards the late stages of ovarian maturation. In contrast, dopamine levels in the nervous tissues and oocytes were more intense in early stages and became decremental towards the late stages. These findings suggest that serotonin and dopamine may have opposing effects on ovarian development in this sea cucumber species.
Collapse
Affiliation(s)
- Arada Chaiyamoon
- Department of Anatomy, Faculty of Science, Mahidol University, Rama VI Road, Ratchathewi District, Bangkok, 10400, Thailand
| | - Ruchanok Tinikul
- Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok, 10400, Thailand
| | - Supakant Chaichotranunt
- Coastal Fisheries Research and Development Center, Klongwan, Prachuabkirikhan, 77000, Thailand
| | - Tanes Poomthong
- Coastal Fisheries Research and Development Center, Klongwan, Prachuabkirikhan, 77000, Thailand
| | - Worawit Suphamungmee
- Department of Anatomy, Faculty of Science, Mahidol University, Rama VI Road, Ratchathewi District, Bangkok, 10400, Thailand
| | - Prasert Sobhon
- Department of Anatomy, Faculty of Science, Mahidol University, Rama VI Road, Ratchathewi District, Bangkok, 10400, Thailand
- Faculty of Allied Health Sciences, Burapha University, Long-Hard Bangsaen Rd, Mueang District, Chonburi, 20131, Thailand
| | - Yotsawan Tinikul
- Department of Anatomy, Faculty of Science, Mahidol University, Rama VI Road, Ratchathewi District, Bangkok, 10400, Thailand.
- Mahidol University, Nakhonsawan Campus, Nakhonsawan, 60130, Thailand.
| |
Collapse
|
6
|
Szeitz A, Bandiera SM. Analysis and measurement of serotonin. Biomed Chromatogr 2017; 32. [DOI: 10.1002/bmc.4135] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 10/27/2017] [Accepted: 11/03/2017] [Indexed: 12/26/2022]
Affiliation(s)
- András Szeitz
- Faculty of Pharmaceutical Sciences; The University of British Columbia; Vancouver British Columbia Canada
| | - Stelvio M. Bandiera
- Faculty of Pharmaceutical Sciences; The University of British Columbia; Vancouver British Columbia Canada
| |
Collapse
|
7
|
Melnikova VI, Lifantseva NV, Voronova SN, Zakharova LA. Long-lasting effects of the prenatal blockade of gonadotropin-releasing hormone receptor in the rat thymus. DOKL BIOCHEM BIOPHYS 2015; 462:193-5. [PMID: 26163218 DOI: 10.1134/s160767291503014x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Indexed: 11/23/2022]
Affiliation(s)
- V I Melnikova
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, ul. Vavilova 26, Moscow, 119334, Russia,
| | | | | | | |
Collapse
|
8
|
Tracking the Origin and Divergence of Cholinesterases and Neuroligins: The Evolution of Synaptic Proteins. J Mol Neurosci 2014; 53:362-9. [DOI: 10.1007/s12031-013-0194-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 11/26/2013] [Indexed: 11/26/2022]
|
9
|
Mel’nikova VI, Isvol’skaya MS, Voronova SN, Zakharova LA. The role of serotonin in the immune system development and functioning during ontogenesis. BIOL BULL+ 2012. [DOI: 10.1134/s1062359012030107] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
10
|
The Cerebral Palsy Demonstration Project: a multidimensional research approach to cerebral palsy. Semin Pediatr Neurol 2011; 18:31-9. [PMID: 21575839 DOI: 10.1016/j.spen.2011.02.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cerebral palsy is the most common cause of physical impairment in pediatrics. As a heterogeneous disorder in all its disparate aspects it defies a simplistic research approach that seeks to further our understanding of its mechanisms, outcomes and treatments. Within NeuroDevNet, with its focus on abnormal brain development, cerebral palsy was selected as one of the three neurodevelopmental disabilities to be the focus of a dedicated demonstration project. The Cerebral Palsy Demonstration Project will feature a multi-dimensional approach utilizing epidemiologic, imaging, genetics, animal models and stem cell modalities that will at all times emphasize clinical relevance, translation into practice, and potential synergies between investigators now segregated by both academic disciplines and geographic distance. The objective is to create a national platform of varied complementary and inter-digitated efforts. The specific research plan to enable this will be outlined in detail.
