1
|
Nguekeu YMM, Fozeng HDS, Chukwuma CI, Hnin SYY, Hoang NN, Njoya EM, Ngouela SA, Tene M, Makhafola TJ, Morita H, Awouafack MD. New cerebrosides and ceramide with other constituents from the aerial parts of Raphidiocystis mannii Hook. f. and their cytotoxic activities. J Nat Med 2025; 79:412-421. [PMID: 39827418 DOI: 10.1007/s11418-024-01875-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 12/26/2024] [Indexed: 01/22/2025]
Abstract
Two new cerebrosides, raphimanosides A (1) and B (2), and a new ceramide, raphimanide (3), were isolated from the aerial parts of Raphidiocystis mannii Hook. f., along with ten known compounds (4-13). Their structures were fully established, based on extensive analyses of 1H, 13C, DEPT, 2D NMR, ESIMS, and HRESIMS data and chemical conversion. Subsequently, methanol extract, ethyl acetate, and n-butanol soluble portions and the isolated compounds 1-9, 12, and 13 were assayed for their cytotoxic effects against three human cancer cell lines (MCF-7, HeLa and A549). None of the new compounds demonstrated efficacy against the tested cell lines. In contrast, the methanol extract, ethyl acetate soluble portion, and compounds 6, 7, 9, 12, and 13 showed moderate to low activities against different tested cell lines. Ethyl acetate soluble portion and compounds 13 and 7 were the most potent samples with the IC50 value of 41.25 μg/mL, 36.76 μM, and 13.16 μM against MCF-7, HeLa, and A549 cell lines, respectively. To the best of our knowledge, this is the inaugural investigation into the chemical constituents of the genus Raphidiocystis, offering novel insights into the chemotaxonomy of this hitherto poorly understood genus.
Collapse
Affiliation(s)
- Yves M Mba Nguekeu
- Natural Products Chemistry Research Unit, Department of Chemistry, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon
| | - Herman D Sonfack Fozeng
- Natural Products Chemistry Research Unit, Department of Chemistry, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon
| | - Chika Ifeanyi Chukwuma
- Centre for Quality of Health and Living, Faculty of Health and Environmental Sciences, Central University of Technology, Bloemfontein, 9301, South Africa
| | - Saw Y Yu Hnin
- Institute of Natural Medicine, University of Toyama, 2630-Sugitani, Toyama, 930-0194, Japan
| | - Nhat Nam Hoang
- Institute of Natural Medicine, University of Toyama, 2630-Sugitani, Toyama, 930-0194, Japan
| | - Emmanuel Mfotie Njoya
- Centre for Quality of Health and Living, Faculty of Health and Environmental Sciences, Central University of Technology, Bloemfontein, 9301, South Africa
| | - Silvère Augustin Ngouela
- Natural Products Chemistry Research Unit, Department of Chemistry, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon
| | - Mathieu Tene
- Natural Products Chemistry Research Unit, Department of Chemistry, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon
| | - Tshepiso Jan Makhafola
- Centre for Quality of Health and Living, Faculty of Health and Environmental Sciences, Central University of Technology, Bloemfontein, 9301, South Africa
| | - Hiroyuki Morita
- Institute of Natural Medicine, University of Toyama, 2630-Sugitani, Toyama, 930-0194, Japan.
| | - Maurice Ducret Awouafack
- Natural Products Chemistry Research Unit, Department of Chemistry, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon
| |
Collapse
|
2
|
Wang G, Song B, Jia X, Yin H, Li R, Liu X, Chen J, Zhang J, Wang Z, Zhong S. Ceramides from Sea Red Rice Bran Improve Health Indicators and Increase Stress Resistance of Caenorhabditis elegans through Insulin/IGF-1 Signaling (IIS) Pathway and JNK-1. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:15080-15094. [PMID: 36417897 DOI: 10.1021/acs.jafc.2c04921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The antiaging effects of sea red rice bran in vivo, a new saline-tolerant sea rice byproduct containing high levels of ceramides (Cers), remain unknown. This study aimed to explore the antiaging effects exerted by Cers from sea red rice bran on Caenorhabditis elegans, assess its health indicators as well as tolerance, and then reveal the mechanism of action of Cers in prolonging the mean life span through genetic studies. The results indicated that the mean life span of Cers-treated C. elegans were dose-dependent in the range of 0.10-0.50 mg/mL. Additionally, Cers improved nematode motility, reduced lipofuscin accumulation, and enhanced resistance to heat stress and antioxidant enzyme activity. Genetic studies showed that Cers treatment had altered nematode gene expression. In addition, insulin/IGF-1 and jnk-1/mitogen-activated protein kinase (MAPK) signaling pathways successfully demonstrated the longevity effects of Cers intake. In short, these results suggest that Cers enhance the resistance of C. elegans and prolong its life span.
Collapse
Affiliation(s)
- Gang Wang
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Bingbing Song
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xuejing Jia
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Huan Yin
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Rui Li
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Shenzhen Research Institute, Guangdong Ocean University, Shenzhen 518108, China
| | - Xiaofei Liu
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Shenzhen Research Institute, Guangdong Ocean University, Shenzhen 518108, China
| | - Jianping Chen
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Shenzhen Research Institute, Guangdong Ocean University, Shenzhen 518108, China
| | - Jieliang Zhang
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Shenzhen Research Institute, Guangdong Ocean University, Shenzhen 518108, China
| | - Zhuo Wang
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Shenzhen Research Institute, Guangdong Ocean University, Shenzhen 518108, China
| | - Saiyi Zhong
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Shenzhen Research Institute, Guangdong Ocean University, Shenzhen 518108, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
3
|
Yang F, Chen G. The nutritional functions of dietary sphingomyelin and its applications in food. Front Nutr 2022; 9:1002574. [PMID: 36337644 PMCID: PMC9626766 DOI: 10.3389/fnut.2022.1002574] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
Sphingolipids are common structural components of cell membranes and are crucial for cell functions in physiological and pathophysiological conditions. Sphingomyelin and its metabolites, such as sphingoid bases, ceramide, ceramide-1-phosphate, and sphingosine-1-phosphate, play signaling roles in the regulation of human health. The diverse structures of sphingolipids elicit various functions in cellular membranes and signal transduction, which may affect cell growth, differentiation, apoptosis, and maintain biological activities. As nutrients, dietary sphingomyelin and its metabolites have wide applications in the food and pharmaceutical industry. In this review, we summarized the distribution, classifications, structures, digestion, absorption and metabolic pathways of sphingolipids, and discussed the nutritional functioning of sphingomyelin in chronic metabolic diseases. The possible implications of dietary sphingomyelin in the modern food preparations including dairy products and infant formula, skin improvement, delivery system and oil organogels are also evaluated. The production of endogenous sphingomyelin is linked to pathological changes in obesity, diabetes, and atherosclerosis. However, dietary supplementations of sphingomyelin and its metabolites have been shown to maintain cholesterol homeostasis and lipid metabolism, and to prevent or treat these diseases. This seemly paradoxical phenomenon shows that dietary sphingomyelin and its metabolites are candidates for food additives and functional food development for the prevention and treatment of chronic metabolic diseases in humans.
Collapse
Affiliation(s)
- Fang Yang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Guoxun Chen
- Department of Nutrition, The University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
4
|
Sugawara T. Sphingolipids as Functional Food Components: Benefits in Skin Improvement and Disease Prevention. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9597-9609. [PMID: 35905137 DOI: 10.1021/acs.jafc.2c01731] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Sphingolipids are ubiquitous components in eukaryotic organisms and have attracted attention as physiologically functional lipids. Sphingolipids with diverse structures are present in foodstuffs as these structures depend on the biological species they are derived from, such as mammals, plants, and fungi. The physiological functions of dietary sphingolipids, especially those that improve skin barrier function, have recently been noted. In addition, the roles of dietary sphingolipids in the prevention of diseases, including cancer and metabolic syndrome, have been studied. However, the mechanisms underlying the health-improving effects of dietary sphingolipids, especially their metabolic fates, have not been elucidated. Here, we review dietary sphingolipids, including their chemical structures and contents in foodstuff; digestion, intestinal absorption, and metabolism; and nutraceutical functions, based on the available evidence and hypotheses. Further research is warranted to clearly define how dietary sphingolipids can influence human health.
Collapse
Affiliation(s)
- Tatsuya Sugawara
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake Cho, Sakyo-ku, Kyoto, Kyoto 606-8502, Japan
| |
Collapse
|
5
|
Comparison of the Phytochemical Variation of Non-Volatile Metabolites within Mother Tinctures of Arnica montana Prepared from Fresh and Dried Whole Plant Using UHPLC-HRMS Fingerprinting and Chemometric Analysis. Molecules 2022; 27:molecules27092737. [PMID: 35566089 PMCID: PMC9103735 DOI: 10.3390/molecules27092737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 11/24/2022] Open
Abstract
Arnica montana L. has been recognized for centuries as an herbal remedy to treat wounds and promote healing. It also has a long tradition of use in homeopathy. Depending on its medicinal utilization, standardization regulations allow different manufacturing processes, implying different raw materials, such as the whole arnica plant in its fresh or dried state. In this study, an untargeted metabolomics approach with UHPLC-HRMS/MS was used to cross-compare the phytochemical composition of mother tinctures of A. montana that were prepared from either fresh whole plant (fMT) matter or from oven-dried whole plant (dMT) matter. The multivariate data analysis showed significant differences between fMT and dMT. The dereplication of the HRMS and MS/MS spectra of the more discriminant compounds led to annotated quinic acid, dicaffeoyl quinic acids, ethyl caffeate, thymol derivatives and dehydrophytosphingosine, which were increased in fMT, while Amadori rearrangement products (ARP) and methoxyoxaloyl-dicaffeoyl quinic acid esters were enhanced in dMT. Neither sesquiterpene lactones nor flavonoids were affected by the drying process. This is the first time that a sphingosine, ethyl caffeate and ARP are described in A. montana. Moreover, putative new natural products were detected as 10-hydroxy-8,9-epoxy-thymolisobutyrate and an oxidized proline fructose conjugate, for which isolation and full structure elucidation will be necessary to verify this finding.
