1
|
Chiavacci E, Camera R, Costa M, Fronte B, Tozzini ET, Cellerino A. Nerve Growth Factor Receptor (NGFR/p75NTR) of the Small-Spotted Catshark (Scyliorhinus canicula): Evolutionary Conservation and Brain Function. J Comp Neurol 2025; 533:e70049. [PMID: 40220269 PMCID: PMC11993139 DOI: 10.1002/cne.70049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 03/04/2025] [Accepted: 03/25/2025] [Indexed: 04/14/2025]
Abstract
The p75NTR receptor, a member of the tumor necrosis factor (TNF) receptor superfamily, can participate in signaling pathways either by forming heteromeric complexes with other receptors, such as the Trk family (tropomyosin receptor kinases), or by functioning independently. p75NTR was investigated prevalently in the brain and retina of mammals, whereas almost nothing is known about its conservation among species. Here, we reconstructed the phylogenetic arb of p75NTR and described for the first time the p75NTR expression in the brain of the basal vertebrate Chondrichthyan Scyliorhinus canicula (S. canicula), uncovering the existing parallelism between ancient vertebrates and mammals. p75NTR functional conservation among vertebrates was further investigated by cloning the S. canicula nerve growth factor (NGF) and performing the canonical posterior commissure (PC)-12 differentiation assay, which results in standard neurite-like production. We then investigated the S. canicula p75NTR, which proves to be capable of complementing a specific clone of PC-12 lacking p75NTR (PC-12 p75NTR-/-). All together, our results highlighted the expression and functional conservation of p75NTR among vertebrates during the evolution.
Collapse
Affiliation(s)
- Elena Chiavacci
- Biology Laboratory (BIO@SNS)Scuola Normale SuperiorePisaItaly
| | - Roberta Camera
- Biology Laboratory (BIO@SNS)Scuola Normale SuperiorePisaItaly
| | - Mario Costa
- Neuroscience InstituteNational Research Council (CNR)PisaItaly
| | | | - Eva Terzibasi Tozzini
- Biology and Evolution of Marine Organisms Department (BEOM)Stazione Zoologica Anton DohrnNapoliItaly
| | - Alessandro Cellerino
- Biology Laboratory (BIO@SNS)Scuola Normale SuperiorePisaItaly
- Fritz Lipmann Institute for Age ResearchLeibniz InstituteJenaGermany
| |
Collapse
|
2
|
Burrell JC, Ali ZS, Zager EL, Rosen JM, Tatarchuk MM, Cullen DK. Engineering the Future of Restorative Clinical Peripheral Nerve Surgery. Adv Healthc Mater 2025:e2404293. [PMID: 40166822 DOI: 10.1002/adhm.202404293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/25/2025] [Indexed: 04/02/2025]
Abstract
Peripheral nerve injury is a significant clinical challenge, often leading to permanent functional deficits. Standard interventions, such as autologous nerve grafts or distal nerve transfers, require sacrificing healthy nerve tissue and typically result in limited motor or sensory recovery. Nerve regeneration is complex and influenced by several factors: 1) the regenerative capacity of proximal neurons, 2) the ability of axons and support cells to bridge the injury, 3) the capacity of Schwann cells to maintain a supportive environment, and 4) the readiness of target muscles or sensory organs for reinnervation. Emerging bioengineering solutions, including biomaterials, drug delivery systems, fusogens, electrical stimulation devices, and tissue-engineered products, aim to address these challenges. Effective translation of these therapies requires a deep understanding of the physiology and pathology of nerve injury. This article proposes a comprehensive framework for developing restorative strategies that address all four major physiological responses in nerve repair. By implementing this framework, we envision a paradigm shift that could potentially enable full functional recovery for patients, where current approaches offer minimal hope.
Collapse
Affiliation(s)
- Justin C Burrell
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Center for Neurotrauma, Neurodegeneration & Restoration, CMC VA Medical Center, Philadelphia, PA, 19104, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Oral and Maxillofacial Surgery & Pharmacology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, 19104, USA
| | - Zarina S Ali
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn Nerve Center, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Eric L Zager
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn Nerve Center, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Joseph M Rosen
- Division of Plastic Surgery, Dartmouth-Hitchcock Medical Center, Dartmouth College, Lebanon, NH, 03766, USA
| | - Mykhailo M Tatarchuk
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Center for Neurotrauma, Neurodegeneration & Restoration, CMC VA Medical Center, Philadelphia, PA, 19104, USA
| | - D Kacy Cullen
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Center for Neurotrauma, Neurodegeneration & Restoration, CMC VA Medical Center, Philadelphia, PA, 19104, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Axonova Medical, LLC, Philadelphia, PA, 19104, USA
| |
Collapse
|
3
|
Carrillo-Muñoz AI, R-Jaimes SY, Hernández-Hernández GC, Castelán F. Neurotrophins and their receptors in the peripheral nervous system and non-nervous tissue of fish. FISH PHYSIOLOGY AND BIOCHEMISTRY 2025; 51:38. [PMID: 39888528 PMCID: PMC11785713 DOI: 10.1007/s10695-025-01453-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 01/13/2025] [Indexed: 02/01/2025]
Abstract
Trophic factors, such as neurotrophins, are fundamental for cellular processes including differentiation, growth, survival, and regeneration. These molecules exhibit significant morphological and phylogenetic conservation throughout the animal kingdom, indicating conserved functions. In fish, the oldest and most diverse group of vertebrates, neurotrophins, and their receptors play pivotal roles not only within the central nervous system but also in various peripheral tissues. They are distributed in mechanosensory, muscle, skin, respiratory, circulatory, digestive, endocrine, urinary, reproductive, and immune systems, suggesting their involvement in the development and maintenance of all tissues/organs/systems. Despite this broad distribution, studies focusing on these molecules outside of the central nervous system have been limited to just 12 fish species. These investigations have revealed diverse expression patterns across different ages and tissues/organs/systems, expanding our comprehension of their functions beyond the central and peripheral nervous systems. Notably, BDNF and NT-3 are prominently expressed outside the central nervous system, particularly in mechanosensory and digestive tissues, whereas NGF is predominantly observed in mechanosensory and urinary systems. The expression and localization of neurotrophins and their receptors vary among organs, underscoring tissue-specific roles. Further research is imperative to decipher the precise functions and mechanisms of action of neurotrophins and their receptors in diverse fish tissues. Enhanced efforts are needed to include a broader range of fish species in these studies to advance our understanding of these agents in complex vertebrates, thereby shedding light on tissue development, regeneration, and maintenance, with potential implications for addressing organ-related issues.
Collapse
Affiliation(s)
- Aldo Isaac Carrillo-Muñoz
- Centro Tlaxcala de Biología de La Conducta, Universidad Autónoma de Tlaxcala, 90070, Tlaxcala, Mexico.
| | - Sharet Y R-Jaimes
- Facultad de Ciencias de La Salud, Universidad Autónoma de Tlaxcala, 90750, Zacatelco, Mexico
| | | | - Francisco Castelán
- Centro Tlaxcala de Biología de La Conducta, Universidad Autónoma de Tlaxcala, 90070, Tlaxcala, Mexico.
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 90070, Tlaxcala, Mexico.
| |
Collapse
|
4
|
Cuello AC, Do Carmo S. The dependence of basal forebrain cholinergic neurons on NGF: The case in Alzheimer pathology. HANDBOOK OF CLINICAL NEUROLOGY 2025; 211:95-122. [PMID: 40340070 DOI: 10.1016/b978-0-443-19088-9.00010-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
This chapter discusses the dependency of basal forebrain cholinergic neurons (BFCNs) on endogenous nerve growth factor (NGF) for the structural and physiologic maintenance of the neuronal cell somata, axonal projections, and terminal synapses. It covers the discovery of NGF and the occurrence of a CNS neurotrophin family and their cognate receptors and their signaling mechanisms. It concludes with a description of the NGF metabolic pathway and its dysregulation in Alzheimer disease (AD) and Down syndrome pathology, explaining the progressive atrophy of BFCNs, which starts at preclinical stages and is reflected in body fluid biomarkers.
Collapse
Affiliation(s)
- A Claudio Cuello
- Department of Pharmacology & Therapeutics, Faculty of Medicine, McGill University, Montreal, QC, Canada; Department of Pharmacology, Oxford University, Oxford, United Kingdom.
| | - Sonia Do Carmo
- Department of Pharmacology & Therapeutics, Faculty of Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
5
|
Mercati F, Guelfi G, Martì MJI, Dall'Aglio C, Calleja L, Caivano D, Marenzoni ML, Capaccia C, Anipchenko P, Palermo FA, Cocci P, Rende M, Zerani M, Maranesi M. Seasonal variation of NGF in seminal plasma and expression of NGF and its cognate receptors NTRK1 and p75NTR in the sex organs of rams. Domest Anim Endocrinol 2024; 89:106877. [PMID: 39068905 DOI: 10.1016/j.domaniend.2024.106877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/16/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
Nerve growth factor (NGF) has long been known as the main ovulation-inducing factor in induced ovulation species, however, recent studies suggested the NGF role also in those with spontaneous ovulation. The first aim of this study was to evaluate the presence and gene expression of NGF and its cognate receptors, high-affinity neurotrophic tyrosine kinase 1 receptor (NTRK1) and low-affinity p75 nerve growth factor receptor (p75NTR), in the ram genital tract. Moreover, the annual trend of NGF seminal plasma values was investigated to evaluate the possible relationship between the NGF production variations and the ram reproductive seasonality. The presence and expression of the NGF/receptors system was evaluated in the testis, epididymis, vas deferens ampullae, seminal vesicles, prostate, and bulbourethral glands through immunohistochemistry and real-time PCR (qPCR), respectively. Genital tract samples were collected from 5 adult rams, regularly slaughtered at a local abattoir. Semen was collected during the whole year weekly, from 5 different adult rams, reared in a breeding facility, with an artificial vagina. NGF seminal plasma values were assessed through the ELISA method. NGF, NTRK1 and p75NTR immunoreactivity was detected in all male organs examined. NGF-positive immunostaining was observed in the spermatozoa of the germinal epithelium, in the epididymis and the cells of the secretory epithelium of annexed glands, NTRK1 receptor showed a localization pattern like that of NGF, whereas p75NTR immunopositivity was localized in the nerve fibers and ganglia. NGF gene transcript was highest (p < 0.01) in the seminal vesicles and lowest (p < 0.01) in the testis than in the other tissues. NTRK1 gene transcript was highest (p < 0.01) in the seminal vesicles and lowest (p < 0.05) in all the other tissues examined. Gene expression of p75NTR was highest (p < 0.01) in the seminal vesicles and lowest (p < 0.01) in the testis and bulbourethral glands. NGF seminal plasma concentration was greater from January to May (p < 0.01) than in the other months. This study highlighted that the NGF system was expressed in the tissues of all the different genital tracts examined, confirming the role of NGF in ram reproduction. Sheep are short-day breeders, with an anestrus that corresponds to the highest seminal plasma NGF levels, thus suggesting the intriguing idea that this factor could participate in an inhibitory mechanism of male reproductive activity, activated during the female anestrus.
