1
|
Li H, Feng J, Yu K, Liu S, Wang H, Fu J. Construction of asymmetric dual-layer polysaccharide-based porous structure on multiple sources for potential application in biomedicine. Int J Biol Macromol 2024; 254:127361. [PMID: 37827411 DOI: 10.1016/j.ijbiomac.2023.127361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 10/08/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
Biomedical materials can produce high efficiency and special behavior with an integrated internal structure. It is possible that changing the structure of biomedical materials could extend and promote the application of eco-friendly and multifunctional biomaterials. However, the instantaneous formation of complex structures between tannic acid (TA) and polysaccharides is disrupted, and the reconstruction of the new porous structure becomes a key issue. Here, we present an innovative one-step forming method for an asymmetric dual-layer porous structure of carboxymethyl chitosan (CC)/sodium alginate (SA)/TA, which can be utilized in various biomedical applications. Even after 6 months of storage, it still demonstrates a range of desirable properties including tailorable performance, efficient antibacterial activity, ultrarapid antioxidant activity, low differential blood clotting index and cytotoxicity. This suggests its potential for regulating and controlling wound bleeding, providing flexible possibilities for potential applications in biomedicine.
Collapse
Affiliation(s)
- Huimin Li
- Jiangsu Engineering Technology Research Centre for Functional Textiles, Jiangnan University, No.1800 Lihu Avenue, Wuxi, China
| | - Jundan Feng
- Jiangsu Engineering Technology Research Centre for Functional Textiles, Jiangnan University, No.1800 Lihu Avenue, Wuxi, China
| | - Kejing Yu
- Jiangsu Engineering Technology Research Centre for Functional Textiles, Jiangnan University, No.1800 Lihu Avenue, Wuxi, China
| | - Shuiping Liu
- College of Textile and Clothing, Yancheng Institute of Technology, Yancheng 224007, China
| | - Hongbo Wang
- Jiangsu Engineering Technology Research Centre for Functional Textiles, Jiangnan University, No.1800 Lihu Avenue, Wuxi, China.
| | - Jiajia Fu
- Jiangsu Engineering Technology Research Centre for Functional Textiles, Jiangnan University, No.1800 Lihu Avenue, Wuxi, China; China National Textile and Apparel Council Key Laboratory of Natural Dyes, Soochow University, Suzhou 215123, China.
| |
Collapse
|
2
|
Qu Y, Chen C, Chen X, Hao Y, She H, Wang M, Ericson PGP, Lin H, Cai T, Song G, Jia C, Chen C, Zhang H, Li J, Liang L, Wu T, Zhao J, Gao Q, Zhang G, Zhai W, Zhang C, Zhang YE, Lei F. The evolution of ancestral and species-specific adaptations in snowfinches at the Qinghai-Tibet Plateau. Proc Natl Acad Sci U S A 2021; 118:e2012398118. [PMID: 33753478 PMCID: PMC8020664 DOI: 10.1073/pnas.2012398118] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Species in a shared environment tend to evolve similar adaptations under the influence of their phylogenetic context. Using snowfinches, a monophyletic group of passerine birds (Passeridae), we study the relative roles of ancestral and species-specific adaptations to an extreme high-elevation environment, the Qinghai-Tibet Plateau. Our ancestral trait reconstruction shows that the ancestral snowfinch occupied high elevations and had a larger body mass than most nonsnowfinches in Passeridae. Subsequently, this phenotypic adaptation diversified in the descendant species. By comparing high-quality genomes from representatives of the three phylogenetic lineages, we find that about 95% of genes under positive selection in the descendant species are different from those in the ancestor. Consistently, the biological functions enriched for these species differ from those of their ancestor to various degrees (semantic similarity values ranging from 0.27 to 0.5), suggesting that the three descendant species have evolved divergently from the initial adaptation in their common ancestor. Using a functional assay to a highly selective gene, DTL, we demonstrate that the nonsynonymous substitutions in the ancestor and descendant species have improved the repair capacity of ultraviolet-induced DNA damage. The repair kinetics of the DTL gene shows a twofold to fourfold variation across the ancestor and the descendants. Collectively, this study reveals an exceptional case of adaptive evolution to high-elevation environments, an evolutionary process with an initial adaptation in the common ancestor followed by adaptive diversification of the descendant species.