Collapse
|
6
|
Ebede GR, Mbing JN, Nama AB, Shehla N, Rahman AU, Pegnyemb DE, Ndongo JT, Choudhary MI. New glycocerebrosides from the trunk of Tabernaemontana contorta Stapf. (Apocynaceae) and their antibacterial activity. BIOCHEM SYST ECOL 2022. [DOI: 10.1016/j.bse.2022.104396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Ohta K, Hiraki S, Miyanabe M, Ueki T, Aida K, Manabe Y, Sugawara T. Appearance of Intact Molecules of Dietary Ceramides Prepared from Soy Sauce Lees and Rice Glucosylceramides in Mouse Plasma. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:9188-9198. [PMID: 33507082 DOI: 10.1021/acs.jafc.0c07259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Although the beneficial effects of dietary sphingolipids have recently been reported, the mechanism of their intestinal absorption has yet to be fully elucidated. In this study, the absorption and metabolism of dietary ceramides and glucosylceramides were evaluated by liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis in the plasma of mice after a single oral administration. Ceramide molecules prepared from soy sauce lees (mainly composed of phytosphingosine and its derivatives) were undetectable or minor compounds in the plasma of control mice but appeared 1-6 h after administration. Rice glucosylceramide (mainly composed of sphingadienine) was endogenously detected in mouse plasma and showed a tendency to increase 1-6 h after administration by LC-MS/MS analysis. In addition, the ceramide molecules, which are hydrolysates of dietary glucosylceramide, were significantly increased in the plasma after administration. These findings strongly suggest that dietary ceramides and glucosylceramides are partly absorbed as intact molecules or hydrolysates.
Collapse
Affiliation(s)
- Kazushi Ohta
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kitashirakawaoiwakecho, Sakyo-ku, Kyoto, Kyoto 606-8502, Japan
| | - Shinobu Hiraki
- Genuine R&D Company, Limited, 729-1 Matono, Shingu-machi, Kasuya-gun, Fukuoka 811-0104, Japan
| | - Masakatsu Miyanabe
- Genuine R&D Company, Limited, 729-1 Matono, Shingu-machi, Kasuya-gun, Fukuoka 811-0104, Japan
| | - Tatsuro Ueki
- Fukukoka Soy Sauce Brewing Cooperation, Nagaoka, Chikushino, Fukuoka 818-0066, Japan
| | - Kazuhiko Aida
- Innovation Center, Nippon Flour Mills Company, Limited, 5-1-3 Midorigaoka, Atsugi, Kanagawa 243-0041, Japan
| | - Yuki Manabe
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kitashirakawaoiwakecho, Sakyo-ku, Kyoto, Kyoto 606-8502, Japan
| | - Tatsuya Sugawara
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kitashirakawaoiwakecho, Sakyo-ku, Kyoto, Kyoto 606-8502, Japan
| |
Collapse
|
8
|
Abstract
The paper focuses on the selected plant lipid issues. Classification, nomenclature, and abundance of fatty acids was discussed. Then, classification, composition, role, and organization of lipids were displayed. The involvement of lipids in xantophyll cycle and glycerolipids synthesis (as the most abundant of all lipid classes) were also discussed. Moreover, in order to better understand the biomembranes remodeling, the model (artificial) membranes, mimicking the naturally occurring membranes are employed and the survey on their composition and application in different kind of research was performed. High level of lipids remodeling in the plant membranes under different environmental conditions, e.g., nutrient deficiency, temperature stress, salinity or drought was proved. The key advantage of lipid research was the conclusion that lipids could serve as the markers of plant physiological condition and the detailed knowledge on lipids chemistry will allow to modify their composition for industrial needs.
Collapse
Affiliation(s)
- Emilia Reszczyńska
- Department of Plant Physiology and Biophysics, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Sklodowska University, 20-033, Lublin, Poland.
| | - Agnieszka Hanaka
- Department of Plant Physiology and Biophysics, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Sklodowska University, 20-033, Lublin, Poland
| |
Collapse
|
9
|
Eguchi K, Mikami D, Sun H, Tsumita T, Takahashi K, Mukai K, Yuyama K, Igarashi Y. Blood-brain barrier permeability analysis of plant ceramides. PLoS One 2020; 15:e0241640. [PMID: 33137152 PMCID: PMC7605672 DOI: 10.1371/journal.pone.0241640] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/16/2020] [Indexed: 12/04/2022] Open
Abstract
Ceramides, a type of sphingolipid, are cell membrane components and lipid mediators that modulate a variety of cell functions. In plants, ceramides are mostly present in a glucosylated glucosylceramide (GlcCer) form. We previously showed that oral administration of konjac-derived GlcCer to a mouse model of Alzheimer’s disease reduced brain amyloid-β and amyloid plaques. Dietary plant GlcCer compounds are absorbed as ceramides, but it is unclear whether they can cross the blood-brain barrier (BBB). Herein, we evaluated the BBB permeability of synthetic plant-type ceramides (4, 8-sphingadienine, d18:2) using mouse and BBB cell culture models, and found that they could permeate the BBB both in vivo and in vitro. In addition, administrated ceramides were partially metabolized to other sphingolipid species, namely sphingomyelin (SM) and GlcCer, while crossing the BBB. Thus, plant ceramides can cross the BBB, suggesting that ceramides and their metabolites might affect brain functions.
Collapse
Affiliation(s)
- Koichi Eguchi
- Innovation and Business Development Headquarters, Daicel Corporation, Tokyo, Japan
| | - Daisuke Mikami
- Lipid Biofunction Section, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Hui Sun
- Lipid Biofunction Section, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Takuya Tsumita
- Department of Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Hokkaido, Japan
| | - Kaori Takahashi
- Innovation and Business Development Headquarters, Daicel Corporation, Tokyo, Japan
| | - Katsuyuki Mukai
- Innovation and Business Development Headquarters, Daicel Corporation, Tokyo, Japan
- Lipid Biofunction Section, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Kohei Yuyama
- Lipid Biofunction Section, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Hokkaido, Japan
- * E-mail:
| | - Yasuyuki Igarashi
- Lipid Biofunction Section, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
10
|
Dietary ceramide 2-aminoethylphosphonate, a marine sphingophosphonolipid, improves skin barrier function in hairless mice. Sci Rep 2020; 10:13891. [PMID: 32807849 PMCID: PMC7431532 DOI: 10.1038/s41598-020-70888-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 08/03/2020] [Indexed: 12/02/2022] Open
Abstract
Sphingolipids are one of the major components of cell membranes and are ubiquitous in eukaryotic organisms. Ceramide 2-aminoethylphosphonate (CAEP) of marine origin is a unique and abundant sphingophosphonolipid with a C-P bond. Although molluscs such as squids and bivalves, containing CAEP, are consumed globally, the dietary efficacy of CAEP is not understood. We investigated the efficacy of marine sphingophosphonolipids by studying the effect of dietary CAEP on the improvement of the skin barrier function in hairless mice fed a diet that induces severely dry-skin condition. The disrupted skin barrier functions such as an increase in the transepidermal water loss (TEWL), a decrease in the skin hydration index, and epidermal hyperplasia were restored by CEAP dietary supplementation. Correspondingly, dietary CAEP significantly increased the content of covalently bound ω-hydroxyceramide, and the expression of its biosynthesis-related genes in the skin. These effects of dietary CAEP mimic those of dietary plant glucosylceramide. The novel observations from this study show an enhancement in the skin barrier function by dietary CAEP and the effects could be contributed by the upregulation of covalently bound ω-hydroxyceramide synthesis in the skin.
Collapse
|
11
|
Wilson KA, Wang L, MacDermott-Opeskin H, O'Mara ML. The Fats of Life: Using Computational Chemistry to Characterise the Eukaryotic Cell Membrane. Aust J Chem 2020. [DOI: 10.1071/ch19353] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Our current knowledge of the structural dynamics and complexity of lipid bilayers is still developing. Computational techniques, especially molecular dynamics simulations, have increased our understanding significantly as they allow us to model functions that cannot currently be experimentally resolved. Here we review available computational tools and techniques, the role of the major lipid species, insights gained into lipid bilayer structure and function from molecular dynamics simulations, and recent progress towards the computational modelling of the physiological complexity of eukaryotic lipid bilayers.
Collapse
|
12
|
SUGAWARA T, AIDA K, DUAN J, TOMONAGA N, MANABE Y, HIRATA T. Analysis of Chemical Structures of Glucosylceramides from Rice and Other Foodstuffs. J Nutr Sci Vitaminol (Tokyo) 2019; 65:S228-S230. [DOI: 10.3177/jnsv.65.s228] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
| | | | | | | | - Yuki MANABE
- Graduate School of Agriculture, Kyoto University
| | - Takashi HIRATA
- Graduate School of Agriculture, Kyoto University
- Department of Rehabilitation, Shijonawate Gakuen University
| |
Collapse
|
13
|
Gerl MJ, Klose C, Surma MA, Fernandez C, Melander O, Männistö S, Borodulin K, Havulinna AS, Salomaa V, Ikonen E, Cannistraci CV, Simons K. Machine learning of human plasma lipidomes for obesity estimation in a large population cohort. PLoS Biol 2019; 17:e3000443. [PMID: 31626640 PMCID: PMC6799887 DOI: 10.1371/journal.pbio.3000443] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 09/04/2019] [Indexed: 01/05/2023] Open
Abstract
Obesity is associated with changes in the plasma lipids. Although simple lipid quantification is routinely used, plasma lipids are rarely investigated at the level of individual molecules. We aimed at predicting different measures of obesity based on the plasma lipidome in a large population cohort using advanced machine learning modeling. A total of 1,061 participants of the FINRISK 2012 population cohort were randomly chosen, and the levels of 183 plasma lipid species were measured in a novel mass spectrometric shotgun approach. Multiple machine intelligence models were trained to predict obesity estimates, i.e., body mass index (BMI), waist circumference (WC), waist-hip ratio (WHR), and body fat percentage (BFP), and validated in 250 randomly chosen participants of the Malmö Diet and Cancer Cardiovascular Cohort (MDC-CC). Comparison of the different models revealed that the lipidome predicted BFP the best (R2 = 0.73), based on a Lasso model. In this model, the strongest positive and the strongest negative predictor were sphingomyelin molecules, which differ by only 1 double bond, implying the involvement of an unknown desaturase in obesity-related aberrations of lipid metabolism. Moreover, we used this regression to probe the clinically relevant information contained in the plasma lipidome and found that the plasma lipidome also contains information about body fat distribution, because WHR (R2 = 0.65) was predicted more accurately than BMI (R2 = 0.47). These modeling results required full resolution of the lipidome to lipid species level, and the predicting set of biomarkers had to be sufficiently large. The power of the lipidomics association was demonstrated by the finding that the addition of routine clinical laboratory variables, e.g., high-density lipoprotein (HDL)- or low-density lipoprotein (LDL)- cholesterol did not improve the model further. Correlation analyses of the individual lipid species, controlled for age and separated by sex, underscores the multiparametric and lipid species-specific nature of the correlation with the BFP. Lipidomic measurements in combination with machine intelligence modeling contain rich information about body fat amount and distribution beyond traditional clinical assays.