Collapse
Affiliation(s)
- Francesca Mercati
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, Perugia 06126, Italy
| | - Gabriella Guelfi
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, Perugia 06126, Italy
| | | | - Cecilia Dall'Aglio
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, Perugia 06126, Italy.
| | - Lucía Calleja
- Department of Biochemistry and Molecular and Cellular Biology, University of Zaragoza, Spain
| | - Domenico Caivano
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, Perugia 06126, Italy
| | - Maria Luisa Marenzoni
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, Perugia 06126, Italy
| | - Camilla Capaccia
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, Perugia 06126, Italy
| | - Polina Anipchenko
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, Perugia 06126, Italy
| | - Francesco Alessandro Palermo
- School of Bioscience and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano, Camerino, MC I-62032, Italy
| | - Paolo Cocci
- School of Bioscience and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano, Camerino, MC I-62032, Italy
| | - Mario Rende
- Department of Medicine and Surgery, Section of Human, Clinical and Forensic Anatomy, University of Perugia, Perugia 06132, Italy
| | - Massimo Zerani
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, Perugia 06126, Italy
| | - Margherita Maranesi
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, Perugia 06126, Italy
| |
Collapse
|
6
|
Cao J, Gorwood P, Ramoz N, Viltart O. The Role of Central and Peripheral Brain-Derived Neurotrophic Factor (BDNF) as a Biomarker of Anorexia Nervosa Reconceptualized as a Metabo-Psychiatric Disorder. Nutrients 2024; 16:2617. [PMID: 39203753 PMCID: PMC11357464 DOI: 10.3390/nu16162617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/26/2024] [Accepted: 08/04/2024] [Indexed: 09/03/2024] Open
Abstract
Neurotrophic factors play pivotal roles in shaping brain development and function, with brain-derived neurotrophic factor (BDNF) emerging as a key regulator in various physiological processes. This review explores the intricate relationship between BDNF and anorexia nervosa (AN), a complex psychiatric disorder characterized by disordered eating behaviors and severe medical consequences. Beginning with an overview of BDNF's fundamental functions in neurodevelopment and synaptic plasticity, the review delves into recent clinical and preclinical evidence implicating BDNF in the pathophysiology of AN. Specifically, it examines the impact of BDNF polymorphisms, such as the Val66Met variant, on AN susceptibility, prognosis, and treatment response. Furthermore, the review discusses the interplay between BDNF and stress-related mood disorders, shedding light on the mechanisms underlying AN vulnerability to stress events. Additionally, it explores the involvement of BDNF in metabolic regulation, highlighting its potential implications for understanding the metabolic disturbances observed in AN. Through a comprehensive analysis of clinical data and animal studies, the review elucidates the nuanced role of BDNF in AN etiology and prognosis, emphasizing its potential as a diagnostic and prognostic biomarker. Finally, the review discusses limitations and future directions in BDNF research, underscoring the need for further investigations to elucidate the complex interplay between BDNF signaling and AN pathology.
Collapse
Affiliation(s)
- Jingxian Cao
- Institute of Psychiatry and Neuroscience of Paris (IPNP), Université Paris Cité, INSERM UMR-S 1266, F-75014 Paris, France (O.V.)
| | - Philip Gorwood
- Institute of Psychiatry and Neuroscience of Paris (IPNP), Université Paris Cité, INSERM UMR-S 1266, F-75014 Paris, France (O.V.)
- GHU Paris Psychiatrie et Neurosciences, CMME, Hôpital Sainte Anne, F-75014 Paris, France
| | - Nicolas Ramoz
- Institute of Psychiatry and Neuroscience of Paris (IPNP), Université Paris Cité, INSERM UMR-S 1266, F-75014 Paris, France (O.V.)
- GHU Paris Psychiatrie et Neurosciences, CMME, Hôpital Sainte Anne, F-75014 Paris, France
| | - Odile Viltart
- Institute of Psychiatry and Neuroscience of Paris (IPNP), Université Paris Cité, INSERM UMR-S 1266, F-75014 Paris, France (O.V.)
- SCALab Laboratory, PsySEF Faculty, Université de Lille, UMR CNRS 9193, F-59650 Villeneuve d’Ascq, France
| |
Collapse
|
7
|
Palmisano B, Farinacci G, Campolo F, Tavanti C, Stefano A, Donsante S, Ippolito E, Giannicola G, Venneri MA, Corsi A, Riminucci M. A pathogenic role for brain-derived neurotrophic factor (BDNF) in fibrous dysplasia of bone. Bone 2024; 181:117047. [PMID: 38331308 DOI: 10.1016/j.bone.2024.117047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/10/2024] [Accepted: 02/06/2024] [Indexed: 02/10/2024]
Abstract
Brain derived neurotrophic factor (BDNF) is a neurotrophin, expressed in the central nervous system and in peripheral tissues, that is regulated by the Gsα/cAMP pathway. In bone, it regulates osteogenesis and stimulates RANKL secretion and osteoclast formation in osteolytic tumors such as Multiple Myeloma. Fibrous dysplasia (FD) of bone is a rare genetic disease of the skeleton caused by gain-of-function mutations of the Gsα gene in which RANKL-dependent enhanced bone resorption is a major cause of bone fragility and clinical morbidity. We observed that BDNF transcripts are expressed in human FD lesions. Specifically, immunolocalization studies performed on biopsies obtained from FD patients revealed the expression of BDNF in osteoblasts and, to a lower extent, in the spindle-shaped cells within the fibrous tissue. Therefore, we hypothesized that BDNF can play a role in the pathogenesis of FD by stimulating RANKL secretion and bone resorption. To test this hypothesis, we used the EF1α-GsαR201C mouse model of the human disease (FD mice). Western blot analysis revealed a higher expression of BDNF in bone segments of FD mice compared to WT mice and the immunolabeling pattern within mouse FD lesions was similar to that observed in human FD. Treatment of FD mice with a monoclonal antibody against BDNF reduced the fibrous tissue along with the number of osteoclasts and osteoblasts within femoral lesions. These results reveal BDNF as a new player in the pathogenesis of FD and a potential molecular mechanism by which osteoclastogenesis may be nourished within FD bone lesions. They also suggest that BDNF inhibition may be a new approach to reduce abnormal bone remodeling in FD.
Collapse
Affiliation(s)
- Biagio Palmisano
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Giorgia Farinacci
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Federica Campolo
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Chiara Tavanti
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Alessia Stefano
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Samantha Donsante
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Ernesto Ippolito
- Department of Orthopaedic Surgery, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Giuseppe Giannicola
- Department of Anatomical, Histological, Medico Legal and Orthopaedic Sciences, Sapienza University of Rome, 00161 Rome, Italy
| | - Mary Anna Venneri
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Alessandro Corsi
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Mara Riminucci
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy.
| |
Collapse
|
8
|
Ishimoto T, Yamashita R, Matsumoto R, Matsumoto S, Matsuo Y, Nakao S, Masuo Y, Suzuki M, Kato Y. TrkB phosphorylation in serum extracellular vesicles correlates with cognitive function enhanced by ergothioneine in humans. NPJ Sci Food 2024; 8:11. [PMID: 38321007 PMCID: PMC10847428 DOI: 10.1038/s41538-024-00250-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 01/18/2024] [Indexed: 02/08/2024] Open
Abstract
Oral administration of the food-derived antioxidant amino acid ergothioneine (ERGO) results in its efficient distribution in the brain and enhances cognitive function. However, effect of ERGO deficiency on cognitive impairment and the underlying mechanisms remain unknown. We revealed that cognitive function and hippocampal neurogenesis were lower in mice fed an ERGO-free diet than in those fed the control diet. Furthermore, ERGO supplementation to achieve the control diet ERGO levels reversed these effects and restored ERGO concentrations in the plasma and hippocampus. The ERGO-induced recovery of cognitive function and hippocampal neurogenesis was blocked by inhibiting the neurotrophic factor receptor tropomyosin receptor kinase B (TrkB), with a concomitant reduction in hippocampal phosphorylated TrkB, suggesting the involvement of TrkB in these events in mice. Phosphorylated TrkB was also detected in extracellular vesicles (EVs) derived from serum of volunteers who had been orally administered placebo or ERGO-containing tablets. Importantly, the ratio of serum EV-derived phosphorylated TrkB was significantly higher in the ERGO-treated group than in the placebo-treated group and was positively correlated with both serum ERGO concentrations and several cognitive domain scores from Cognitrax. Altogether, TrkB phosphorylation is involved in ERGO-induced cognitive enhancement in mice, and TrkB phosphorylation levels in serum EVs may quantitatively represent ERGO-induced cognitive enhancement in humans.