Collapse
|
11
|
|
12
|
Squires LN, Rubakhin SS, Wadhams AA, Talbot KN, Nakano H, Moroz LL, Sweedler JV. Serotonin and its metabolism in basal deuterostomes: insights from Strongylocentrotus purpuratus and Xenoturbella bocki. ACTA ACUST UNITED AC 2010; 213:2647-54. [PMID: 20639426 DOI: 10.1242/jeb.042374] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Serotonin (5-HT), an important molecule in metazoans, is involved in a range of biological processes including neurotransmission and neuromodulation. Both its creation and release are tightly regulated, as is its removal. Multiple neurochemical pathways are responsible for the catabolism of 5-HT and are phyla specific; therefore, by elucidating these catabolic pathways we glean greater understanding of the relationships and origins of various transmitter systems. Here, 5-HT catabolic pathways were studied in Strongylocentrotus purpuratus and Xenoturbella bocki, two organisms occupying distinct positions in deuterostomes. The 5-HT-related compounds detected in these organisms were compared with those reported in other phyla. In S. purpuratus, 5-HT-related metabolites include N-acetyl serotonin, gamma-glutamyl-serotonin and 5-hydroxyindole acetic acid; the quantity and type were found to vary based on the specific tissues analyzed. In addition to these compounds, varying levels of tryptamine were also seen. Upon addition of a 5-HT precursor and a monoamine oxidase inhibitor, 5-HT itself was detected. In similar experiments using X. bocki tissues, the 5-HT-related compounds found included 5-HT sulfate, gamma-glutamyl-serotonin and 5-hydroxyindole acetic acid, as well as 5-HT and tryptamine. The sea urchin metabolizes 5-HT in a manner similar to both gastropod mollusks, as evidenced by the detection of gamma-glutamyl-serotonin, and vertebrates, as indicated by the presence of 5-hydroxyindole acetic acid and N-acetyl serotonin. In contrast, 5-HT metabolism in X. bocki appears more similar to common protostome 5-HT catabolic pathways.
Collapse
Affiliation(s)
- Leah N Squires
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Afanas'eva MA, Izvol'skaya MS, Voronova SN, Zakharova LA, Melnikova VI. Effect of serotonin deficiency on the immune system development in the rat. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2009; 427:319-321. [PMID: 19760871 DOI: 10.1134/s0012496609040048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Affiliation(s)
- M A Afanas'eva
- Kol'tsov Institute of Developmental Biology, Russian Academy of Sciences, ul. Vavilova 26, Moscow, 119991 Russia
| | | | | | | | | |
Collapse
|
14
|
Kreke N, Dietrich DR. Physiological endpoints for potential SSRI interactions in fish. Crit Rev Toxicol 2008; 38:215-47. [PMID: 18324517 DOI: 10.1080/10408440801891057] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Selective serotonin reuptake inhibitors (SSRIs) are among the pharmaceutical compounds frequently detected in sewage treatment plant effluents and surface waters, albeit at very low concentrations, and have therefore become a focus of interest as environmental pollutants. These neuroactive drugs are primarily used in the treatment of depression but have also found broader use as medication for other neurological dysfunctions, consequently resulting in a steady increase of prescriptions worldwide. SSRIs, via inhibition of the serotonin (5-hydroxytryptamine, 5-HT) reuptake mechanism, induce an increase in extracellular 5-HT concentration within the central nervous system of mammals. The phylogenetically ancient and highly conserved neurotransmitter and neurohormone 5-HT has been found in invertebrates and vertebrates, although its specific physiological role and mode of action is unknown for many species. Consequently, it is difficult to assess the impact of chronic SSRI exposure in the environment, especially in the aquatic ecosystem. In view of this, the current knowledge of the functions of 5-HT in fish physiology is reviewed and, via comparison to the physiological role and function of 5-HT in mammals, a characterization of the potential impact of chronic SSRI exposure on fish is provided. Moreover, the insight on the physiological function of 5-HT strongly suggests that the experimental approaches currently used are inadequate if not entirely improper for routine environmental risk assessment of pharmaceuticals (e.g., SSRIs), as relevant endpoints are not assessed or impossible to determine.