Collapse
Affiliation(s)
| | | | - Michal A. Surma
- Lipotype GmbH, Dresden, Germany
- Łukasiewicz Research Network—PORT Polish Center for Technology Development, Wroclaw, Poland
| | | | - Olle Melander
- Department of Clinical Sciences, Lund University, Malmö, Sweden
- Department of Emergency and Internal Medicine, Skåne University Hospital, Malmö, Sweden
| | - Satu Männistö
- Public Health Promotion Unit, National Institute for Health and Welfare, Helsinki, Finland
| | - Katja Borodulin
- National Institute for Health and Welfare, Helsinki, Finland
| | - Aki S. Havulinna
- National Institute for Health and Welfare, Helsinki, Finland
- Institute for Molecular Medicine Finland (FIMM-HiLife), Helsinki, Finland
| | - Veikko Salomaa
- National Institute for Health and Welfare, Helsinki, Finland
| | - Elina Ikonen
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Finland
| | - Carlo V. Cannistraci
- Biomedical Cybernetics Group, Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering (CMCB), Department of Physics, Technische Universität Dresden, Dresden, Germany
- Center for Systems Biology Dresden, Dresden, Germany
- Complex Network Intelligence Lab, Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing, China
| | - Kai Simons
- Lipotype GmbH, Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|
14
|
Ebede GR, Ndongo JT, Mbing JN, Kenfack HCM, Pegnyemb DE, Bochet CG. Contortamide, a new anti-colon cancer cerebroside and other constituents from Tabernaemontana contorta Stapf (Apocynaceae). Nat Prod Res 2019; 35:1757-1765. [PMID: 31274013 DOI: 10.1080/14786419.2019.1636243] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
A new cerebroside, Contortamide (1) together with nine known compounds spegatrine (2), affinisine (3), Nb-methylaffinisine (4), ursolic acid (5), α-amyrin (6), bauerenol acetate (7), lupeol (8), betulinic acid (9) and β-sitosterolglycoside (10) were isolated from the trunk bark of Tabernaemontana contorta Stapf. The new compound 1 showed significant activity against Caco-2 colon cancer cells with the MTT method. Compounds 1-4 and 6-9 were isolated for the first time from this species.
Collapse
Affiliation(s)
- Guy R Ebede
- Department of Organic Chemistry, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon.,Department of Chemistry, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Joseph T Ndongo
- Department of Chemistry, Higher Teacher Training College, University of Yaoundé I, Yaoundé, Cameroon
| | - Joséphine N Mbing
- Department of Organic Chemistry, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - Hector C M Kenfack
- Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Dieudonné E Pegnyemb
- Department of Organic Chemistry, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - Christian G Bochet
- Department of Chemistry, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
15
|
Enkavi G, Javanainen M, Kulig W, Róg T, Vattulainen I. Multiscale Simulations of Biological Membranes: The Challenge To Understand Biological Phenomena in a Living Substance. Chem Rev 2019; 119:5607-5774. [PMID: 30859819 PMCID: PMC6727218 DOI: 10.1021/acs.chemrev.8b00538] [Citation(s) in RCA: 196] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Indexed: 12/23/2022]
Abstract
Biological membranes are tricky to investigate. They are complex in terms of molecular composition and structure, functional over a wide range of time scales, and characterized by nonequilibrium conditions. Because of all of these features, simulations are a great technique to study biomembrane behavior. A significant part of the functional processes in biological membranes takes place at the molecular level; thus computer simulations are the method of choice to explore how their properties emerge from specific molecular features and how the interplay among the numerous molecules gives rise to function over spatial and time scales larger than the molecular ones. In this review, we focus on this broad theme. We discuss the current state-of-the-art of biomembrane simulations that, until now, have largely focused on a rather narrow picture of the complexity of the membranes. Given this, we also discuss the challenges that we should unravel in the foreseeable future. Numerous features such as the actin-cytoskeleton network, the glycocalyx network, and nonequilibrium transport under ATP-driven conditions have so far received very little attention; however, the potential of simulations to solve them would be exceptionally high. A major milestone for this research would be that one day we could say that computer simulations genuinely research biological membranes, not just lipid bilayers.
Collapse
Affiliation(s)
- Giray Enkavi
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Matti Javanainen
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy
of Sciences, Flemingovo naḿesti 542/2, 16610 Prague, Czech Republic
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
| | - Waldemar Kulig
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Tomasz Róg
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
| | - Ilpo Vattulainen
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
- MEMPHYS-Center
for Biomembrane Physics
| |
Collapse
|
16
|
de Wit NM, den Hoedt S, Martinez-Martinez P, Rozemuller AJ, Mulder MT, de Vries HE. Astrocytic ceramide as possible indicator of neuroinflammation. J Neuroinflammation 2019; 16:48. [PMID: 30803453 PMCID: PMC6388480 DOI: 10.1186/s12974-019-1436-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 02/13/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease dementia (PDD), and frontotemporal lobar dementia (FTLD) are characterized by progressive neuronal loss but differ in their underlying pathological mechanisms. However, neuroinflammation is commonly observed within these different forms of dementia. Recently, it has been suggested that an altered sphingolipid metabolism may contribute to the pathogenesis of a variety of neurodegenerative conditions. Especially ceramide, the precursor of all complex sphingolipids, is thought to be associated with pro-apoptotic cellular processes, thereby propagating neurodegeneration and neuroinflammation, although it remains unclear to what extent. The current pathological study therefore investigates whether increased levels of ceramide are associated with the degree of neuroinflammation in various neurodegenerative disorders. METHODS Immunohistochemistry was performed on human post-mortem tissue of PDD and FTLD Pick's disease cases, which are well-characterized cases of dementia subtypes differing in their neuroinflammatory status, to assess the expression and localization of ceramide, acid sphingomyelinase, and ceramide synthase 2 and 5. In addition, we determined the concentration of sphingosine, sphingosine-1-phosphate (S1P), and ceramide species differing in their chain-length in brain homogenates of the post-mortem tissue using HPLC-MS/MS. RESULTS Our immunohistochemical analysis reveals that neuroinflammation is associated with increased ceramide levels in astrocytes in FTLD Pick's disease. Moreover, the observed increase in ceramide in astrocytes correlates with the expression of ceramide synthase 5. In addition, HPLC-MS/MS analysis shows a shift in ceramide species under neuroinflammatory conditions, favoring pro-apoptotic ceramide. CONCLUSIONS Together, these findings suggest that detected increased levels of pro-apoptotic ceramide might be a common denominator of neuroinflammation in different neurodegenerative diseases.
Collapse
Affiliation(s)
- Nienke M. de Wit
- Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, VU University Medical Center, PO Box 7057, 1007 MB Amsterdam, the Netherlands
| | - Sandra den Hoedt
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Pilar Martinez-Martinez
- Department of Neuroscience, School of Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Annemieke J. Rozemuller
- Department of Pathology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Monique T. Mulder
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Helga E. de Vries
- Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, VU University Medical Center, PO Box 7057, 1007 MB Amsterdam, the Netherlands
| |
Collapse
|
17
|
Rauschert S, Gázquez A, Uhl O, Kirchberg FF, Demmelmair H, Ruíz-Palacios M, Prieto-Sánchez MT, Blanco-Carnero JE, Nieto A, Larqué E, Koletzko B. Phospholipids in lipoproteins: compositional differences across VLDL, LDL, and HDL in pregnant women. Lipids Health Dis 2019; 18:20. [PMID: 30670033 PMCID: PMC6343318 DOI: 10.1186/s12944-019-0957-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 01/01/2019] [Indexed: 12/11/2022] Open
Abstract
Objective The aim of this study was to analyse the differences in the phospholipid composition of very low density (VLDL), low density (LDL) and high density lipoprotein (HDL) monolayers in pregnant lean and obese women. Methods LDL, HDL, and VLDL were isolated from plasma samples of 10 lean and 10 obese pregnant women, and their species composition of phosphatidylcholines (PC) and sphingomyelins (SM) was analysed by liquid-chromatography tandem mass-spectrometry. Wilcoxon-Mann-Whitney U test and principal component analysis (PCA) were used to investigate if metabolite profiles differed between the lean/obese group and between lipoprotein species. Results No significant differences have been found in the metabolite levels between obese and non-obese pregnant women. The PCA components 1 and 2 separated between LDL, HDL, and VLDL but not between normal weight and obese women. Twelve SM and one PCae were more abundant in LDL than in VLDL. In contrast, four acyl-alkyl-PC and two diacyl-PC were significantly higher in HDL compared to LDL. VLDL and HDL differed in three SM, seven acyl-alkyl-PC and one diacyl-PC (higher values in HDL) and 13 SM (higher in VLDL). We also found associations of some phospholipid species with HDL and LDL cholesterol. Conclusion In pregnant women phospholipid composition differs significantly in HDL, LDL and VLDL, similar to previous findings in men and non-pregnant women. Obese and lean pregnant women showed no significant differences in their lipoprotein associated metabolite profile. Electronic supplementary material The online version of this article (10.1186/s12944-019-0957-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sebastian Rauschert
- LMU - Ludwig-Maximilians-Universität Munich, Div. Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, University of Munich Medical Center, 80337, Munich, Germany
| | - Antonio Gázquez
- LMU - Ludwig-Maximilians-Universität Munich, Div. Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, University of Munich Medical Center, 80337, Munich, Germany.,Department of Physiology, Faculty of Biology, University of Murcia, Murcia, Spain
| | - Olaf Uhl
- LMU - Ludwig-Maximilians-Universität Munich, Div. Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, University of Munich Medical Center, 80337, Munich, Germany
| | - Franca F Kirchberg
- LMU - Ludwig-Maximilians-Universität Munich, Div. Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, University of Munich Medical Center, 80337, Munich, Germany
| | - Hans Demmelmair
- LMU - Ludwig-Maximilians-Universität Munich, Div. Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, University of Munich Medical Center, 80337, Munich, Germany
| | - María Ruíz-Palacios
- Department of Physiology, Faculty of Biology, University of Murcia, Murcia, Spain
| | - María T Prieto-Sánchez
- Obstetrics and Gynecology Service, Virgen de la Arrixaca Clinical Hospital, University of Murcia, Murcia, Murcia, Spain
| | - José E Blanco-Carnero
- Obstetrics and Gynecology Service, Virgen de la Arrixaca Clinical Hospital, University of Murcia, Murcia, Murcia, Spain
| | - Anibal Nieto
- Obstetrics and Gynecology Service, Virgen de la Arrixaca Clinical Hospital, University of Murcia, Murcia, Murcia, Spain
| | - Elvira Larqué
- Department of Physiology, Faculty of Biology, University of Murcia, Murcia, Spain
| | - Berthold Koletzko
- LMU - Ludwig-Maximilians-Universität Munich, Div. Metabolic and Nutritional Medicine, Dr. von Hauner Children's Hospital, University of Munich Medical Center, 80337, Munich, Germany.