Collapse
Affiliation(s)
- Takahiro Ishimoto
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa, 920-1192, Japan
| | - Reiya Yamashita
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa, 920-1192, Japan
| | - Ruri Matsumoto
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa, 920-1192, Japan
| | - Satoshi Matsumoto
- L·S Corporation Co. Ltd., 3-10-1 Ningyocho-Nihonbashi, Chuo-ku, Tokyo, 103-0013, Japan
| | - Yusuke Matsuo
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa, 920-1192, Japan
| | - Shunsuke Nakao
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa, 920-1192, Japan
| | - Yusuke Masuo
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa, 920-1192, Japan
| | - Makoto Suzuki
- L·S Corporation Co. Ltd., 3-10-1 Ningyocho-Nihonbashi, Chuo-ku, Tokyo, 103-0013, Japan
| | - Yukio Kato
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa, 920-1192, Japan.
| |
Collapse
|
9
|
Israr F, Masood Ul Hasan S, Hussain M, Qazi FUR, Hasan A. Investigating In Situ Expression of Neurotrophic Factors and Partner Proteins in Irreversible Pulpitis. J Endod 2023; 49:1668-1675. [PMID: 37660765 DOI: 10.1016/j.joen.2023.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 07/30/2023] [Accepted: 08/26/2023] [Indexed: 09/05/2023]
Abstract
INTRODUCTION In situ assessments of neurotrophic factors and their associated molecular partners have not been explored to date, particularly in humans. The present investigation aimed to explore the expressional dysregulation of neurotrophic factors (nerve growth factor [NGF], brain derived neurotrophic factor [BDNF], and NT4/5), their receptors (TrkA and TrkB), and their modulators (USP36 and Nedd4-2) directly in irreversibly inflamed human pulp tissues. METHODS Forty samples each of healthy and irreversibly inflamed pulp were extirpated for the study. Immunohistochemical examinations were carried out for the anatomic changes and expression of neurotrophic factors and partner proteins. Expression was digitally quantified using the IHC profiler module of ImageJ and deduced as optical density. Statistical analyses were carried out by GraphPad Prism. RESULTS Decrease in nuclear and vessel diameters was observed in irreversibly inflamed pulp tissues. NGF and BDNF were found to be significantly upregulated in symptomatic irreversible pulpitis (SIP), whereas no significant difference was observed in the expression of TrkA and TrkB. Expression of Nedd4-2, USP36, and TrkA was found positively correlated with the NGF in healthy pulp tissues. However, in SIP, positive correlation was only observed between the expression of USP36 and NGF. Among the ligands, BDNF expression was found positively correlated with NGF in healthy pulp but not with NT4/5. In the case of SIP, no correlation was observed between any neurotrophic factors. CONCLUSIONS Upregulation of NGF, BDNF, USP36 and Nedd4-2 in SIP indicates dysregulation in the molecular events underlying the disease biology and could be exploited as potential markers for the disease diagnosis.
Collapse
Affiliation(s)
- Fatima Israr
- Dr Ishrat ul Ebad Khan Institute of Oral Health Sciences, Dow University of Health Sciences, Karachi, Pakistan; Bioinformatics and Molecular Medicine Research Group, Dow Research Institute of Biotechnology and Biomedical Sciences, Dow College of Biotechnology, Dow University of Health Sciences, Karachi, Pakistan
| | - Syed Masood Ul Hasan
- Dr Ishrat ul Ebad Khan Institute of Oral Health Sciences, Dow University of Health Sciences, Karachi, Pakistan; Bioinformatics and Molecular Medicine Research Group, Dow Research Institute of Biotechnology and Biomedical Sciences, Dow College of Biotechnology, Dow University of Health Sciences, Karachi, Pakistan
| | - Mushtaq Hussain
- Bioinformatics and Molecular Medicine Research Group, Dow Research Institute of Biotechnology and Biomedical Sciences, Dow College of Biotechnology, Dow University of Health Sciences, Karachi, Pakistan.
| | - Fazal Ur Rehman Qazi
- Dr Ishrat ul Ebad Khan Institute of Oral Health Sciences, Dow University of Health Sciences, Karachi, Pakistan
| | - Arshad Hasan
- Dow Dental College, Dow University of Health Sciences, Karachi, Pakistan
| |
Collapse
|
10
|
Jourdi G, Boukhatem I, Barcelona PF, Fleury S, Welman M, Saragovi HU, Pasquali S, Lordkipanidzé M. Alpha-2-macroglobulin prevents platelet aggregation induced by brain-derived neurotrophic factor. Biochem Pharmacol 2023; 215:115701. [PMID: 37487878 DOI: 10.1016/j.bcp.2023.115701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/07/2023] [Accepted: 07/21/2023] [Indexed: 07/26/2023]
Abstract
The brain-derived neurotrophic factor (BDNF) has been recently shown to have activating effects in isolated platelets. However, BDNF circulates in plasma and a mechanism to preclude constant activation of platelets appears necessary. Hence, we investigated the mechanism regulating BDNF bioavailability in blood. Protein-protein interactions were predicted by molecular docking and validated through immunoprecipitation. Platelet aggregation was assessed using light transmission aggregometry with washed platelets in response to classical agonists or BDNF, in the absence or presence of alpha-2-macroglobulin (α2M), and in platelet-rich plasma. BDNF signaling was assessed with phospho-blots. As little as 25% autologous plasma was sufficient to completely abolish platelet aggregation in response to BDNF. Docking predicted two forms of BDNF binding to native or activated α2M, in parallel and perpendicular arrangements, and the model suggested that the BDNF-α2M complex cannot bind to the high-affinity BDNF receptor, tropomyosin receptor kinase B (TrkB). Experimentally, native and activated α2M formed stable complexes with BDNF preventing BDNF-induced TrkB activation and signal transduction. Both native and activated α2M inhibited BDNF induced-platelet aggregation in a concentration-dependent manner with comparable half-maximal inhibitory concentrations (IC50≈ 125-150 nM). Our study implicates α2M as a physiological regulator of BDNF bioavailability, and as an inhibitor of BDNF-induced platelet activation in blood.
Collapse
Affiliation(s)
- Georges Jourdi
- Research Center, Montreal Heart Institute, Montreal, QC H1T 1C8, Canada; Faculty of Pharmacy, Université de Montréal, Montreal, QC H3T 1J4, Canada; Université Paris Cité, INSERM, Innovative Therapies in Haemostasis, F-75006 Paris, France; Service d'Hématologie Biologique, AP-HP, Hôpital Lariboisière, F-75010 Paris, France
| | - Imane Boukhatem
- Research Center, Montreal Heart Institute, Montreal, QC H1T 1C8, Canada; Faculty of Pharmacy, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Pablo F Barcelona
- Departamento de Bioquímica Clínica, Centro de Investigaciones en Bioquímica Clínica e, Inmunología (CIBICI-CONICET), Universidad Nacional de Córdoba, Córdoba 5016, Argentina
| | - Samuel Fleury
- Research Center, Montreal Heart Institute, Montreal, QC H1T 1C8, Canada; Faculty of Pharmacy, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Melanie Welman
- Research Center, Montreal Heart Institute, Montreal, QC H1T 1C8, Canada
| | - H Uri Saragovi
- Lady Davis Institute-Jewish General Hospital, Montreal, QC H3T 1E2, Canada; Department of Pharmacology and Therapeutics, McGill University, Montreal, QC H3A 0G4, Canada
| | - Samuela Pasquali
- Université Paris Cité, CNRS UMR 8038, Laboratoire Cibles Thérapeutiques et Conception de Médicaments, F-75006 Paris, France; Université Paris Cité, CNRS UMR 8251, Laboratoire Biologie Fonctionnelle et Adaptative, F-75006 Paris, France
| | - Marie Lordkipanidzé
- Research Center, Montreal Heart Institute, Montreal, QC H1T 1C8, Canada; Faculty of Pharmacy, Université de Montréal, Montreal, QC H3T 1J4, Canada.
| |
Collapse
|
11
|
Babarinsa IA, Bashir M, AbdelRahman Ahmed H, Ahmed B, Konje JC. Bariatric surgery and reproduction-implications for gynecology and obstetrics. Best Pract Res Clin Obstet Gynaecol 2023; 90:102382. [PMID: 37506498 DOI: 10.1016/j.bpobgyn.2023.102382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/21/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023]
Abstract
As the rates of obesity continue to rise across the world, there has been an increasing resort to bariatric surgery amongst the options for treatment. Through the reproductive lifespan, between menarche and menopause, women might benefit from this surgical intervention, which may have a bearing on other aspects of their health. The consequences of bariatric surgery have been reported and evaluated from various perspectives in obstetrics and gynecology. Fertility and sexuality are enhanced, but not all gynecological diseases are ameliorated. There are also psychological and behavioral sequelae to be cognizant of. With multi-disciplinary and responsive care, most post-bariatric pregnancies have satisfactory outcomes. The effects of bariatric surgery on the babies conceived thereafter remains a subject of interest, whereas the possible effect on the climacteric is speculative.
Collapse
Affiliation(s)
- Isaac A Babarinsa
- Women's Wellness and Research Centre, Hamad Medical Corporation, Doha.
| | | | | | - Badreldeen Ahmed
- Feto Maternal Centre, Al Markhiya, Doha, Qatar; Weill Cornell Medicine, Doha, Qatar; Qatar University, Qatar
| | - Justin C Konje
- Feto Maternal Centre, Al Markhiya, Doha, Qatar; Weill Cornell Medicine, Doha, Qatar; Department of Health Sciences University of Leicester, UK
| |
Collapse
|
12
|
Hsu CY, Sheu WHH, Lee IT. Brain-derived neurotrophic factor associated with kidney function. Diabetol Metab Syndr 2023; 15:16. [PMID: 36782254 PMCID: PMC9926783 DOI: 10.1186/s13098-023-00991-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 02/06/2023] [Indexed: 02/15/2023] Open
Abstract
BACKGROUND We examined the relationship between brain-derived neurotrophic factor (BDNF) and chronic kidney disease (CKD). METHODS First, a cross-sectional study was conducted in 480 participants without known diabetes. An oral glucose tolerance test (OGTT) was administered after overnight fasting, and blood samples were collected at 0, 30, and 120 min. Second, a total of 3003 participants were enrolled for the case-control genetic analysis. After assigning them to a case or a control group based on age and CKD status, we investigated the association between BDNF gene variants and susceptibility to CKD. RESULTS A higher fasting serum BDNF quartile was significantly associated with a lower prevalence of CKD (P value for trend < 0.001). Based on the receiver operating characteristic analysis, the fasting BDNF level had a larger area under the curve for differentiating CKD (0.645, 95% CI 0.583‒0.707) than the BDNF levels at both 30 min (0.547, 95% CI 0.481‒0.612) and 120 min (0.598, 95% CI 0.536‒0.661). A significantly lower CKD prevalence (odds ratio = 0.30, 95% CI 0.12‒0.71) was observed in the highest quartile of fasting BDNF level than that in the lowest quartile, whereas no interquartile differences were observed for BDNF levels determined at 30 or 120 min during the OGTT. Furthermore, BDNF-associated variants, including rs12098908, rs12577517, and rs72891405, were significantly associated with CKD. CONCLUSIONS The BDNF level at fasting, but not at 30 and 120 min after glucose intake, was an independent indicator of CKD. In addition, significant associations were observed between three BDNF gene variants and CKD.