Collapse
Affiliation(s)
- Yanhua Qu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China;
| | - Chunhai Chen
- BGI Genomics, BGI-Shenzhen, 518084 Shenzhen, China
| | - Xiumin Chen
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Yan Hao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Huishang She
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Mengxia Wang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Per G P Ericson
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, SE-104 05 Stockholm, Sweden
| | - Haiyan Lin
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Tianlong Cai
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Gang Song
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Chenxi Jia
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Chunyan Chen
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Hailin Zhang
- BGI Genomics, BGI-Shenzhen, 518084 Shenzhen, China
| | - Jiang Li
- BGI Genomics, BGI-Shenzhen, 518084 Shenzhen, China
| | - Liping Liang
- BGI Genomics, BGI-Shenzhen, 518084 Shenzhen, China
| | - Tianyu Wu
- BGI Genomics, BGI-Shenzhen, 518084 Shenzhen, China
| | - Jinyang Zhao
- BGI Genomics, BGI-Shenzhen, 518084 Shenzhen, China
| | - Qiang Gao
- BGI Genomics, BGI-Shenzhen, 518084 Shenzhen, China
| | - Guojie Zhang
- BGI-Shenzhen, 518083 Shenzhen, China
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223 Kunming, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, 650223 Kunming, China
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Weiwei Zhai
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, 650223 Kunming, China
| | - Chi Zhang
- BGI Genomics, BGI-Shenzhen, 518084 Shenzhen, China;
| | - Yong E Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China;
- College of Life Science, University of Chinese Academy of Sciences, 100049 Beijing, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, 650223 Kunming, China
- Chinese Institute for Brain Research, 102206 Beijing, China
| | - Fumin Lei
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China;
- College of Life Science, University of Chinese Academy of Sciences, 100049 Beijing, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, 650223 Kunming, China
| |
Collapse
|
3
|
Callan LM, La Sorte FA, Martin TE, Rohwer VG. Higher Nest Predation Favors Rapid Fledging at the Cost of Plumage Quality in Nestling Birds. Am Nat 2019; 193:717-724. [PMID: 31002573 DOI: 10.1086/702856] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
High predation risk can favor rapid offspring development at the expense of offspring quality. Impacts of rapid development on phenotypic quality should be most readily expressed in traits that minimize fitness costs. We hypothesize that ephemeral traits that are replaced or repaired after a short period of life might express trade-offs in quality as a result of rapid development more strongly than traits used throughout life. We explored this idea for plumage quality in nestling body feathers, an ephemeral trait. We found a strong trade-off whereby nestlings that spend less time in the nest produced lower-quality plumage with less dense barbs relative to adults across 123 temperate and tropical species. For a subset of these species ( n=67 ), we found that variation in the risk of nest predation explained additional variation in plumage quality beyond development time. Ultimately, the fitness costs of a poor-quality ephemeral trait, such as nestling body feathers, may be outweighed by the fitness benefits of shorter development times that reduce predation risk. At the same time, reduced resource allocation to traits with small fitness costs, such as ephemeral traits, may ameliorate resource constraints from rapid development on traits with larger fitness impacts.
Collapse
|
5
|
Brydegaard M, Samuelsson P, Kudenov MW, Svanberg S. On the exploitation of mid-infrared iridescence of plumage for remote classification of nocturnal migrating birds. APPLIED SPECTROSCOPY 2013; 67:477-490. [PMID: 23643036 DOI: 10.1366/12-06860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
A challenging task in ornithology lies in identifying high-altitude nocturnal migrating bird species and genders. While the current approaches including radar, lunar obscuration, and single-band thermal imaging provide means of detection, a more detailed spectral or polarimetric analysis of light has the potential for retrieval of additional information whereby the species and sex could be determined. In this paper, we explore remote classification opportunities provided by iridescent features within feathers in the mid-infrared region. Our approach first involves characterizing the microstructural features of the feather by using rotation and straining, and a scheme for their remote detection is proposed by correlating these microstructural changes to spectral and polarimetric effects. Furthermore, we simulate the spectral signature of the entire bird by using a model that demonstrates how classification would be achieved. Finally, we apply infrared hyperspectral polarization imaging, showing that the net iridescent effect persists for the bird as a whole.
Collapse
Affiliation(s)
- Mikkel Brydegaard
- Atomic Physics Division, Lund University, P.O. Box 118, 221 00 Lund, Sweden.
| | | | | | | |
Collapse
|
6
|
Qiu P, Mao C. Biomimetic branched hollow fibers templated by self-assembled fibrous polyvinylpyrrolidone structures in aqueous solution. ACS NANO 2010; 4:1573-9. [PMID: 20158250 PMCID: PMC2844465 DOI: 10.1021/nn9009196] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Branched hollow fibers are common in nature, but to form artificial fibers with a similar branched hollow structure is still a challenge. We discovered that polyvinylpyrrolidone (PVP) could self-assemble into branched hollow fibers in an aqueous solution after aging the PVP solution for about two weeks. On the basis of this finding, we demonstrated two approaches by which the self-assembly of PVP into branched hollow fibers could be exploited to template the formation of branched hollow inorganic fibers. First, inorganic material such as silica with high affinity against the PVP could be deposited on the surface of the branched hollow PVP fibers to form branched hollow silica fibers. To extend the application of PVP self-assembly in templating the formation of hollow branched fibers, we then adopted a second approach where the PVP molecules bound to inorganic nanoparticles (using gold nanoparticles as a model) co-self-assemble with the free PVP molecules in an aqueous solution, resulting in the formation of the branched hollow fibers with the nanoparticles embedded in the PVP matrix constituting the walls of the fibers. Heating the resultant fibers above the glass transition temperature of PVP led to the formation of branched hollow gold fibers. Our work suggests that the self-assembly of the PVP molecules in the solution can serve as a general method for directing the formation of branched hollow inorganic fibers. The branched hollow fibers may find potential applications in microfluidics, artificial blood vessel generation, and tissue engineering.
Collapse
Affiliation(s)
- Penghe Qiu
- Department of Chemistry and Biochemistry, University of Oklahoma, 620 Parrington oval, room 208, Norman, Oklahoma 73019, USA
| | - Chuanbin Mao
- Department of Chemistry and Biochemistry, University of Oklahoma, 620 Parrington oval, room 208, Norman, Oklahoma 73019, USA
| |
Collapse
|