Collapse
Affiliation(s)
- N Kreke
- Environmental Toxicology, Department of Biology, University of Konstanz, Konstanz, Germany
| | | |
Collapse
|
15
|
Dubé F, Amireault P. Local serotonergic signaling in mammalian follicles, oocytes and early embryos. Life Sci 2007; 81:1627-37. [DOI: 10.1016/j.lfs.2007.09.034] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2007] [Accepted: 09/28/2007] [Indexed: 11/24/2022]
|
16
|
Tyler MJ, Cameron DA. Cellular pattern formation during retinal regeneration: a role for homotypic control of cell fate acquisition. Vision Res 2006; 47:501-11. [PMID: 17034830 DOI: 10.1016/j.visres.2006.08.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2006] [Revised: 08/23/2006] [Accepted: 08/24/2006] [Indexed: 11/20/2022]
Abstract
A dominant mechanism of cellular patterning in the growing fish retina is control of cell fate acquisition by negative feedback signals arising from differentiated cells. We tested the ability of a computational model of this pattern formation mechanism to simulate cellular patterns in regenerated goldfish retina. The model successfully simulated quantitative features of in vivo regenerated patterns, indicating that regenerating retina has access to and utilizes patterning mechanisms that are operational during normal growth. The atypical patterns of regenerated retina could arise in part from regenerative progenitors that, compared to normal growth progenitors, are less responsive to the feedback patterning signals.
Collapse
Affiliation(s)
- Melinda J Tyler
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY 13210, USA
| | | |
Collapse
|
17
|
Zakataeva NP, Kutukova EA, Gronskiy SV, Troshin PV, Livshits VA, Aleshin VV. Export of metabolites by the proteins of the DMT and RhtB families and its possible role in intercellular communication. Microbiology (Reading) 2006. [DOI: 10.1134/s0026261706040126] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
18
|
Tyler MJ, Carney LH, Cameron DA. Control of cellular pattern formation in the vertebrate inner retina by homotypic regulation of cell-fate decisions. J Neurosci 2006; 25:4565-76. [PMID: 15872104 PMCID: PMC6725033 DOI: 10.1523/jneurosci.0588-05.2005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The vertebrate retina is composed of cellular arrays that are nonrandom across two-dimensional space. The determinants of these nonrandom two-dimensional cellular patterns in the inner nuclear layer of the retina were investigated using empirical and computational modeling techniques. In normal and experimental models of goldfish retinal growth, the patterns of tyrosine hydroxylase- and serotonin-positive cells indicated that neither cell death nor lateral migration of differentiated cells were dominant mechanisms of cellular pattern formation. A computational model of cellular pattern formation that used a signaling mechanism arising from differentiated cells that inhibited homotypic cell-fate decisions generated accurate simulations of the empirically observed patterns in normal retina. This model also predicted the principal atypical cellular pattern characteristic, a transient cell-type-specific hyperplasia, which was empirically observed in the growing retina subsequent to selective ablation of differentiated retinal cells, either tyrosine hydroxylase positive or serotonin positive. The results support the hypothesis that inhibitory spatiotemporal regulation of homotypic cell-fate decisions is a dominant mechanistic determinant of nonrandom cellular patterns in the vertebrate retina.