Collapse
Affiliation(s)
- Cheng-Yueh Hsu
- Medical Education Department, Linkou Chang Gung Memorial Hospital, Taoyuan City, 33305, Taiwan
| | - Wayne Huey-Herng Sheu
- Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, 11221, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - I-Te Lee
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan.
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Taichung Veterans General Hospital, No. 1650 Taiwan Boulevard, Sect. 4, Taichung, 40705, Taiwan.
- School of Medicine, Chung Shan Medical University, Taichung, 40201, Taiwan.
| |
Collapse
|
13
|
Badiola-Mateos M, Osaki T, Kamm RD, Samitier J. In vitro modelling of human proprioceptive sensory neurons in the neuromuscular system. Sci Rep 2022; 12:21318. [PMID: 36494423 PMCID: PMC9734133 DOI: 10.1038/s41598-022-23565-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 11/02/2022] [Indexed: 12/13/2022] Open
Abstract
Proprioceptive sensory neurons (pSN) are an essential and undervalued part of the neuromuscular circuit. A protocol to differentiate healthy and amyotrophic lateral sclerosis (ALS) human neural stem cells (hNSC) into pSN, and their comparison with the motor neuron (MN) differentiation process from the same hNSC sources, facilitated the development of in vitro co-culture platforms. The obtained pSN spheroids cultured interact with human skeletal myocytes showing the formation of annulospiral wrapping-like structures between TrkC + neurons and a multinucleated muscle fibre, presenting synaptic bouton-like structures in the contact point. The comparative analysis of the genetic profile performed in healthy and sporadic ALS hNSC differentiated to pSN suggested that basal levels of ETV1, critical for motor feedback from pSN, were much lower for ALS samples and that the differences between healthy and ALS samples, suggest the involvement of pSN in ALS pathology development and progression.
Collapse
Affiliation(s)
- Maider Badiola-Mateos
- grid.424736.00000 0004 0536 2369Institute for Bioengineering of Catalonia (IBEC)—Barcelona Institute of Science and Technology, 08028 Barcelona, Spain ,grid.5841.80000 0004 1937 0247Department of Electronic and Biomedical Engineering, Universitat de Barcelona, 08028 Barcelona, Spain ,grid.116068.80000 0001 2341 2786Department of Biological Engineering, Massachusetts Institute of Technology (MIT), 500 Technology Square, MIT Building, Cambridge, MA 02139 USA ,grid.263145.70000 0004 1762 600XPresent Address: The BioRobotics Institute, Department of Excellence in Robotics and AI, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
| | - Tatsuya Osaki
- grid.116068.80000 0001 2341 2786Department of Biological Engineering, Massachusetts Institute of Technology (MIT), 500 Technology Square, MIT Building, Cambridge, MA 02139 USA ,grid.26999.3d0000 0001 2151 536XPresent Address: Institute of Industrial Science, The University of Tokyo, 4-6-1, Komaba, Meguro-Ku, Tokyo, 153-8505 Japan
| | - Roger Dale Kamm
- grid.116068.80000 0001 2341 2786Department of Biological Engineering, Massachusetts Institute of Technology (MIT), 500 Technology Square, MIT Building, Cambridge, MA 02139 USA ,grid.116068.80000 0001 2341 2786Department of Mechanical Engineering, Massachusetts Institute of Technology, 500 Technology Square, MIT Building, Cambridge, MA 02139 USA
| | - Josep Samitier
- grid.424736.00000 0004 0536 2369Institute for Bioengineering of Catalonia (IBEC)—Barcelona Institute of Science and Technology, 08028 Barcelona, Spain ,grid.5841.80000 0004 1937 0247Department of Electronic and Biomedical Engineering, Universitat de Barcelona, 08028 Barcelona, Spain ,grid.512890.7Centro de Investigación Biomédica en Red (CIBER-BBN), 28029 Madrid, Spain
| |
Collapse
|
14
|
Amato G, Romano G, Rodolico V, Puleio R, Calò PG, Di Buono G, Cicero L, Romano G, Goetze TO, Agrusa A. Dynamic Responsive Inguinal Scaffold Activates Myogenic Growth Factors Finalizing the Regeneration of the Herniated Groin. J Funct Biomater 2022; 13:jfb13040253. [PMID: 36412894 PMCID: PMC9680268 DOI: 10.3390/jfb13040253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/12/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Postoperative chronic pain caused by fixation and/or fibrotic incorporation of hernia meshes are the main concerns in inguinal herniorrhaphy. As inguinal hernia is a degenerative disease, logically the treatment should aim at stopping degeneration and activating regeneration. Unfortunately, in conventional prosthetic herniorrhaphy no relationship exists between pathogenesis and treatment. To overcome these incongruences, a 3D dynamic responsive multilamellar scaffold has been developed for fixation-free inguinal hernia repair. Made of polypropylene like conventional flat meshes, the dynamic behavior of the scaffold allows for the regeneration of all typical inguinal components: connective tissue, vessels, nerves, and myocytes. This investigation aims to demonstrate that, moving in tune with the groin, the 3D scaffold attracts myogenic growth factors activating the development of mature myocytes and, thus, re-establishing the herniated inguinal barrier. METHODS Biopsy samples excised from the 3D scaffold at different postoperative stages were stained with H&E and Azan-Mallory; immunohistochemistry for NGF and NGFR p75 was performed to verify the degree of involvement of muscular growth factors in the neomyogenesis. RESULTS Histological evidence of progressive muscle development and immunohistochemical proof of NFG and NFGRp75 contribution in neomyogenesis within the 3D scaffold was documented and statistically validated. CONCLUSION The investigation appears to confirm that a 3D polypropylene scaffold designed to confer dynamic responsivity, unlike the fibrotic scar plate of static meshes, attracts myogenic growth factors turning the biological response into tissue regeneration. Newly developed muscles allow the scaffold to restore the integrity of the inguinal barrier.
Collapse
Affiliation(s)
- Giuseppe Amato
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
- Correspondence: (G.A.); (L.C.)
| | - Giorgio Romano
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Vito Rodolico
- Department PROMISE, Section Pathological Anatomy, University of Palermo, 90127 Palermo, Italy
| | - Roberto Puleio
- Department of Pathologic Anatomy and Histology, IZSS, 90129 Palermo, Italy
| | - Pietro Giorgio Calò
- Department of Surgical Sciences, University of Cagliari, 09042 Cagliari, Italy
| | - Giuseppe Di Buono
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Luca Cicero
- CEMERIT—IZSS, Via Gino Marinuzzi, 3, 90129 Palermo, Italy
- Correspondence: (G.A.); (L.C.)
| | - Giorgio Romano
- Postgraduate School of General Surgery, University of Palermo, 90127 Palermo, Italy
| | - Thorsten Oliver Goetze
- Institut für Klinisch-Onkologische Forschung Krankenhaus Nordwest, 60488 Frankfurt/Main, Germany
| | - Antonino Agrusa
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
15
|
Esencan E, Beroukhim G, Seifer DB. Age-related changes in Folliculogenesis and potential modifiers to improve fertility outcomes - A narrative review. Reprod Biol Endocrinol 2022; 20:156. [PMID: 36397149 PMCID: PMC9670479 DOI: 10.1186/s12958-022-01033-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/06/2022] [Indexed: 11/19/2022] Open
Abstract
Reproductive aging is characterized by a decline in oocyte quantity and quality, which is directly associated with a decline in reproductive potential, as well as poorer reproductive success and obstetrical outcomes. As women delay childbearing, understanding the mechanisms of ovarian aging and follicular depletion have become increasingly more relevant. Age-related meiotic errors in oocytes are well established. In addition, it is also important to understand how intraovarian regulators change with aging and how certain treatments can mitigate the impact of aging. Individual studies have demonstrated that reproductive pathways involving antimullerian hormone (AMH), vascular endothelial growth factor (VEGF), neurotropins, insulin-like growth factor 1 (IGF1), and mitochondrial function are pivotal for healthy oocyte and cumulus cell development and are altered with increasing age. We provide a comprehensive review of these individual studies and explain how these factors change in oocytes, cumulus cells, and follicular fluid. We also summarize how modifiers of folliculogenesis, such as vitamin D, coenzyme Q, and dehydroepiandrosterone (DHEA) may be used to potentially overcome age-related changes and enhance fertility outcomes of aged follicles, as evidenced by human and rodent studies.
Collapse
Affiliation(s)
- Ecem Esencan
- Yale School of Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, New Haven, CT, USA.
| | - Gabriela Beroukhim
- Yale School of Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, New Haven, CT, USA
| | - David B Seifer
- Yale School of Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, New Haven, CT, USA
| |
Collapse
|
16
|
Expression and Signaling Pathways of Nerve Growth Factor (NGF) and Pro-NGF in Breast Cancer: A Systematic Review. Curr Oncol 2022; 29:8103-8120. [PMID: 36354700 PMCID: PMC9689427 DOI: 10.3390/curroncol29110640] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/19/2022] [Accepted: 10/25/2022] [Indexed: 11/07/2022] Open
Abstract
Breast cancer represents the most common type of cancer and is the leading cause of death due to cancer among women. Thus, the prevention and early diagnosis of breast cancer is of primary urgency, as well as the development of new treatments able to improve its prognosis. Nerve Growth Factor (NGF) is a neurotrophic factor involved in the regulation of neuronal functions through the binding of the Tropomyosin receptor kinase A (TrkA) and the Nerve Growth Factor receptor or Pan-Neurotrophin Receptor 75 (NGFR/p75NTR). In addition, its precursor (pro-NGF) can extert biological activity by forming a trimeric complex with NGFR/p75NTR and sortilin, or by binding to TrkA receptors with low affinity. Several examples of in vitro and in vivo evidence show that NGF is both synthesized and released by breast cancer cells, and has mitogen, antiapoptotic and angiogenic effects on these cells through the activation of different signaling cascades that involve TrkA and NGFR/p75NTR receptors. Conversely, pro-NGF signaling has been related to breast cancer invasion and metastasis. Other studies suggested that NGF and its receptors could represent a good diagnostic and prognostic tool, as well as promising therapeutic targets for breast cancer. In this paper, we comprehensively summarize and systematically review the current experimental evidence on this topic. INPLASY ID: INPLASY2022100017.