| |
Collapse
|
18
|
Tomonaga N, Tsuduki T, Manabe Y, Sugawara T. Sphingoid bases of dietary ceramide 2-aminoethylphosphonate, a marine sphingolipid, absorb into lymph in rats. J Lipid Res 2018; 60:333-340. [PMID: 30552287 DOI: 10.1194/jlr.m085654] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 12/05/2018] [Indexed: 11/20/2022] Open
Abstract
Various functions of dietary sphingolipids have been reported; however, little is known about marine sphingolipids. Ceramide 2-aminoethylphosphonate (CAEP), an abundant sphingolipid in marine mollusks, frequently has a unique triene type of sphingoid base [2-amino-9-methyl-4,8,10-octadecatriene-1,3-diol (d19:3)]. We previously reported that dietary CAEP prepared from the skin of squid was digested in the intestinal mucosa of mice via ceramides to yield free sphingoid bases. How dietary CAEP is then used in the body remains unclear. Here, we investigated the absorption of dietary CAEP using a lipid absorption assay on the lymph collected from rats with thoracic duct cannulation. Our results reveal that sphingoid bases derived from CAEP, including d16:1, d18:1, and d19:3, were detected in the lymph after administration of CAEP. Lymphatic recovery of d19:3 was lower than that of other sphingoid bases. A large fraction of the absorbed sphingoid bases was present as complex sphingolipids, whereas a smaller portion was present in the free form. Fatty acids in ceramide moieties found in the lymph were partially different from dietary CAEP, which indicates that sphingoid bases derived from CAEP could be, at least in part, resynthesized into complex sphingolipids. Future studies should elucidate the metabolism of sphingoid bases derived from CAEP.
Collapse
Affiliation(s)
- Nami Tomonaga
- Laboratory of Technology of Marine Bioproducts, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kitashirakawaoiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Tsuyoshi Tsuduki
- Laboratory of Food and Biomolecular Science, Graduate School of Agriculture, Tohoku University, 468-1, Aoba, Aramaki, Aoba-ku, Sendai 980-0845, Japan
| | - Yuki Manabe
- Laboratory of Technology of Marine Bioproducts, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kitashirakawaoiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Tatsuya Sugawara
- Laboratory of Technology of Marine Bioproducts, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kitashirakawaoiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
19
|
Bottai D, Adami R, Ghidoni R. The crosstalk between glycosphingolipids and neural stem cells. J Neurochem 2018; 148:698-711. [PMID: 30269334 DOI: 10.1111/jnc.14600] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 09/13/2018] [Accepted: 09/18/2018] [Indexed: 01/19/2023]
Abstract
Until a few years ago, the majority of cell functions were envisioned as the result of protein and DNA activity. The cell membranes were considered as a mere structure of support and/or separation. In the last years, the function of cell membranes has, however, received more attention and their components of lipid nature have also been depicted as important cell mediators and the membrane organization was described as an important determinant for membrane-anchored proteins activity. In particular, because of their high diversity, glycosphingolipids offer a wide possibility of regulation. Specifically, the role of glycosphingolipids, in the fine-tuning of neuron activity, has recently received deep attention. For their pivotal role in vertebrate and mammals neural development, neural stem cells regulation is of main interest especially concerning their further functions in neurological pathology progression and treatment. Glycosphingolipids expression present a developmental regulation. In this view, glycosphingolipids can hold an important role in neural stem cells features because of their heterogeneity and their consequent capacity for eclectic interaction with other cell components.
Collapse
Affiliation(s)
- Daniele Bottai
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Raffaella Adami
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Riccardo Ghidoni
- Department of Health Sciences, University of Milan, Milan, Italy
| |
Collapse
|
20
|
Trinel M, Jullian V, Le Lamer AC, Mhamdi I, Mejia K, Castillo D, Cabanillas BJ, Fabre N. Profiling of Hura crepitans L. latex by ultra-high-performance liquid chromatography/atmospheric pressure chemical ionisation linear ion trap Orbitrap mass spectrometry. PHYTOCHEMICAL ANALYSIS : PCA 2018; 29:627-638. [PMID: 30019471 DOI: 10.1002/pca.2776] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/12/2018] [Accepted: 05/25/2018] [Indexed: 06/08/2023]
Abstract
INTRODUCTION The phytochemistry of the latex of Hura crepitans L. (Euphorbiaceae), a widespread tree in the Amazonian forest having many uses, is little known. Only huratoxin, a daphnane diterpene orthoester, has been described despite the high pharmacological potential of this kind of compounds. Glucosphingolipids (cerebrosides) are also known to be distributed in Euphorbiaceae latexes. OBJECTIVE To tentatively identify daphnanes diterpenes and cerebrosides in the latex of H. crepitans. METHODS An ethanolic extract of the lyophilised latex of H. crepitans was analysed by ultra-high-performance liquid chromatography (UHPLC) coupled with positive and negative atmospheric pressure chemical ionisation high-resolution mass spectrometry (APCI-HRMS) method using a quadrupole/linear ion trap/Orbitrap (LTQ-Orbitrap). Tandem mass spectrometry (MS/MS) spectra were recorded by two different fragmentation modes: collision induced dissociation (CID) and higher-energy collisional dissociation (HCD). RESULTS The analysis of CID- and HCD-MS/MS spectra allowed to propose fragmentation patterns for daphnane esters and cerebrosides and highlight diagnostic ions in positive and negative ion modes. A total of 34 compounds including 24 daphnane esters and 10 cerebrosides have been tentatively annotated. Among them, 17 daphnane diterpenes bearing one or two acyl chains are new compounds and the cerebrosides are described in the genus Hura for the first time. CONCLUSION This study revealed the chemical constituents of the latex of H. crepitans and particularly its richness and chemical diversity in daphnane diterpenes, more frequently encountered in the species of Thymelaeaceae.
Collapse
Affiliation(s)
- Manon Trinel
- UMR 152 Pharma Dev, Université de Toulouse, IRD, UPS, France
| | - Valérie Jullian
- UMR 152 Pharma Dev, Université de Toulouse, IRD, UPS, France
- Institut de recherche pour le Développement (IRD), UMR 152, Pharma Dev, Mission IRD, Lima, Peru
| | | | - Icram Mhamdi
- UMR 152 Pharma Dev, Université de Toulouse, IRD, UPS, France
| | - Kember Mejia
- Instituto de Investigaciones de la Amazonia Peruana (IIAP), Iquitos, Peru
| | | | | | - Nicolas Fabre
- UMR 152 Pharma Dev, Université de Toulouse, IRD, UPS, France
| |
Collapse
|
21
|
Olsen ASB, Færgeman NJ. Sphingolipids: membrane microdomains in brain development, function and neurological diseases. Open Biol 2018; 7:rsob.170069. [PMID: 28566300 PMCID: PMC5451547 DOI: 10.1098/rsob.170069] [Citation(s) in RCA: 223] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 04/30/2017] [Indexed: 12/11/2022] Open
Abstract
Sphingolipids are highly enriched in the nervous system where they are pivotal constituents of the plasma membranes and are important for proper brain development and functions. Sphingolipids are not merely structural elements, but are also recognized as regulators of cellular events by their ability to form microdomains in the plasma membrane. The significance of such compartmentalization spans broadly from being involved in differentiation of neurons and synaptic transmission to neuronal–glial interactions and myelin stability. Thus, perturbations of the sphingolipid metabolism can lead to rearrangements in the plasma membrane, which has been linked to the development of various neurological diseases. Studying microdomains and their functions has for a long time been synonymous with studying the role of cholesterol. However, it is becoming increasingly clear that microdomains are very heterogeneous, which among others can be ascribed to the vast number of sphingolipids. In this review, we discuss the importance of microdomains with emphasis on sphingolipids in brain development and function as well as how disruption of the sphingolipid metabolism (and hence microdomains) contributes to the pathogenesis of several neurological diseases.
Collapse
Affiliation(s)
- Anne S B Olsen
- Villum Center for Bioanalytical Sciences, Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Nils J Færgeman
- Villum Center for Bioanalytical Sciences, Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| |
Collapse
|
22
|
Reisberg M, Arnold N, Porzel A, Neubert RHH, Dräger B. Malusides, novel glucosylceramides isolated from apple pomace (Malus domestica). Z NATURFORSCH C 2018; 73:33-39. [PMID: 28937966 DOI: 10.1515/znc-2017-0059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 05/28/2017] [Indexed: 11/15/2022]
Abstract
Three new glucosylceramides (GluCers) named malusides I-III (1-3) were isolated from apple (cultivars of Malus domestica) pomace (fruit material remaining after juice extraction). An unusual oxo/hydroxy group pattern within the sphingadienine (d18:2) type sphingoid base was observed. All compounds contained the same α-hydroxylated fatty acid (h16:0) and a β-D-glucose moiety. Their structures were assigned on the basis of one- and two-dimensional (1D and 2D) nuclear magnetic resonance (NMR) spectroscopic analyses and mass spectrometry (MS) measurements.