Collapse
Affiliation(s)
- Melinda J Tyler
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, New York 13210, USA
| | | | | |
Collapse
|
19
|
Anitole-Misleh KG, Brown KM. Developmental regulation of catecholamine levels during sea urchin embryo morphogenesis. Comp Biochem Physiol A Mol Integr Physiol 2004; 137:39-50. [PMID: 14720589 DOI: 10.1016/j.cbpb.2003.09.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Results of a number of pharmacological studies suggest that catecholamines play a regulatory role in cleavage, morphogenesis and cell differentiation during early animal embryonic development. Few studies, however, have actually assayed for levels of catecholamines in these early embryos by methods that are both sensitive and specific. In this investigation the catecholamines dopamine, norepinephrine and epinephrine and their precursor, dopa and metabolites were determined in eight different embryonic stages of the sea urchin, Lytechinus pictus from hatched blastula to late pluteus larva, using high performance liquid chromatography with electrochemical detection. Levels of each of the catecholamines exhibited unique developmental profiles and are consistent with a role for epinephrine in blastula and early gastrula embryos and for norepinephrine in gastrulation. Changes in levels of catecholamine precursor and metabolites suggest a changing pattern of synthetic and metabolic enzyme activity, which can, for the most part, explain the fluctuations in catecholamine levels during development from blastula to the pluteus larva stage.
Collapse
Affiliation(s)
- Katherine G Anitole-Misleh
- Department of Biological Sciences, 332 Lisner Hall, George Washington University, 2023 G. St. N.W., Washington, DC 20052, USA
| | | |
Collapse
|
20
|
Vidair CA. Age dependence of organophosphate and carbamate neurotoxicity in the postnatal rat: extrapolation to the human. Toxicol Appl Pharmacol 2004; 196:287-302. [PMID: 15081274 DOI: 10.1016/j.taap.2003.12.016] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2003] [Accepted: 12/18/2003] [Indexed: 10/26/2022]
Abstract
One important aspect of risk assessment for the organophosphate and carbamate pesticides is to determine whether their neurotoxicity occurs at lower dose levels in human infants compared to adults. Because these compounds probably exert their neurotoxic effects through the inhibition of acetylcholinesterase (AChE), the above question can be narrowed to whether the cholinesterase inhibition and neurotoxicity they produce is age-dependent, both in terms of the effects produced and potency. The rat is the animal model system most commonly used to address these issues. This paper first discusses the adequacy of the postnatal rat to serve as a model for neurodevelopment in the postnatal human, concluding that the two species share numerous pathways of postnatal neurodevelopment, and that the rat in the third postnatal week is the neurodevelopmental equivalent of the newborn human. Then, studies are discussed in which young and adult rats were dosed by identical routes with organophosphates or carbamates. Four pesticides were tested in rat pups in their third postnatal week: aldicarb, chlorpyrifos, malathion, and methamidophos. The first three, but not methamidophos, caused neurotoxicity at dose levels that ranged from 1.8- to 5.1-fold lower (mean 2.6-fold lower) in the 2- to 3-week-old rat compared to the adult. This estimate in the rat, based on a limited data set of three organophosphates and a single carbamate, probably represents the minimum difference in the neurotoxicity of an untested cholinesterase-inhibiting pesticide that should be expected between the human neonate and adult. For the organophosphates, the greater sensitivity of postnatal rats, and, by analogy, that expected for human neonates, is correlated with generally lower levels of the enzymes involved in organophosphate deactivation.
Collapse
Affiliation(s)
- Charles A Vidair
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Oakland, CA 94612, USA.
| |
Collapse
|
21
|
Orozco-Suárez S, Del Angel AR, Beas-Zárate C, Manjarrrez G, Feria-Velasco A. Corn feeding during development induces changes in the number of serotonergic neurons in the raphe nuclei. Int J Dev Neurosci 2003; 21:13-22. [PMID: 12565692 DOI: 10.1016/s0736-5748(02)00124-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Serotonin (5-HT) plays a trophic role during brain development; chronic changes in cerebral concentration of this neurotransmitter during the critical stage of development can produce severe damage in the formation of the neural circuits. For the present work a hypoproteic (HYP) diet based on corn (CORN) meal which is deficient in tryptophan (TRY) was given to rats before and during pregnancy, which continued to the offspring until they reached 60 days of age. An isocaloric but hypoproteic diet containing normal amount of TRY, and normal chow (Ch) Purina were given with the same scheme to two groups of rats considered as controls. 5-HT immunohistochemistry was revealed by avidin-biotin complex (ABC) method to quantify serotonergic nerve cells in the nine raphe nuclei. The number of cells immunoreactive to 5-HT immunoreactive (5-HTir) were quantified by means of stereological analysis. Results demonstrated a significant variation in 5-HT expression in the raphe nuclei. Thus, a significant reduction in the number of 5-HTir cells in the rostral raphe nuclei was seen at all ages studied in the animals fed the corn diet, compared to data obtained from the control groups. This decrease was more evident between the postnatal ages of 30 and 60 days. It is concluded that the variations in the available TRY affect the brain cells producing 5-HT and the innervation of their target areas.