Collapse
|
17
|
Assessment of Brain-Derived Neurotrophic Factor (BDNF) Concentration in Children with Idiopathic Nephrotic Syndrome. Int J Mol Sci 2022; 23:ijms232012312. [PMID: 36293164 PMCID: PMC9603999 DOI: 10.3390/ijms232012312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/07/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022] Open
Abstract
Idiopathic nephrotic syndrome (INS) is a chronic disease affecting children in early childhood. It is characterized by proteinuria, hypoalbuminemia, edema and hyperlipidemia. To date, the diagnosis is usually established at an advanced stage of proteinuria. Therefore, new methods of early INS detection are desired. This study was designed to assess brain-derived neurotrophic factor (BDNF) as a potential marker in the early diagnosis of INS. The study group included patients with a diagnosis of idiopathic nephrotic syndrome (n = 30) hospitalized in Clinical Hospital No. 1 in Zabrze, from December 2019 to December 2021. Our study shows that serum BDNF concentration decreased and urine BDNF concentration increased in a group of patients with INS, compared with healthy controls. Such outcomes might be related to loss of the BDNF contribution in podocyte structure maintenance. Moreover, we anticipate the role of BDNF in urine protein concentration increase, which could be used as a direct predictor of urine protein fluctuations in clinical practice. Moreover, the ROC curve has also shown that serum BDNF and urine BDNF levels might be useful as an INS marker.
Collapse
|
18
|
Association of serum brain-derived neurotrophic factor with hepatic enzymes, AST/ALT ratio, and FIB-4 index in middle-aged and older women. PLoS One 2022; 17:e0273056. [PMID: 35998179 PMCID: PMC9398011 DOI: 10.1371/journal.pone.0273056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 08/01/2022] [Indexed: 11/19/2022] Open
Abstract
Substantial evidence suggests an important role of liver function in brain health. Liver function is clinically assessed by measuring the activity of hepatic enzymes in the peripheral blood. Brain-derived neurotrophic factor (BDNF) is an important regulator of brain function. Therefore, we hypothesized that blood BDNF levels are associated with liver function and fibrosis. To test this hypothesis, in this cross-sectional study, we investigated whether serum BDNF concentration is associated with liver enzyme activity, aspartate aminotransferase (AST)/ alanine aminotransferase (ALT) ratio, and fibrosis-4 (FIB-4) index in middle-aged and older women. We found that serum BDNF level showed a significant positive association with ALT and γ-glutamyltranspeptidase (GGT) activity and negative association with FIB-4 index, and a trend of negative association with the AST/ALT ratio after adjustment for age. Additionally, these associations remained statistically significant even after adjustment for body mass index (BMI) and fasting blood glucose level. These results demonstrate associations of serum BDNF levels with liver enzymes and hepatic fibrosis-related indices, which may underlie liver-brain interactions.
Collapse
|
19
|
Hsu CY, Sheu WHH, Lee IT. Brain-Derived Neurotrophic Factor Reduces Long-Term Mortality in Patients With Coronary Artery Disease and Chronic Kidney Disease. Front Cardiovasc Med 2022; 9:881441. [PMID: 35800175 PMCID: PMC9253370 DOI: 10.3389/fcvm.2022.881441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
Objectives Chronic kidney disease (CKD) is a risk factor for coronary artery disease (CAD). We examined the effects of circulating brain-derived neurotrophic factor (BDNF) on long-term mortality in patients with CAD and CKD. Materials and Methods We enrolled patients with established CAD in the present study. Serum BDNF and estimated glomerular filtration rate (eGFR) were assessed after overnight fasting. All-cause mortality served as the primary endpoint. Results All 348 enrolled patients were divided into four groups according to their median BDNF level and CKD status, defined according to eGFR <60 mL/min/1.73 m2. Forty-five patients reached the primary endpoint during the median follow-up time of 6.0 years. Kaplan-Meier survival analysis indicated that the group with low BDNF and CKD had a significantly higher mortality rate than the other three groups (log-rank test p < 0.001). Compared to the high BDNF without CKD group, the low BDNF with CKD group had a hazard ratio (HR) of 3.186 [95% confidence interval (CI): 1.482–6.846] for all-cause mortality according to the multivariable Cox proportional hazard regression analysis after adjusting for age and urine albumin-creatinine ratio (p = 0.003). Furthermore, there was a significantly interactive effect between BDNF and CKD status on the risk of the primary endpoint (odds ratio = 6.413, 95% CI: 1.497–27.47 in the multivariable logistic regression model and HR = 3.640, 95% CI: 1.006–13.173 in the Cox regression model). Conclusion We observed a synergistic effect between low serum BDNF levels and CKD on the prediction of all-cause mortality in patients with CAD.
Collapse
Affiliation(s)
- Cheng-Yueh Hsu
- Master of Public Health, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
- Department of Medical Education, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Wayne Huey-Herng Sheu
- Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - I-Te Lee
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- *Correspondence: I-Te Lee,
| |
Collapse
|
20
|
Britt NM, Poston MD, Garbe CG, Miller MK, Peeters LD, Wills LJ, Schweitzer JB, Brown RW, Hoover DB. Localization of NGF expression in mouse spleen and salivary gland: Relevance to pleotropic functions. J Neuroimmunol 2022; 366:577846. [DOI: 10.1016/j.jneuroim.2022.577846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 02/28/2022] [Accepted: 03/09/2022] [Indexed: 10/18/2022]
|
21
|
Porter GA, O’Connor JC. Brain-derived neurotrophic factor and inflammation in depression: Pathogenic partners in crime? World J Psychiatry 2022; 12:77-97. [PMID: 35111580 PMCID: PMC8783167 DOI: 10.5498/wjp.v12.i1.77] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/21/2021] [Accepted: 12/02/2021] [Indexed: 02/06/2023] Open
Abstract
Major depressive disorder is a debilitating disorder affecting millions of people each year. Brain-derived neurotrophic factor (BDNF) and inflammation are two prominent biologic risk factors in the pathogenesis of depression that have received considerable attention. Many clinical and animal studies have highlighted associations between low levels of BDNF or high levels of inflammatory markers and the development of behavioral symptoms of depression. However, less is known about potential interaction between BDNF and inflammation, particularly within the central nervous system. Emerging evidence suggests that there is bidirectional regulation between these factors with important implications for the development of depressive symptoms and anti-depressant response. Elevated levels of inflammatory mediators have been shown to reduce expression of BDNF, and BDNF may play an important negative regulatory role on inflammation within the brain. Understanding this interaction more fully within the context of neuropsychiatric disease is important for both developing a fuller understanding of biological pathogenesis of depression and for identifying novel therapeutic opportunities. Here we review these two prominent risk factors for depression with a particular focus on pathogenic implications of their interaction.
Collapse
Affiliation(s)
- Grace A Porter
- Department of Pharmacology, UT Health San Antonio, San Antonio, TX 78229, United States
| | - Jason C O’Connor
- Department of Pharmacology, University of Texas Health San Antonio, San Antonio, TX 78229, United States
- Audie L. Murphy VA Hospital, South Texas Veterans Health System, San Antonio, TX 78229, United States
| |
Collapse
|
22
|
Gan Y, He J, Zhu J, Xu Z, Wang Z, Yan J, Hu O, Bai Z, Chen L, Xie Y, Jin M, Huang S, Liu B, Liu P. Spatially defined single-cell transcriptional profiling characterizes diverse chondrocyte subtypes and nucleus pulposus progenitors in human intervertebral discs. Bone Res 2021; 9:37. [PMID: 34400611 PMCID: PMC8368097 DOI: 10.1038/s41413-021-00163-z] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 04/30/2021] [Accepted: 06/10/2021] [Indexed: 02/07/2023] Open
Abstract
A comprehensive understanding of the cellular heterogeneity and molecular mechanisms underlying the development, homeostasis, and disease of human intervertebral disks (IVDs) remains challenging. Here, the transcriptomic landscape of 108 108 IVD cells was mapped using single-cell RNA sequencing of three main compartments from young and adult healthy IVDs, including the nucleus pulposus (NP), annulus fibrosus, and cartilage endplate (CEP). The chondrocyte subclusters were classified based on their potential regulatory, homeostatic, and effector functions in extracellular matrix (ECM) homeostasis. Notably, in the NP, a PROCR+ resident progenitor population showed enriched colony-forming unit-fibroblast (CFU-F) activity and trilineage differentiation capacity. Finally, intercellular crosstalk based on signaling network analysis uncovered that the PDGF and TGF-β cascades are important cues in the NP microenvironment. In conclusion, a single-cell transcriptomic atlas that resolves spatially regulated cellular heterogeneity together with the critical signaling that underlies homeostasis will help to establish new therapeutic strategies for IVD degeneration in the clinic.