Collapse
Affiliation(s)
- Mathias Reisberg
- Department of Pharmaceutical Biology and Pharmacology, Institute of Pharmacy, Faculty of Natural Sciences I, Martin Luther University Halle-Wittenberg, Hoher Weg 8, D-06120 Halle (Saale), Germany
| | - Norbert Arnold
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle (Saale), Germany
| | - Andrea Porzel
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle (Saale), Germany
| | - Reinhard H H Neubert
- Institute of Applied Dermatopharmacy at the Martin Luther University Halle-Wittenberg, Weinbergweg 23, D-06120 Halle (Saale), Germany
| | - Birgit Dräger
- Department of Pharmaceutical Biology and Pharmacology, Institute of Pharmacy, Faculty of Natural Sciences I, Martin Luther University Halle-Wittenberg, Hoher Weg 8, D-06120 Halle (Saale), Germany
| |
Collapse
|
23
|
Dietary and Endogenous Sphingolipid Metabolism in Chronic Inflammation. Nutrients 2017; 9:nu9111180. [PMID: 29143791 PMCID: PMC5707652 DOI: 10.3390/nu9111180] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 10/21/2017] [Accepted: 10/25/2017] [Indexed: 12/13/2022] Open
Abstract
Chronic inflammation is a common underlying factor in many major metabolic diseases afflicting Western societies. Sphingolipid metabolism is pivotal in the regulation of inflammatory signaling pathways. The regulation of sphingolipid metabolism is in turn influenced by inflammatory pathways. In this review, we provide an overview of sphingolipid metabolism in mammalian cells, including a description of sphingolipid structure, biosynthesis, turnover, and role in inflammatory signaling. Sphingolipid metabolites play distinct and complex roles in inflammatory signaling and will be discussed. We also review studies examining dietary sphingolipids and inflammation, derived from in vitro and rodent models, as well as human clinical trials. Dietary sphingolipids appear to influence inflammation-related chronic diseases through inhibiting intestinal lipid absorption, altering gut microbiota, activation of anti-inflammatory nuclear receptors, and neutralizing responses to inflammatory stimuli. The anti-inflammatory effects observed with consuming dietary sphingolipids are in contrast to the observation that most cellular sphingolipids play roles in augmenting inflammatory signaling. The relationship between dietary sphingolipids and low-grade chronic inflammation in metabolic disorders is complex and appears to depend on sphingolipid structure, digestion, and metabolic state of the organism. Further research is necessary to confirm the reported anti-inflammatory effects of dietary sphingolipids and delineate their impacts on endogenous sphingolipid metabolism.
Collapse
|
24
|
Wiercigroch E, Szafraniec E, Czamara K, Pacia MZ, Majzner K, Kochan K, Kaczor A, Baranska M, Malek K. Raman and infrared spectroscopy of carbohydrates: A review. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017. [PMID: 28599236 DOI: 10.1002/jrs.4607] [Citation(s) in RCA: 638] [Impact Index Per Article: 79.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Carbohydrates are widespread and naturally occurring compounds, and essential constituents for living organisms. They are quite often reported when biological systems are studied and their role is discussed. However surprisingly, up till now there is no database collecting vibrational spectra of carbohydrates and their assignment, as has been done already for other biomolecules. So, this paper serves as a comprehensive review, where for selected 14 carbohydrates in the solid state both FT-Raman and ATR FT-IR spectra were collected and assigned. Carbohydrates can be divided into four chemical groups and in the same way is organized this review. First, the smallest molecules are discussed, i.e. monosaccharides (d-(-)-ribose, 2-deoxy-d-ribose, l-(-)-arabinose, d-(+)-xylose, d-(+)-glucose, d-(+)-galactose and d-(-)-fructose) and disaccharides (d-(+)-sucrose, d-(+)-maltose and d-(+)-lactose), and then more complex ones, i.e. trisaccharides (d-(+)-raffinose) and polysaccharides (amylopectin, amylose, glycogen). Both Raman and IR spectra were collected in the whole spectral range and discussed looking at the specific regions, i.e. region V (3600-3050cm-1), IV (3050-2800cm-1) and II (1200-800cm-1) assigned to the stretching vibrations of the OH, CH/CH2 and C-O/C-C groups, respectively, and region III (1500-1200cm-1) and I (800-100cm-1) dominated by deformational modes of the CH/CH2 and CCO groups, respectively. In spite of the fact that vibrational spectra of saccharides are significantly less specific than spectra of other biomolecules (e.g. lipids or proteins), marker bands of the studied molecules can be identified and correlated with their structure.
Collapse
Affiliation(s)
- Ewelina Wiercigroch
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow, Poland
| | - Ewelina Szafraniec
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow, Poland
| | - Krzysztof Czamara
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow, Poland
| | - Marta Z Pacia
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow, Poland
| | - Katarzyna Majzner
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow, Poland
| | - Kamila Kochan
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow, Poland
| | - Agnieszka Kaczor
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow, Poland
| | - Malgorzata Baranska
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow, Poland.
| | - Kamilla Malek
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow, Poland.
| |
Collapse
|
25
|
Hama K, Fujiwara Y, Tabata H, Takahashi H, Yokoyama K. Comprehensive Quantitation Using Two Stable Isotopically Labeled Species and Direct Detection of N-Acyl Moiety of Sphingomyelin. Lipids 2017; 52:789-799. [PMID: 28770378 PMCID: PMC5583271 DOI: 10.1007/s11745-017-4279-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 07/20/2017] [Indexed: 11/28/2022]
Abstract
Sphingomyelin (ceramide-phosphocholine, CerPCho) is a common sphingolipid in mammalian cells and is composed of phosphorylcholine and ceramide as polar and hydrophobic components, respectively. In this study, a qualitative liquid chromatography-electrospray ionization tandem mass spectrometry (LC–ESI–MS/MS/MS) analysis is proposed in which CerPCho structures were assigned based on product ion spectra corresponding to sphingosylphosphorylcholine and N-acyl moieties. From MS/MS/MS analysis of CerPCho, we observed product ion spectra of the N-acyl fatty acids as [RCO2]− ions as well as sphingosylphosphorylcholine. A calibration curve for CerPCho was constructed using two stable isotopically labeled CerPCho species and then used to quantify the CerPCho species in HeLa cells as a proof-of-principle study. The present study proposes an accurate method for quantifying and assigning structures to each CerPCho species in crude biologic samples by LC–ESI–MS/MS/MS analysis.
Collapse
Affiliation(s)
- Kotaro Hama
- Faculty of Pharmaceutical Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan.
| | - Yuko Fujiwara
- Faculty of Pharmaceutical Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Hidetsugu Tabata
- Faculty of Pharmaceutical Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Hideyo Takahashi
- Faculty of Pharmaceutical Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Kazuaki Yokoyama
- Faculty of Pharmaceutical Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| |
Collapse
|
26
|
Li Y, Lou Y, Mu T, Ke A, Ran Z, Xu J, Chen J, Zhou C, Yan X, Xu Q, Tan Y. Sphingolipids in marine microalgae: Development and application of a mass spectrometric method for global structural characterization of ceramides and glycosphingolipids in three major phyla. Anal Chim Acta 2017; 986:82-94. [PMID: 28870328 DOI: 10.1016/j.aca.2017.07.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 07/14/2017] [Accepted: 07/16/2017] [Indexed: 01/01/2023]
Abstract
Sphingolipid compositions are crucial for the structural and physiological properties of microalgae membranes. In the present study, we developed a quadrupole time-of-flight (Q-TOF) mass spectrometric method based on MSE data collection for the identification of sphingolipids with high efficiency, selectivity, sensitivity and mass accuracy and applied this method for precise structural identification and quantitative profiling of ceramides and glycosphingolipids in total lipid extracts from 17 strains of microalgae, including 11 strains of diatom, 3 strains of dinoflagellate and 3 strains of haptophyta. Using this method, four species of sphingolipids including 27 ceramides, 13 monosaccharide ceramides, 18 disaccharide ceramides and 18 trisaccharide ceramides were identified. The compositions of sphingolipid-included glycosyl moieties, long chain bases and N-acyl chains showed a significant difference among different microalgae categories. Some long chain bases including d19:2, d19:3 and d19:4, glycosyl moieties including disaccharide and trisaccharide, and N-acyl chains such as 14:0, 14:1, 24:0, 24:1, h18:1, h19:1 and h22:0-2 can be chosen as the molecular signature for microalgae from three major phyla. This methodology will be useful for a wide range of physiological and pathological studies of sphingolipids. Furthermore, the diversity of sphingolipid structure could provide a new criterion for microalgae chemotaxonomy.
Collapse
Affiliation(s)
- Yanrong Li
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Chinese Ministry of Education, Ningbo, Zhejiang 315211, China; Ningbo Institute of Oceanography, Ningbo, Zhejiang 315832, China
| | - Yamin Lou
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Chinese Ministry of Education, Ningbo, Zhejiang 315211, China
| | - Tong Mu
- Ningbo Institute of Oceanography, Ningbo, Zhejiang 315832, China
| | - Aiying Ke
- Zhejiang Mariculture Research Institute, Wenzhou 325000, China
| | - Zhaoshou Ran
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Chinese Ministry of Education, Ningbo, Zhejiang 315211, China
| | - Jilin Xu
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Chinese Ministry of Education, Ningbo, Zhejiang 315211, China.
| | - Juanjuan Chen
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Chinese Ministry of Education, Ningbo, Zhejiang 315211, China
| | - Chengxu Zhou
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Chinese Ministry of Education, Ningbo, Zhejiang 315211, China
| | - Xiaojun Yan
- Ningbo Institute of Oceanography, Ningbo, Zhejiang 315832, China.
| | - Qingshan Xu
- Lijing Chenhai Baoer Bio. Ltd., Lijiang, Yunnan 674100, China
| | - Yinghong Tan
- Lijing Chenhai Baoer Bio. Ltd., Lijiang, Yunnan 674100, China
| |
Collapse
|
27
|
Tessema EN, Gebre-Mariam T, Schmelzer CE, Neubert RH. Isolation and structural characterization of glucosylceramides from Ethiopian plants by LC/APCI-MS/MS. J Pharm Biomed Anal 2017; 141:241-249. [DOI: 10.1016/j.jpba.2017.04.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 04/19/2017] [Accepted: 04/22/2017] [Indexed: 12/21/2022]
|
28
|
Reisberg M, Arnold N, Porzel A, Neubert RHH, Dräger B. Production of Rare Phyto-Ceramides from Abundant Food Plant Residues. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:1507-1517. [PMID: 28118713 DOI: 10.1021/acs.jafc.6b04275] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Ceramides (Cers) are major components of the outermost layer of the skin, the stratum corneum, and play a crucial role in permeability barrier functions. Alterations in Cer composition causing skin diseases are compensated with semisynthetic skin-identical Cers. Plants constitute new resources for Cer production as they contain glucosylceramides (GluCers) as major components. GluCers were purified from industrial waste plant materials, apple pomace (Malus domestica), wheat germs (Triticum sp.), and coffee grounds (Coffea sp.), with GluCer contents of 28.9 mg, 33.7 mg, and 4.4 mg per 100 g of plant material. Forty-five species of GluCers (1-45) were identified with different sphingoid bases, saturated or monounsaturated α-hydroxy fatty acids (C15-28), and β-glucose as polar headgroup. Three main GluCers were hydrolyzed by a recombinant human glucocerebrosidase to produce phyto-Cers (46-48). These studies showed that rare and expensive phyto-Cers can be obtained from industrial food plant residues.