Collapse
Affiliation(s)
- Sandra Orozco-Suárez
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hosp. Especialidades, CMN-Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), DF, México, Mexico
| | | | | | | | | |
Collapse
|
22
|
Kreiling JA, Jessen-Eller K, Miller J, Seegal RF, Reinisch CL. Early development of the serotonergic and dopaminergic nervous system in Spisula solidissima (surf clam) larvae. Comp Biochem Physiol A Mol Integr Physiol 2001; 130:341-51. [PMID: 11544079 DOI: 10.1016/s1095-6433(01)00394-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We have defined the development of the serotonergic and dopaminergic components of the central nervous system in the early Spisula solidissima (surf clam) embryo using HPLC and immunocytochemistry. HPLC analysis reveals norepinephrine, dopamine, and serotonin are present at 24 h post-fertilization. Immunocytochemistry shows that the serotonergic nervous system emerges during the late trochophore stage with the development of a single serotonergic cell, C/A1, in the cerebral/apical ganglion. After 48 h, a second serotonergic cell forms, C/A2, which is connected to C/A1 by two serotonergic processes, and a single serotonergic cell emerges in the visceral ganglion, V1. At 72 h, a new serotonergic cell body develops in the cerebral/apical ganglion, C/A3. After 96 h, the cerebral/apical ganglion and visceral ganglion are connected by a serotonergic process. Expression of the dopamine receptor, D2, begins by 24 h with a generalized expression in the region of the developing gut. D2 expression in the gut ceases by 48 h. At 48 h, a network of fibers forms dorsolateral to the mouth. By 72 h, D2 expressing projections emerge from this network.
Collapse
Affiliation(s)
- J A Kreiling
- Marine Biological Laboratory, 7 MBL St., Woods Hole, MA 02540, USA
| | | | | | | | | |
Collapse
|
23
|
Kehoe P, Callahan M, Daigle A, Mallinson K, Brudzynski S. The effect of cholinergic stimulation on rat pup ultrasonic vocalizations. Dev Psychobiol 2001; 38:92-100. [PMID: 11223801 DOI: 10.1002/1098-2302(200103)38:2<92::aid-dev1001>3.0.co;2-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
As cholinergic stimulation increases vocalizations in adult rats, the present study investigated the effects of systemic oxotremorine, a cholinergic agonist, on the production of separation calls in rat pups of different ages and whether these effects are in response to central versus peripheral stimulation. The first experiment examined the dose-response effects of oxotremorine on the number of vocalizations and acoustic parameters of 10-, 15-, and 17-day-old rat pups. In contrast to other studies on adult rats, pup vocalizations were decreased while marginally changing acoustic parameters. The second experiment, using muscarinic antagonists, showed that pretreatment with atropine sulfate, which can cross the blood-brain barrier (BBB), reversed the call-reducing effect of oxotremorine whereas pretreatment with atropine methyl nitrate, which does not cross BBB, did not. Suppression of vocalizations by oxotremorine may be explained by central activation and not the peripheral effects of the drug. Dissimilar effects of cholinergic stimulation of infant and adult rat brains may be attributed to a differential role of the cholinergic system during development and maturity.
Collapse
Affiliation(s)
- P Kehoe
- Trinity College, Neuroscience Program, Hartford, CT 06106, USA.
| | | | | | | | | |
Collapse
|