Collapse
Affiliation(s)
- Yibo Gan
- grid.410570.70000 0004 1760 6682Department of Spine Surgery, Center of Orthopedics, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China ,grid.410570.70000 0004 1760 6682State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jian He
- grid.410740.60000 0004 1803 4911State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| | - Jun Zhu
- grid.410570.70000 0004 1760 6682Department of Spine Surgery, Center of Orthopedics, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhengyang Xu
- grid.410740.60000 0004 1803 4911State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| | - Zhong Wang
- grid.410570.70000 0004 1760 6682Department of Spine Surgery, Center of Orthopedics, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jing Yan
- grid.410740.60000 0004 1803 4911State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| | - Ou Hu
- grid.410570.70000 0004 1760 6682Department of Spine Surgery, Center of Orthopedics, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhijie Bai
- grid.410740.60000 0004 1803 4911State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| | - Lin Chen
- grid.410570.70000 0004 1760 6682Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Laboratory for the Prevention and Rehabilitation of Military Training Related Injuries, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yangli Xie
- grid.410570.70000 0004 1760 6682Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Laboratory for the Prevention and Rehabilitation of Military Training Related Injuries, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Min Jin
- grid.410570.70000 0004 1760 6682Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Laboratory for the Prevention and Rehabilitation of Military Training Related Injuries, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Shuo Huang
- grid.410570.70000 0004 1760 6682Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Laboratory for the Prevention and Rehabilitation of Military Training Related Injuries, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Bing Liu
- grid.410740.60000 0004 1803 4911State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China ,grid.11135.370000 0001 2256 9319State Key Laboratory of Experimental Hematology, Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China ,grid.258164.c0000 0004 1790 3548Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Peng Liu
- grid.410570.70000 0004 1760 6682Department of Spine Surgery, Center of Orthopedics, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China ,grid.410570.70000 0004 1760 6682State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
23
|
Gan Y, He J, Zhu J, Xu Z, Wang Z, Yan J, Hu O, Bai Z, Chen L, Xie Y, Jin M, Huang S, Liu B, Liu P. Spatially defined single-cell transcriptional profiling characterizes diverse chondrocyte subtypes and nucleus pulposus progenitors in human intervertebral discs. Bone Res 2021; 9:37. [PMID: 34400611 PMCID: PMC8368097 DOI: 10.1038/s41413-021-00163-z+10.1038/s41413-021-00163-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 04/30/2021] [Accepted: 06/10/2021] [Indexed: 01/21/2024] Open
Abstract
A comprehensive understanding of the cellular heterogeneity and molecular mechanisms underlying the development, homeostasis, and disease of human intervertebral disks (IVDs) remains challenging. Here, the transcriptomic landscape of 108 108 IVD cells was mapped using single-cell RNA sequencing of three main compartments from young and adult healthy IVDs, including the nucleus pulposus (NP), annulus fibrosus, and cartilage endplate (CEP). The chondrocyte subclusters were classified based on their potential regulatory, homeostatic, and effector functions in extracellular matrix (ECM) homeostasis. Notably, in the NP, a PROCR+ resident progenitor population showed enriched colony-forming unit-fibroblast (CFU-F) activity and trilineage differentiation capacity. Finally, intercellular crosstalk based on signaling network analysis uncovered that the PDGF and TGF-β cascades are important cues in the NP microenvironment. In conclusion, a single-cell transcriptomic atlas that resolves spatially regulated cellular heterogeneity together with the critical signaling that underlies homeostasis will help to establish new therapeutic strategies for IVD degeneration in the clinic.
Collapse
Affiliation(s)
- Yibo Gan
- Department of Spine Surgery, Center of Orthopedics, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jian He
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| | - Jun Zhu
- Department of Spine Surgery, Center of Orthopedics, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhengyang Xu
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| | - Zhong Wang
- Department of Spine Surgery, Center of Orthopedics, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jing Yan
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| | - Ou Hu
- Department of Spine Surgery, Center of Orthopedics, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhijie Bai
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| | - Lin Chen
- Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Laboratory for the Prevention and Rehabilitation of Military Training Related Injuries, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yangli Xie
- Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Laboratory for the Prevention and Rehabilitation of Military Training Related Injuries, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Min Jin
- Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Laboratory for the Prevention and Rehabilitation of Military Training Related Injuries, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Shuo Huang
- Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Laboratory for the Prevention and Rehabilitation of Military Training Related Injuries, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Bing Liu
- State Key Laboratory of Proteomics, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China.
- State Key Laboratory of Experimental Hematology, Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.
- Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China.
| | - Peng Liu
- Department of Spine Surgery, Center of Orthopedics, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China.
- State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University (Third Military Medical University), Chongqing, China.
| |
Collapse
|
24
|
Spatially defined single-cell transcriptional profiling characterizes diverse chondrocyte subtypes and nucleus pulposus progenitors in human intervertebral discs. Bone Res 2021; 9:37. [PMID: 34400611 PMCID: PMC8368097 DOI: 10.1038/s41413-021-00163-z 10.1038/s41413-021-00163-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
Abstract
A comprehensive understanding of the cellular heterogeneity and molecular mechanisms underlying the development, homeostasis, and disease of human intervertebral disks (IVDs) remains challenging. Here, the transcriptomic landscape of 108 108 IVD cells was mapped using single-cell RNA sequencing of three main compartments from young and adult healthy IVDs, including the nucleus pulposus (NP), annulus fibrosus, and cartilage endplate (CEP). The chondrocyte subclusters were classified based on their potential regulatory, homeostatic, and effector functions in extracellular matrix (ECM) homeostasis. Notably, in the NP, a PROCR+ resident progenitor population showed enriched colony-forming unit-fibroblast (CFU-F) activity and trilineage differentiation capacity. Finally, intercellular crosstalk based on signaling network analysis uncovered that the PDGF and TGF-β cascades are important cues in the NP microenvironment. In conclusion, a single-cell transcriptomic atlas that resolves spatially regulated cellular heterogeneity together with the critical signaling that underlies homeostasis will help to establish new therapeutic strategies for IVD degeneration in the clinic.
Collapse
|
25
|
Azoulay D, Horowitz NA. Brain-derived neurotrophic factor in hematological malignancies: From detrimental to potentially beneficial. Blood Rev 2021; 51:100871. [PMID: 34344590 DOI: 10.1016/j.blre.2021.100871] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/13/2021] [Accepted: 07/21/2021] [Indexed: 12/20/2022]
Abstract
Emerging studies have highlighted brain-derived neurotrophic factor (BDNF), a neuronal growth factor abundant in the peripheral blood, and its tyrosine kinase receptor TRKB, as onco-genes and proteins that support the survival of malignant hematological cells. In contrast, other researchers reported on a favorable association between BDNF blood levels and prognosis, chemotherapy response and neurological side effects in patients with hematological malignancies. Here, we review the accumulated data regarding the expression of BDNF and its receptors in normal hematopoietic and lymphatic cells and tissue. In addition, in-vitro experiments, animal models and human sample studies that investigated the role of BDNF and its receptors in hematological malignancies are discussed. Finally, directions for future research aimed at revealing the mechanisms underlying the protective effect of BDNF in patients with these diseases are suggested.
Collapse
Affiliation(s)
- David Azoulay
- Hematology Unit and Laboratories, Galilee Medical Center, Naharia, Israel; Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel.
| | - Netanel A Horowitz
- Department of Hematology and Bone Marrow Transplantation, Rambam Health Care Campus, Haifa, Israel; The Ruth and Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
26
|
Townsend LK, MacPherson REK, Wright DC. New Horizon: Exercise and a Focus on Tissue-Brain Crosstalk. J Clin Endocrinol Metab 2021; 106:2147-2163. [PMID: 33982072 DOI: 10.1210/clinem/dgab333] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Indexed: 01/03/2023]
Abstract
The world population is aging, leading to increased rates of neurodegenerative disorders. Exercise has countless health benefits and has consistently been shown to improve brain health and cognitive function. The purpose of this review is to provide an overview of exercise-induced adaptations in the brain with a focus on crosstalk between peripheral tissues and the brain. We highlight recent investigations into exercise-induced circulating factors, or exerkines, including irisin, cathepsin B, GPLD1, and ketones and the mechanisms mediating their effects in the brain.
Collapse
Affiliation(s)
- Logan K Townsend
- Department of Medicine, McMaster University, Hamilton, L8S 4L8, Canada
- Department of Human Health and Nutritional Science, University of Guelph, Guelph, N1G 2W1, Canada
| | - Rebecca E K MacPherson
- Department of Health Sciences and Centre for Neuroscience, Brock University, St. Catharines, L2S 3A1, Canada
| | - David C Wright
- Department of Human Health and Nutritional Science, University of Guelph, Guelph, N1G 2W1, Canada
| |
Collapse
|
27
|
Dokaneheifard S, Soltani BM. Implication of TrkC-miR2 in neurotrophin signalling pathway regulation through NGFR transcript targeting. J Cell Mol Med 2021; 25:3381-3390. [PMID: 33675128 PMCID: PMC8034437 DOI: 10.1111/jcmm.16415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/29/2021] [Accepted: 02/15/2021] [Indexed: 12/15/2022] Open
Abstract
TrkC and NGFR neurotrophin receptors are associated with cell death, cancer and differentiation. TrkC-miR2, which is located in TrkC gene, is known to regulate Wnt signalling pathway, and its influence on other signalling pathways is under investigation. Here, through RT-qPCR, dual-luciferase assay and Western blotting we reveal that TrkC-miR2 targets NGFR. Overexpression of TrkC-miR2 also affected TrkA, TrkC, NFKB, BCL2 and Akt2 expressions involved in neurotrophin signalling pathway, and elevated survival rate of HEK293t and U87 cells was distinguished by flow cytometry and MTT assay. Consistently, an opposite expression correlation was obtained between TrkC-miR2 and NGFR or TrkC for the duration of NT2 differentiation. Meanwhile, TrkC-miR2 down-regulation attenuated NT2 differentiation into neural-like cells. Overall, here we present in silico and experimental evidence showing TrkC-miR2 as a new controller in regulation of neurotrophin signalling pathway.