Collapse
Affiliation(s)
- Mathias Reisberg
- Department of Pharmaceutical Biology and Pharmacology, Institute of Pharmacy, Faculty of Natural Sciences I, Martin Luther University Halle-Wittenberg , Hoher Weg 8, D-06120 Halle (Saale), Germany
| | - Norbert Arnold
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry , Weinberg 3, D-06120 Halle (Saale), Germany
| | - Andrea Porzel
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry , Weinberg 3, D-06120 Halle (Saale), Germany
| | - Reinhard H H Neubert
- Department of Pharmaceutical Technology and Biopharmaceutics, Institute of Pharmacy, Faculty of Natural Sciences I, Martin Luther University Halle-Wittenberg , Wolfgang-Langenbeck-Str. 4, D-06120 Halle (Saale), Germany
| | - Birgit Dräger
- Department of Pharmaceutical Biology and Pharmacology, Institute of Pharmacy, Faculty of Natural Sciences I, Martin Luther University Halle-Wittenberg , Hoher Weg 8, D-06120 Halle (Saale), Germany
| |
Collapse
|
29
|
|
30
|
Michaelson LV, Napier JA, Molino D, Faure JD. Plant sphingolipids: Their importance in cellular organization and adaption. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1861:1329-1335. [PMID: 27086144 PMCID: PMC4970446 DOI: 10.1016/j.bbalip.2016.04.003] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 03/31/2016] [Accepted: 04/01/2016] [Indexed: 12/22/2022]
Abstract
Sphingolipids and their phosphorylated derivatives are ubiquitous bio-active components of cells. They are structural elements in the lipid bilayer and contribute to the dynamic nature of the membrane. They have been implicated in many cellular processes in yeast and animal cells, including aspects of signaling, apoptosis, and senescence. Although sphingolipids have a better defined role in animal systems, they have been shown to be central to many essential processes in plants including but not limited to, pollen development, signal transduction and in the response to biotic and abiotic stress. A fuller understanding of the roles of sphingolipids within plants has been facilitated by classical biochemical studies and the identification of mutants of model species. Recently the development of powerful mass spectrometry techniques hailed the advent of the emerging field of lipidomics enabling more accurate sphingolipid detection and quantitation. This review will consider plant sphingolipid biosynthesis and function in the context of these new developments. This article is part of a Special Issue entitled: Plant Lipid Biology edited by Kent D. Chapman and Ivo Feussner.
Collapse
Affiliation(s)
- Louise V Michaelson
- Biological Chemistry and Crop Protection, Rothamsted Research, Harpenden AL5 2JQ, UK.
| | - Johnathan A Napier
- Biological Chemistry and Crop Protection, Rothamsted Research, Harpenden AL5 2JQ, UK.
| | - Diana Molino
- Ecole Normale Supérieure-PSL Research University, Département de Chimie, Sorbonne Universités - UPMC Univ Paris 06, CNRS UMR 8640 PASTEUR, Paris, France.
| | - Jean-Denis Faure
- INRA, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS3559, Saclay Plant Sciences, Versailles, France; Agro Paris Tech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS3559, Saclay Plant Sciences, Versailles, France.
| |
Collapse
|
31
|
Astudillo L, Therville N, Colacios C, Ségui B, Andrieu-Abadie N, Levade T. Glucosylceramidases and malignancies in mammals. Biochimie 2016; 125:267-80. [DOI: 10.1016/j.biochi.2015.11.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 11/09/2015] [Indexed: 01/11/2023]
|
32
|
Gowda SGB, Usuki S, Hammam MAS, Murai Y, Igarashi Y, Monde K. Highly efficient preparation of sphingoid bases from glucosylceramides by chemoenzymatic method. J Lipid Res 2015; 57:325-31. [PMID: 26667669 DOI: 10.1194/jlr.d065268] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Indexed: 12/21/2022] Open
Abstract
Sphingoid base derivatives have attracted increasing attention as promising chemotherapeutic candidates against lifestyle diseases such as diabetes and cancer. Natural sphingoid bases can be a potential resource instead of those derived by time-consuming total organic synthesis. In particular, glucosylceramides (GlcCers) in food plants are enriched sources of sphingoid bases, differing from those of animals. Several chemical methodologies to transform GlcCers to sphingoid bases have already investigated; however, these conventional methods using acid or alkaline hydrolysis are not efficient due to poor reaction yield, producing complex by-products and resulting in separation problems. In this study, an extremely efficient and practical chemoenzymatic transformation method has been developed using microwave-enhanced butanolysis of GlcCers and a large amount of readily available almond β-glucosidase for its deglycosylation reaction of lysoGlcCers. The method is superior to conventional acid/base hydrolysis methods in its rapidity and its reaction cleanness (no isomerization, no rearrangement) with excellent overall yield.
Collapse
Affiliation(s)
- Siddabasave Gowda B Gowda
- Graduate School of Life Science, Frontier Research Center for Post Genome Science and Technology, Faculty of Advanced Life Science, Hokkaido University, Hokkaido, Sapporo, Japan 001-0021
| | - Seigo Usuki
- Laboratory of Biomembrane and Biofunctional Chemistry, Frontier Research Center for Post Genome Science and Technology, Faculty of Advanced Life Science, Hokkaido University, Hokkaido, Sapporo, Japan 001-0021
| | - Mostafa A S Hammam
- Laboratory of Chemical Biology, Frontier Research Center for Post Genome Science and Technology, Faculty of Advanced Life Science, Hokkaido University, Hokkaido, Sapporo, Japan 001-0021
| | - Yuta Murai
- Laboratory of Chemical Biology, Frontier Research Center for Post Genome Science and Technology, Faculty of Advanced Life Science, Hokkaido University, Hokkaido, Sapporo, Japan 001-0021
| | - Yasuyuki Igarashi
- Laboratory of Biomembrane and Biofunctional Chemistry, Frontier Research Center for Post Genome Science and Technology, Faculty of Advanced Life Science, Hokkaido University, Hokkaido, Sapporo, Japan 001-0021
| | - Kenji Monde
- Laboratory of Chemical Biology, Frontier Research Center for Post Genome Science and Technology, Faculty of Advanced Life Science, Hokkaido University, Hokkaido, Sapporo, Japan 001-0021
| |
Collapse
|
33
|
Reversed-Phase Liquid Chromatography–Quadrupole-Time-of-Flight Mass Spectrometry for High-Throughput Molecular Profiling of Sea Cucumber Cerebrosides. Lipids 2015; 50:667-79. [DOI: 10.1007/s11745-015-4039-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 05/18/2015] [Indexed: 10/23/2022]
|
34
|
Jia Z, Li S, Cong P, Wang Y, Sugawara T, Xue C, Xu J. High Throughput Analysis of Cerebrosides from the Sea Cucumber Pearsonothria graeffei by Liquid Chromatography—Quadrupole-Time-of-Flight Mass Spectrometry. J Oleo Sci 2015; 64:51-60. [DOI: 10.5650/jos.ess14136] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Zicai Jia
- College of Food Science and Engineering, Ocean University of China
| | - Shiyan Li
- Aquatic Products Quality Testing Center of Zhejiang Province
| | - Peixu Cong
- College of Food Science and Engineering, Ocean University of China
| | - Yuming Wang
- College of Food Science and Engineering, Ocean University of China
| | - Tatsuya Sugawara
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China
| | - Jie Xu
- College of Food Science and Engineering, Ocean University of China
| |
Collapse
|
35
|
Spincemaille P, Matmati N, Hannun YA, Cammue BPA, Thevissen K. Sphingolipids and mitochondrial function in budding yeast. Biochim Biophys Acta Gen Subj 2014; 1840:3131-7. [PMID: 24973565 DOI: 10.1016/j.bbagen.2014.06.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 05/09/2014] [Accepted: 06/19/2014] [Indexed: 02/07/2023]
Abstract
BACKGROUND Sphingolipids (SLs) are not only key components of cellular membranes, but also play an important role as signaling molecules in orchestrating both cell growth and apoptosis. In Saccharomyces cerevisiae, three complex SLs are present and hydrolysis of either of these species is catalyzed by the inositol phosphosphingolipid phospholipase C (Isc1p). Strikingly, mutants deficient in Isc1p display several hallmarks of mitochondrial dysfunction such as the inability to grow on a non-fermentative carbon course, increased oxidative stress and aberrant mitochondrial morphology. SCOPE OF REVIEW In this review, we focus on the pivotal role of Isc1p in regulating mitochondrial function via SL metabolism, and on Sch9p as a central signal transducer. Sch9p is one of the main effectors of the target of rapamycin complex 1 (TORC1), which is regarded as a crucial signaling axis for the regulation of Isc1p-mediated events. Finally, we describe the retrograde response, a signaling event originating from mitochondria to the nucleus, which results in the induction of nuclear target genes. Intriguingly, the retrograde response also interacts with SL homeostasis. MAJOR CONCLUSIONS All of the above suggests a pivotal signaling role for SLs in maintaining correct mitochondrial function in budding yeast. GENERAL SIGNIFICANCE Studies with budding yeast provide insight on SL signaling events that affect mitochondrial function.