Collapse
Affiliation(s)
- Sadat Dokaneheifard
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Bahram M Soltani
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
28
|
Ruiz-Lozano RE, Hernandez-Camarena JC, Loya-Garcia D, Merayo-Lloves J, Rodriguez-Garcia A. The molecular basis of neurotrophic keratopathy: Diagnostic and therapeutic implications. A review. Ocul Surf 2021; 19:224-240. [DOI: 10.1016/j.jtos.2020.09.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 09/13/2020] [Accepted: 09/22/2020] [Indexed: 12/11/2022]
|
29
|
Maranesi M, Boiti C, Zerani M. Nerve Growth Factor (NGF) and Animal Reproduction. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1331:277-287. [PMID: 34453306 DOI: 10.1007/978-3-030-74046-7_19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Stimuli that lead to the release of gonadotropin-releasing hormone (GnRH) and pituitary gonadotropins and, consequently, ovulation in mammals fall into two broad categories. In the first, high plasma oestrogen concentrations induce the events that trigger ovulation, a characteristic of spontaneous ovulators. In the second, nerve stimuli occurring during mating reach the hypothalamus and trigger the release of GnRH and ovulation with a neuroendocrine reflex that characterizes induced ovulators.In this review, we will give an overview of the distribution of NGF and its expression in the different tissues of the male accessory sex glands, the main sites of NGF production. Next, we will highlight the role of NGF in sperm function and its potential cryopreserving role in artificial insemination techniques. Finally, we will evaluate the functions of NGF in ovulation, particularly in induced ovulators. Overall, the information obtained so far indicates that NGF is widely distributed in organs that regulate the reproductive activity, in both males and females. In spontaneous ovulators, NGF exerts mainly a luteotrophic action, while, in induced ovulators it is the main ovulation-inducing factor. A better understanding of the role of NGF in reproduction would be of great interest, since it could help finding innovative therapeutic aids to improve mammalian fertility.
Collapse
Affiliation(s)
- Margherita Maranesi
- Dipartimento di Medicina Veterinaria, Università di Perugia, Perugia, PG, Italy.
| | - Cristiano Boiti
- Dipartimento di Medicina Veterinaria, Università di Perugia, Perugia, PG, Italy
| | - Massimo Zerani
- Dipartimento di Medicina Veterinaria, Università di Perugia, Perugia, PG, Italy
| |
Collapse
|
30
|
Zhang B, Han X, Gao Q, Liu J, Li S, Zha W, Wang X, Guo X, Gao D. Enhancer II-targeted dsRNA decreases GDNF expression via histone H3K9 trimethylation to inhibit glioblastoma progression. Brain Res Bull 2020; 167:22-32. [PMID: 33278485 DOI: 10.1016/j.brainresbull.2020.11.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/01/2020] [Accepted: 11/30/2020] [Indexed: 11/18/2022]
Abstract
BACKGROUND Glial cell line-derived neurotrophic factor (GDNF) is expressed in both astrocytes and glioblastoma (GBM) cells. GDNF expression is significantly increased in GBM, and inhibiting its expression can retard GBM progression. However, there is no known method for specific inhibition of GDNF in GBM cells. METHODS Promoter-targeted dsRNA-induced transcriptional gene silencing or activation was recently achieved in human cells. This approach has the potential to specifically regulate gene transcription via epigenetic modifications. In this study, we designed six candidate dsRNAs targeting the enhancer or silencer in GDNF gene promoter II to check their effects on GDNF transcription and GBM progression. RESULTS Among these dsRNAs, enhancer II-targeted dsRNA significantly inhibited U251 GBM progression by downregulating GDNF (P < 0.05), while silencer II-targeted dsRNA exerted an opposite effect. Moreover, enhancer II-targeted dsRNA did not significantly change GDNF expression in human astrocytes (HA) and the proliferation and migration of HA cells (P > 0.05). Bisulfate PCR and chromatin immunoprecipitation analyses revealed that both DNA methylation and trimethylation of histone 3 at lysine 9 (H3K9me3) at silencer II-targeted region significantly increased, and H3K9me3 at enhancer II-targeted region significantly decreased, in U251 cells compared with HA cells in non-intervention condition (P < 0.05). Both enhancer II- and silencer II-targeted dsRNA significantly increased H3K9me3 methylation rather than DNA at the targeted site in U251 cells (P < 0.05). The expression and activity of histone methyltransferase SETDB1 increased dramatically in U251 cells compared with HA cells, and it was recruited to enhancer II targeting region after enhancer II-targeted dsRNA treatment in U251 cells (P < 0.05). CONCLUSIONS Our results demonstrate that a promoter-targeted dsRNA can silence or promote gene transcription depending on its targeted site in different cis-acting elements in the gene promoter. Targeted inhibition of GDNF by enhancer II-targeted dsRNA may be explored as a novel treatment for GBM.
Collapse
Affiliation(s)
- Baole Zhang
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China.
| | - Xiao Han
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China
| | - Qing Gao
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China
| | - Jie Liu
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China
| | - Saisai Li
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China
| | - Wei Zha
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China
| | - Xiaoyu Wang
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China
| | - Xiaoxiao Guo
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China
| | - Dianshuai Gao
- Department of Neurobiology and Anatomy, Xuzhou Key Laboratory of Neurobiology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China.
| |
Collapse
|
31
|
Faust K, Vajkoczy P, Xi B, Harnack D. The Effects of Deep Brain Stimulation of the Subthalamic Nucleus on Vascular Endothelial Growth Factor, Brain-Derived Neurotrophic Factor, and Glial Cell Line-Derived Neurotrophic Factor in a Rat Model of Parkinson's Disease. Stereotact Funct Neurosurg 2020; 99:256-266. [PMID: 33152730 DOI: 10.1159/000511121] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/23/2020] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Deep brain stimulation (DBS) of the subthalamic nucleus (STN) has evolved as a powerful therapeutic alternative for the treatment of Parkinson's disease (PD). Despite its clinical efficacy, the mechanisms of action have remained poorly understood. In addition to the immediate symptomatic effects, long-term neuroprotective effects have been suggested. Those may be mediated through neurotrophic factors (NFs) like vascular endothelial growth factor (VEGF), brain-derived neurotrophic factor (BDNF), and glial cell line-derived neurotrophic factor (GDNF). Here, the impact of DBS on the expression of NFs was analysed in a rat model of PD. METHODS Unilateral 6-hydroxydopamine (6-OHDA) lesioned rats received DBS in the STN using an implantable microstimulation system, sham DBS in the STN, or no electrode placement. Continuous unilateral STN-DBS (current intensity 50 µA, frequency 130 Hz, and pulse width 52 µs) was conducted for 14 days. Rats were then sacrificed and brains shock frozen. Striata and motor cortices were dissected with a cryostat. Levels of VEGF, BDNF, and GDNF were analysed, both by quantitative PCR and colorimetric ELISA. RESULTS PCR revealed a significant upregulation of only BDNF mRNA in the ipsilateral striata of the DBS group, when compared to the sham-stimulated group. There was no significant increase in VEGF mRNA or GDNF mRNA. ELISA analysis showed augmentations of BDNF, VEGF, as well as GDNF protein in the ipsilateral striata after DBS compared to sham stimulation. In the motor cortex, significant increases after DBS were observed for BDNF only, not for the other 2 NFs. CONCLUSIONS The upregulation of trophic factors induced by STN-DBS may participate in its long-term therapeutic efficacy and potentially neuroprotective effects.
Collapse
Affiliation(s)
- Katharina Faust
- Department of Neurosurgery, Charité University Hospital, Berlin, Germany,
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité University Hospital, Berlin, Germany
| | - Bai Xi
- Department of Neurosurgery, Charité University Hospital, Berlin, Germany
| | - Daniel Harnack
- Beelitz Neurology, Rehabilitation Clinic, Berlin, Germany
| |
Collapse
|
32
|
ProNGF/p75NTR Axis Drives Fiber Type Specification by Inducing the Fast-Glycolytic Phenotype in Mouse Skeletal Muscle Cells. Cells 2020; 9:cells9102232. [PMID: 33023189 PMCID: PMC7599914 DOI: 10.3390/cells9102232] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 12/16/2022] Open
Abstract
Despite its undisputable role in the homeostatic regulation of the nervous system, the nerve growth factor (NGF) also governs the relevant cellular processes in other tissues and organs. In this study, we aimed at assessing the expression and the putative involvement of NGF signaling in skeletal muscle physiology. To reach this objective, we employed satellite cell-derived myoblasts as an in vitro culture model. In vivo experiments were performed on Tibialis anterior from wild-type mice and an mdx mouse model of Duchenne muscular dystrophy. Targets of interest were mainly assessed by means of morphological, Western blot and qRT-PCR analysis. The results show that proNGF is involved in myogenic differentiation. Importantly, the proNGF/p75NTR pathway orchestrates a slow-to-fast fiber type transition by counteracting the expression of slow myosin heavy chain and that of oxidative markers. Concurrently, proNGF/p75NTR activation facilitates the induction of fast myosin heavy chain and of fast/glycolytic markers. Furthermore, we also provided evidence that the oxidative metabolism is impaired in mdx mice, and that these alterations are paralleled by a prominent buildup of proNGF and p75NTR. These findings underline that the proNGF/p75NTR pathway may play a crucial role in fiber type determination and suggest its prospective modulation as an innovative therapeutic approach to counteract muscle disorders.
Collapse
|
33
|
Abstract
Neurotrophin-3 (NT-3) belongs to a family of growth factors called neurotrophins whose actions are centered in the nervous system. NT-3 is structurally related to other neurotrophins like brain-derived neurotrophic factor. The expression of NT-3 starts with the onset of neurogenesis and continues throughout life. A wealth of information links NT-3 to the growth, differentiation, and survival of hippocampal cells as well as sympathetic and sensory neurons. These studies have described the distribution of NT-3 and its receptors throughout development and in the mature nervous system. Prior works has begun to cell-type specific impact of NT-3 as well as identify the signaling pathways involved. However, much less is known about how NT-3 regulates synaptic transmission. This chapter focuses role of NT-3 in the modulation of synaptic transmission.