Collapse
Affiliation(s)
- Pieter Spincemaille
- Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Kasteelpark Arenberg 20, 3001 Heverlee, Belgium
| | - Nabil Matmati
- Department of Medicine and the Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Yusuf A Hannun
- Department of Medicine and the Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Bruno P A Cammue
- Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Kasteelpark Arenberg 20, 3001 Heverlee, Belgium; Department of Plant Systems Biology, VIB, Technologiepark 927, 9052 Ghent, Belgium.
| | - Karin Thevissen
- Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Kasteelpark Arenberg 20, 3001 Heverlee, Belgium
| |
Collapse
|
36
|
Spincemaille P, Cammue BP, Thevissen K. Sphingolipids and mitochondrial function, lessons learned from yeast. MICROBIAL CELL (GRAZ, AUSTRIA) 2014; 1:210-224. [PMID: 28357246 PMCID: PMC5349154 DOI: 10.15698/mic2014.07.156] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 06/10/2014] [Indexed: 01/22/2023]
Abstract
Mitochondrial dysfunction is a hallmark of several neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease, but also of cancer, diabetes and rare diseases such as Wilson's disease (WD) and Niemann Pick type C1 (NPC). Mitochondrial dysfunction underlying human pathologies has often been associated with an aberrant cellular sphingolipid metabolism. Sphingolipids (SLs) are important membrane constituents that also act as signaling molecules. The yeast Saccharomyces cerevisiae has been pivotal in unraveling mammalian SL metabolism, mainly due to the high degree of conservation of SL metabolic pathways. In this review we will first provide a brief overview of the major differences in SL metabolism between yeast and mammalian cells and the use of SL biosynthetic inhibitors to elucidate the contribution of specific parts of the SL metabolic pathway in response to for instance stress. Next, we will discuss recent findings in yeast SL research concerning a crucial signaling role for SLs in orchestrating mitochondrial function, and translate these findings to relevant disease settings such as WD and NPC. In summary, recent research shows that S. cerevisiae is an invaluable model to investigate SLs as signaling molecules in modulating mitochondrial function, but can also be used as a tool to further enhance our current knowledge on SLs and mitochondria in mammalian cells.
Collapse
Affiliation(s)
- Pieter Spincemaille
- Centre of Microbial and Plant Genetics (CMPG), KU Leuven,
Kasteelpark Arenberg 20, 3001 Heverlee, Belgium
| | - Bruno P. Cammue
- Centre of Microbial and Plant Genetics (CMPG), KU Leuven,
Kasteelpark Arenberg 20, 3001 Heverlee, Belgium
- Department of Plant Systems Biology, VIB, Technologiepark 927, 9052,
Ghent, Belgium
| | - Karin Thevissen
- Centre of Microbial and Plant Genetics (CMPG), KU Leuven,
Kasteelpark Arenberg 20, 3001 Heverlee, Belgium
| |
Collapse
|
37
|
Three homologous genes encoding functional ∆8-sphingolipid desaturase in Populus tomentosa. Genes Genomics 2014. [DOI: 10.1007/s13258-013-0167-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
38
|
Zhao F, Xu J, Chen J, Yan X, Zhou C, Li S, Xu X, Ye F. Structural elucidation of two types of novel glycosphingolipids in three strains of Skeletonema by liquid chromatography coupled with mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2013; 27:1535-1547. [PMID: 23722688 DOI: 10.1002/rcm.6602] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Revised: 04/17/2013] [Accepted: 04/18/2013] [Indexed: 06/02/2023]
Abstract
RATIONALE Glycosphingolipids (GSLs) are important components of the cell membrane; however, little is known about GSLs in microalgae. We analyzed GSLs in three strains of Skeletonema microalgae by liquid chromatography coupled with mass spectrometry. METHODS Total lipid was extracted from Skeletonema microalgae. Separation of lipids was achieved via reversed-phase liquid chromatography, and mass spectrometric analysis of the lithium adduct of GSLs was conducted to determine their structures. RESULTS Two types of novel glycosphingolipids were identified from three strains of Skeletonema microalgae. The N-acyl groups were primarily long-chain saturated or monoenoic fatty acids (monounsaturated fatty acids) with 16C and 20 to 24C. The sphingoid long-chain bases (LCB) were sphingosine, sphingadienine and sphingatrienine. The saccharide polar head groups of glycosphingolipids were disaccharide (heptose-hexose) or trisaccharide (heptose-hexose-hexose). Semi-quantitative analysis of GLSs in the three strains of microalgae showed that GSL contents ranged from 0.09 to 8.79 nmol/mg dry microalgae powder. CONCLUSIONS A qualitative method was developed for the identification of GSLs in microalgae. Two types of novel GSLs were identified from three strains of Skeletonema, which might have important biological functions. It could also provide a reliable tool for chemotaxonomy of microalgae.
Collapse
Affiliation(s)
- Fang Zhao
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Chinese Ministry of Education, Ningbo, China
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Wolff D, ter Veld F, Köhler T, Poetsch A. Combined application of targeted and untargeted proteomics identifies distinct metabolic alterations in the tetraacetylphytosphingosine (TAPS) producing yeast Wickerhamomyces ciferrii. J Proteomics 2013; 82:274-87. [PMID: 23500128 DOI: 10.1016/j.jprot.2013.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 02/26/2013] [Accepted: 03/04/2013] [Indexed: 10/27/2022]
Abstract
UNLABELLED The Wickerhamomyces ciferrii strain NRRL Y-1031 F-60-10A is a well-known producer of tetraacetylphytosphingosine (TAPS) and used for the biotechnological production of sphingolipids and ceramides. It was our aim to gain new biological insights into the sphingolipid metabolism by employing a dual platform mass spectrometry strategy. The first step comprised metabolic (15)N-labeling in combination with label-free proteomics using high resolution LTQ Orbitrap mass spectrometry. Then selected reaction monitoring tandem mass spectrometry served for the targeted quantification of sphingoid base biosynthesis enzymes. The non-producer strain NRRL Y-1031-27 served as a reference strain. In total, 1697 proteins were identified, and 123 enzymes of main metabolic pathways were observed as differentially expressed. Major findings were: 1) the likely presence of higher carbon flux in NRRL Y-1031 F-60-10A, resulting in higher availability of pyruvate and acetyl-CoA; 2) indications of oleaginous yeast-like behavior in NRRL Y-1031 F-60-10A; and 3) approx. 2-fold higher abundance of eight sphingolipid biosynthesis enzymes in NRRL Y-1031 F-60-10A. Taken together, in NRRL Y-1031 F-60-10A, the levels of glycolytic enzymes apparently gear carbon flux towards higher acetyl-CoA synthesis rates, while simultaneously reducing protein biosynthesis in the process. Thereby, C2 building blocks for acyl-moieties and downstream sphingoid base acetylation are provided to maintain TAPS production. BIOLOGICAL SIGNIFICANCE First quantitative proteome study for a phytosphingosine-producing yeast.
Collapse
Affiliation(s)
- Daniel Wolff
- Dept. of Plant Biochemistry, Ruhr-University Bochum, D-44801 Bochum, Germany
| | | | | | | |
Collapse
|
40
|
Mencarelli C, Martinez–Martinez P. Ceramide function in the brain: when a slight tilt is enough. Cell Mol Life Sci 2013; 70:181-203. [PMID: 22729185 PMCID: PMC3535405 DOI: 10.1007/s00018-012-1038-x] [Citation(s) in RCA: 188] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 05/16/2012] [Accepted: 05/21/2012] [Indexed: 12/14/2022]
Abstract
Ceramide, the precursor of all complex sphingolipids, is a potent signaling molecule that mediates key events of cellular pathophysiology. In the nervous system, the sphingolipid metabolism has an important impact. Neurons are polarized cells and their normal functions, such as neuronal connectivity and synaptic transmission, rely on selective trafficking of molecules across plasma membrane. Sphingolipids are abundant on neural cellular membranes and represent potent regulators of brain homeostasis. Ceramide intracellular levels are fine-tuned and alteration of the sphingolipid-ceramide profile contributes to the development of age-related, neurological and neuroinflammatory diseases. The purpose of this review is to guide the reader towards a better understanding of the sphingolipid-ceramide pathway system. First, ceramide biology is presented including structure, physical properties and metabolism. Second, we describe the function of ceramide as a lipid second messenger in cell physiology. Finally, we highlight the relevance of sphingolipids and ceramide in the progression of different neurodegenerative diseases.
Collapse
Affiliation(s)
- Chiara Mencarelli
- Department of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands
| | - Pilar Martinez–Martinez
- Department of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
41
|
Akamatsu Y. Reminiscence of our research on membrane phospholipids in mammalian cells by using the novel technology. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2012; 88:536-53. [PMID: 23229749 PMCID: PMC3552046 DOI: 10.2183/pjab.88.536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 10/02/2012] [Indexed: 06/01/2023]
Abstract
By using "our devised up-to-the-second technique" over 30 years ago, we succeeded in the first isolation in the world of the three different kinds of mammalian cell mutants defective in the biosynthesis on each of phosphatidylserine (PS), cardiolipin (CL) and sphingomyelin (SM) from the parental CHO cells. As the results, we found that during the biosyntheses of PS and SM, the biosynthetic precursor or the final lipids are transported from their synthesized intracellular organelles to the plasma membranes via the other intracellular organelles. We further clarified the presence of the reversed routes for PS and SM from the plasma membranes to their synthesized organelles too. Our first epoch-making finding is not only the cycling inter-conversion reactions between PS and PE catalyzed by PSS-II and PSD but also their simultaneous transferring between MAM and Mit (found by O. Kuge). Our second finding is "the ceramide-trafficking protein (CERT)" working as the specific transfer protein of ceramide from the ER to the Golgi apparatus, during the SM biosynthesis (by K. Hanada). As for their new biological roles, we clarified possible contribution of PS and/or PE to the fusion process between viral envelope and endosomal membrane, releasing the genetic information of the virus to the host cytoplasm. CL is contributing to the functional NADH-ubiquinone reductase activity by keeping the right structure of Coenzyme Q9 for its functioning. SM and cholesterol form the microdomain within the plasma membrane, so-called "the raft structure" where the GPI-anchored proteins are specifically located for their functioning.
Collapse
Affiliation(s)
- Yuzuru Akamatsu
- National Institute of Infectious Diseases of Japan, Tokyo, Japan.
| |
Collapse
|
42
|
Salas JJ, Markham JE, Martínez-Force E, Garcés R. Characterization of sphingolipids from sunflower seeds with altered fatty acid composition. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:12486-12492. [PMID: 22034947 DOI: 10.1021/jf203366z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Sphingolipids are a group of lipids that are derived from long-chain 1,3-dihydroxy-2-amino bases and that are involved in important processes in plants. Long-chain bases are usually found bound to long-chain fatty acids forming ceramides, the lipophilic moiety of the most common sphingolipid classes found in plant tissues: glucosyl-ceramides and glucosyl inositol phosphoryl-ceramides (GIPCs). The developing sunflower seed kernel is a tissue rich in sphingolipids, although, importantly, its glycerolipid composition can vary if some steps of the fatty acid synthesis are altered. Here, the sphingolipid composition of the seed from different sunflower mutants with altered fatty acid compositions was studied. The long-chain base composition and content were analyzed, and it was found to be similar in all of the mutants studied. The sphingolipid species were also determined by mass spectrometry, and some differences were found in highly saturated sunflower mutants, which contained higher levels of GIPC, ceramides, and hydroxyl-ceramides.
Collapse
Affiliation(s)
- Joaquín J Salas
- Instituto de Grasa (CSIC), Av. Padre García Tejero, 4, 41012, Sevilla, Spain.
| | | | | | | |
Collapse
|
43
|
Merrill AH. Sphingolipid and glycosphingolipid metabolic pathways in the era of sphingolipidomics. Chem Rev 2011; 111:6387-422. [PMID: 21942574 PMCID: PMC3191729 DOI: 10.1021/cr2002917] [Citation(s) in RCA: 588] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Indexed: 12/15/2022]
Affiliation(s)
- Alfred H Merrill
- School of Biology, and the Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332-0230, USA.
| |
Collapse
|
44
|
Sullards MC, Liu Y, Chen Y, Merrill AH. Analysis of mammalian sphingolipids by liquid chromatography tandem mass spectrometry (LC-MS/MS) and tissue imaging mass spectrometry (TIMS). Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1811:838-53. [PMID: 21749933 DOI: 10.1016/j.bbalip.2011.06.027] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2011] [Revised: 06/16/2011] [Accepted: 06/21/2011] [Indexed: 02/04/2023]
Abstract
Sphingolipids are a highly diverse category of molecules that serve not only as components of biological structures but also as regulators of numerous cell functions. Because so many of the structural features of sphingolipids give rise to their biological activity, there is a need for comprehensive or "sphingolipidomic" methods for identification and quantitation of as many individual subspecies as possible. This review defines sphingolipids as a class, briefly discusses classical methods for their analysis, and focuses primarily on liquid chromatography tandem mass spectrometry (LC-MS/MS) and tissue imaging mass spectrometry (TIMS). Recently, a set of evolving and expanding methods have been developed and rigorously validated for the extraction, identification, separation, and quantitation of sphingolipids by LC-MS/MS. Quantitation of these biomolecules is made possible via the use of an internal standard cocktail. The compounds that can be readily analyzed are free long-chain (sphingoid) bases, sphingoid base 1-phosphates, and more complex species such as ceramides, ceramide 1-phosphates, sphingomyelins, mono- and di-hexosylceramides, sulfatides, and novel compounds such as the 1-deoxy- and 1-(deoxymethyl)-sphingoid bases and their N-acyl-derivatives. These methods can be altered slightly to separate and quantitate isomeric species such as glucosyl/galactosylceramide. Because these techniques require the extraction of sphingolipids from their native environment, any information regarding their localization in histological slices is lost. Therefore, this review also describes methods for TIMS. This technique has been shown to be a powerful tool to determine the localization of individual molecular species of sphingolipids directly from tissue slices.
Collapse
Affiliation(s)
- M Cameron Sullards
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA.
| | | | | | | |
Collapse
|
45
|
Frank S, Geyer H, Geyer R. Microscale Analysis of Glycosphingolipids fromSchistosoma mansoniCercariae. J Carbohydr Chem 2011. [DOI: 10.1080/07328303.2011.600490] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
46
|
Sphingolipid profiling of human plasma and FPLC-separated lipoprotein fractions by hydrophilic interaction chromatography tandem mass spectrometry. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1811:68-75. [DOI: 10.1016/j.bbalip.2010.11.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 10/25/2010] [Accepted: 11/08/2010] [Indexed: 11/24/2022]
|
47
|
Janosi L, Gorfe A. Importance of the sphingosine base double-bond geometry for the structural and thermodynamic properties of sphingomyelin bilayers. Biophys J 2011; 99:2957-66. [PMID: 21044593 DOI: 10.1016/j.bpj.2010.09.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 09/07/2010] [Accepted: 09/13/2010] [Indexed: 12/15/2022] Open
Abstract
The precise role of the sphingosine base trans double bond for the unique properties of sphingomyelins (SMs), one of the main lipid components in raftlike structures of biological membranes, has not been fully explored. Several reports comparing the hydration, lipid packing, and hydrogen-bonding behaviors of SM and glycerophospholipid bilayers found remarkable differences overall. However, the atomic interactions linking the double-bond geometry with these thermodynamic and structural changes remained elusive. A recent report on ceramides, which differ from SMs only by their hydroxyl headgroup, has shown that replacing the trans double bond of the sphingosine base by cis weakens the hydrogen-bonding potential of these lipids and thereby alters their biological activity. Based on data from extensive (a total 0.75 μs) atomistic molecular dynamics simulations of bilayers composed of all-trans, all-cis, and a trans/cis (4:1 ratio) racemic mixture of sphingomyelin lipids, here we show that the trans configuration allows for the formation of significantly more hydrogen bonds than the cis. The extra hydrogen bonds enabled tighter packing of lipids in the all-trans and trans/cis bilayers, thus reducing the average area per lipid while increasing the chain order and the bilayer thickness. Moreover, fewer water molecules access the lipid-water interface of the all-trans bilayer than of the all-cis bilayer. These results provide the atomic basis for the importance of the natural sphingomyelin trans double-bond conformation for the formation of ordered membrane domains.
Collapse
Affiliation(s)
- Lorant Janosi
- Department of Integrative Biology and Pharmacology, University of Texas-Health Science Center, Houston, Texas, USA.
| | | |
Collapse
|
48
|
Duan J, Sugawara T, Hirata T. Rapid quantitative analysis of sphingolipids in seafood using HPLC with evaporative light-scattering detection: its application in tissue distribution of sphingolipids in fish. J Oleo Sci 2010; 59:509-13. [PMID: 20720382 DOI: 10.5650/jos.59.509] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Sphingolipids are ubiquitous in all eukaryotic organisms and known to be essential constituents of cellular membranes. Recently, various physiological functions of dietary sphingolipids, such as preventing cancer, improving skin barrier and contributing to central nervous system myelination have been demonstrated. To characterize the sphingolipids from fish as food components, tissue distribution of sphingomyelin and glycosylceramide (ceramide monohexoside, CMH) in fish were determined in this study. We established a rapid, accurate and effective method for separation, purification and determination of sphingolipids by using high-performance liquid chromatography with evaporative light-scattering detector (ELSD-HPLC). Sphingolipids were extracted and quantified from pacific saury (Cololabis saira). Sphingomyelin in different tissues of Cololabis saira ranged from 2.5 +/- 0.2 mg/g to 27.6 +/- 2.1 mg/g, the content in brain was the highest, followed by eyes, and CMH contents were less than 23.0 +/- 2.4 mg/g in all tissues. These results revealed that fish contained CMH and sphingomyelin as same levels as most of the terrestrial organisms and suggested marine organisms could be used as a potential source of precious and useful complex lipids.
Collapse
Affiliation(s)
- Jingjing Duan
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Kyoto, Japan
| | | | | |
Collapse
|
49
|
Sphingomyelin analogs with branched N-acyl chains: the position of branching dramatically affects acyl chain order and sterol interactions in bilayer membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:1987-94. [PMID: 20637720 DOI: 10.1016/j.bbamem.2010.07.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Revised: 06/14/2010] [Accepted: 07/06/2010] [Indexed: 01/18/2023]
Abstract
Sphingolipids have been found to have single methyl branchings both in their long-chain base and in their N-linked acyl chains. In this study we determined how methyl-branching in the N-linked acyl chain of sphingomyelin (SM) affected their membrane properties. SM analogs with a single methyl-branching at carbon 15 (of a 17:0 acyl chain; anteiso) had a lower gel-liquid transition temperature as compared to an iso-branched SM analog. Phytanoyl SM (methyls at carbons 3, 7, 11 and 15) as well as a SM analog with a methyl on carbon 10 in a hexadecanoyl chain failed to show a gel-liquid transition above 10 degrees C. Only the two distally branched SM analogs (iso and anteiso) formed ordered domains with cholesterol in a 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) bilayer. However, domains formed by the branched SM analogs appeared to contain less sterol when compared to palmitoyl SM (PSM) as the saturated phospholipid. Sterol-enriched domains formed by the anteiso SM analog were also less stable against temperature than domains formed by PSM. Both the 10-methyl and phytanoyl SM analogs failed to form sterol-enriched domains in the POPC bilayer. Acyl chain branching weakened SM/sterol interactions markedly when compared to PSM, as also evidenced from the decreased affinity of cholestatrienol to bilayers containing branched SM analogs. Our results show that methyl-branching weakened intermolecular interactions in a position-dependent manner.
Collapse
|
50
|
Sugawara T, Tsuduki T, Yano S, Hirose M, Duan J, Aida K, Ikeda I, Hirata T. Intestinal absorption of dietary maize glucosylceramide in lymphatic duct cannulated rats. J Lipid Res 2010; 51:1761-9. [PMID: 20211933 DOI: 10.1194/jlr.m002204] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Sphingolipids are ubiquitous in all eukaryotic organisms. Various physiological functions of dietary sphingolipids, such as preventing colon cancer and improving the skin barrier function, have been recently reported. One of the common sphingolipids used as a foodstuff is glucosylceramide from plant sources, which is composed of sphingoid bases distinct from those of mammals. However, the fate of dietary sphingolipids derived from plants is still not understood. In this study, we investigated the absorption of maize glucosylceramide in the rat intestine using a lipid absorption assay of lymph from the thoracic duct. The free and complex forms of trans-4,cis-8-sphingadienine, the predominant sphingoid base of maize glucosylceramide, were found in the lymph after administration of maize glucosylceramide. This plant type of sphingoid base was detected in the ceramide fraction and N-palmitoyl-4,8-sphingadienine (C16:0-d18:2) and N-tricosanoyl-4,8-sphingadienine (C23:0-d18:2) were identified by LC-MS/MS. The cumulative recovery of 4t,8c-sphingadienine in the lymph was very low. These results indicate that dietary glucosylceramide originating from higher plants is slightly absorbed in the intestine and is incorporated into ceramide structures in the intestinal cells. However, it appears that the intact form of sphingoid bases is not reutilized well in the tissues.
Collapse
Affiliation(s)
- Tatsuya Sugawara
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan.
| | | | | | | | | | | | | | | |
Collapse
|