Collapse
|
34
|
Konturek TJ, Martinez C, Niesler B, van der Voort I, Mönnikes H, Stengel A, Goebel-Stengel M. The Role of Brain-Derived Neurotrophic Factor in Irritable Bowel Syndrome. Front Psychiatry 2020; 11:531385. [PMID: 33519536 PMCID: PMC7840690 DOI: 10.3389/fpsyt.2020.531385] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022] Open
Abstract
Several studies have implied a role of brain-derived neurotrophic factor (BDNF) in abdominal pain modulation in irritable bowel syndrome (IBS). The aim of this study was to establish BDNF protein expression in human colonic biopsies and to show variation in IBS compared to controls. BDNF protein and mRNA levels were correlated with IBS symptom severity based on the IBS-symptom severity score (IBS-SSS). Biopsies from the descending colon and IBS-SSS were obtained from 10 controls and 20 IBS patients. Total protein of biopsies was extracted and assessed by ELISA and Western Blot. Total mRNA was extracted and gene expression measured by nCounter analysis. In IBS patients, symptom severity scores ranged from 124 to 486 (mean ± sem: 314.2 ± 21.2, >300 represents severe IBS) while controls ranged from 0 to 72 (mean ± sem: 27.7 ± 9.0, <75 represents healthy subjects, p < 0.001). IBS patients reported significantly more food malabsorption, former abdominal surgery and psychiatric comorbidities. BDNF protein was present in all samples and did not differ between IBS and controls or sex. Subgroup analysis showed that female IBS patients expressed significantly more BDNF mRNA compared to male patients (p < 0.05) and male IBS-D patients had higher IBS symptom severity scores and lower BDNF mRNA and protein levels compared to male controls (p < 0.05). Scatter plot showed a significant negative correlation between IBS-SSS and BDNF mRNA levels in the cohort of male IBS-D patients and their male controls (p < 0.05). We detected a high proportion of gastrointestinal surgery in IBS patients and confirmed food intolerances and psychiatric diseases as common comorbidities. Although in a small sample, we demonstrated that BDNF is detectable in human descending colon, with higher BDNF mRNA levels in female IBS patients compared to males and lower mRNA and protein levels in male IBS-D patients compared to male controls. Further research should be directed toward subgroups of IBS since their etiologies might be different.
Collapse
Affiliation(s)
- Thomas Jan Konturek
- Division of Gastroenterology, Loyola University Medical Center, Stritch School of Medicine, Maywood, IL, United States.,Department of Internal Medicine, Institute of Neurogastroenterology, Martin Luther Hospital, Johannesstift Diakonie, Berlin, Germany
| | - Cristina Martinez
- Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), Lleida, Spain.,Department of Human Molecular Genetics, University Hospital Heidelberg, Heidelberg, Germany
| | - Beate Niesler
- Department of Human Molecular Genetics, University Hospital Heidelberg, Heidelberg, Germany.,nCounter Core Facility Heidelberg, Institute of Human Genetics, Heidelberg, Germany
| | - Ivo van der Voort
- Department of Internal Medicine, Institute of Neurogastroenterology, Martin Luther Hospital, Johannesstift Diakonie, Berlin, Germany.,Department of Internal Medicine and Gastroenterology, Berlin Jewish Hospital, Berlin, Germany
| | - Hubert Mönnikes
- Department of Internal Medicine, Institute of Neurogastroenterology, Martin Luther Hospital, Johannesstift Diakonie, Berlin, Germany
| | - Andreas Stengel
- Department of Psychosomatic Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Miriam Goebel-Stengel
- Department of Internal Medicine, Institute of Neurogastroenterology, Martin Luther Hospital, Johannesstift Diakonie, Berlin, Germany.,Department of Psychosomatic Medicine, University Hospital Tübingen, Tübingen, Germany.,Department of Internal Medicine and Gastroenterology, Helios Clinic Rottweil, Rottweil, Germany
| |
Collapse
|
35
|
Brain-derived neurotrophic factor-TrkB signaling in the medial prefrontal cortex plays a role in the anhedonia-like phenotype after spared nerve injury. Eur Arch Psychiatry Clin Neurosci 2020; 270:195-205. [PMID: 29882089 PMCID: PMC7036057 DOI: 10.1007/s00406-018-0909-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 05/31/2018] [Indexed: 12/14/2022]
Abstract
Although depressive symptoms including anhedonia (i.e., loss of pleasure) frequently accompany pain, little is known about the risk factors contributing to individual differences in pain-induced anhedonia. In this study, we examined if signaling of brain-derived neurotrophic factor (BDNF) and its receptor tropomyosin-receptor-kinase B (TrkB) contribute to individual differences in the development of neuropathic pain-induced anhedonia. Rats were randomly subjected to spared nerved ligation (SNI) or sham surgery. The SNI rats were divided into two groups based on the results of a sucrose preference test. Rats with anhedonia-like phenotype displayed lower tissue levels of BDNF in the medial prefrontal cortex (mPFC) compared with rats without anhedonia-like phenotype and sham-operated rats. In contrast, tissue levels of BDNF in the nucleus accumbens (NAc) of rats with an anhedonia-like phenotype were higher compared with those of rats without anhedonia-like phenotype and sham-operated rats. Furthermore, tissue levels of BDNF in the hippocampus, L2-5 spinal cord, muscle, and liver from both rats with or without anhedonia-like phenotype were lower compared with those of sham-operated rats. A single injection of 7,8-dihydroxyflavone (10 mg/kg; TrkB agonist), but not ANA-12 (0.5 mg/kg; TrkB antagonist), ameliorated reduced sucrose preference and reduced BDNF-TrkB signaling in the mPFC in the rats with anhedonia-like phenotype. These findings suggest that reduced BDNF-TrkB signaling in the mPFC might contribute to neuropathic pain-induced anhedonia, and that TrkB agonists could be potential therapeutic drugs for pain-induced anhedonia.
Collapse
|
36
|
Cırrık S, Hacioglu G, Abidin İ, Aydın-Abidin S, Noyan T. Endoplasmic reticulum stress in the livers of BDNF heterozygous knockout mice. Arch Physiol Biochem 2019; 125:378-386. [PMID: 30039987 DOI: 10.1080/13813455.2018.1489850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Context: Involvement of endoplasmic reticulum (ER) stress and brain-derived neurotrophic factor (BDNF) in hepatic lipid metabolism has been reported previously. Objective: The effects of chronic BDNF deficiency on ER stress response in the livers were examined in this study. Methods: BDNF(+/-) mice, characterised by BDNF deficiency, and their wild-type (WT) littermates were used. The ER stress was induced by tunicamycin (Tm) (0.5 mg/kg, intraperitoneal). Animals were divided into four groups; WT, WT + Tm, BDNF(+/-), and BDNF(+/-)+Tm. Results: At the basal conditions, BDNF deficiency did not affect hepatic cell death or lipid accumulation. However, during ER stress, BDNF(+/-)+Tm group showed increased apoptosis, GADD153 immunostaining, sterol regulatory element-binding protein-1c (SREBP-1c) level, and steatosis compared to the WT + Tm group. Conclusion: Endogenous BDNF might be protective against apoptosis through GADD153 suppression and steatosis via SREBP-1c suppression during ER stress. This effect of BDNF might be clinically important for type 2 diabetes and obesity, which are related with both ER stress and BDNF deficiency.
Collapse
Affiliation(s)
- Selma Cırrık
- a Department of Physiology, Faculty of Medicine, Ordu University , Ordu , Turkey
| | - Gulay Hacioglu
- b Department of Physiology, Faculty of Medicine, Giresun University , Giresun , Turkey
| | - İsmail Abidin
- c Department of Biophysics, Faculty of Medicine, Karadeniz Technical University , Trabzon , Turkey
| | - Selcen Aydın-Abidin
- c Department of Biophysics, Faculty of Medicine, Karadeniz Technical University , Trabzon , Turkey
| | - Tevfik Noyan
- d Department of Medical Biochemistry, Faculty of Medicine, Ordu University , Ordu , Turkey
| |
Collapse
|
37
|
Yagubova S, Zhanataev A, Ostrovskaya R, Anisina Е, Gudasheva Т, Durnev А, Seredenin S. Dimeric NGF Mimetic Attenuates Hyperglycaemia and DNA Damage in Mice with Streptozotocin-Induced Early-Stage Diabetes. Endocr Metab Immune Disord Drug Targets 2019; 20:453-463. [PMID: 31385776 DOI: 10.2174/1871530319666190806115623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/13/2019] [Accepted: 06/26/2019] [Indexed: 01/09/2023]
Abstract
BACKGROUND NGF deficiency is one of the reasons for reduced β-cells survival in diabetes. Our previous experiments revealed the ability of low-weight NGF mimetic, GK-2, to reduce hyperglycaemia in a model of advanced diabetes. The increase in DNA damage in advanced diabetes was repeatedly reported, while there were no data about DNA damage in the initial diabetes. AIM The study aimed to establish whether DNA damage occurs in initial diabetes and whether GK-2 is able to overcome the damage. METHODS The early-stage diabetes was modelled in Balb/c mice by streptozotocin (STZ) (130 mg/kg, i.p.). GK-2 was administered at a dose of 0.5 mg/kg, i.p., subchronically. The evaluation of DNA damage was performed using the alkaline comet assay; the percentage of DNA in the tail (%TDNA) and the percentage of the atypical DNA comets ("ghost cells") were determined. RESULTS STZ at this subthreshold dose produced a slight increase in glycemia and MDA. Meanwhile, pronounced DNA damage was observed, concerning mostly the percentage of "ghost cells" in the pancreas, the liver and kidneys. GK-2 attenuated the degree of hyperglycaemia and reduced the % of "ghost cells" and %TDNA in all the organs examined; this effect continued after discontinuation of the therapy. CONCLUSION Early-stage diabetes is accompanied by DNA damage, manifested by the increase of "ghost cells" percentage. The severity of these changes significantly exceeds the degree of hyperglycaemia and MDA accumulation. GK-2 exerts an antihyperglycaemic effect and attenuates the degree of DNA damage. Our results indicate that the comet assay is a highly informative method for search of antidiabetic medicines.
Collapse
Affiliation(s)
- Svetlana Yagubova
- Laboratory of Psychopharmacology, FSBI "Zakusov Institute of Pharmacology", Moscow, Russian Federation
| | - Aliy Zhanataev
- Laboratory of pharmacology and mutagenesis, FSBI "Zakusov Institute of Pharmacology", Moscow, Russian Federation
| | - Rita Ostrovskaya
- Laboratory of Psychopharmacology, FSBI "Zakusov Institute of Pharmacology", Moscow, Russian Federation
| | - Еlena Anisina
- Laboratory of pharmacology and mutagenesis, FSBI "Zakusov Institute of Pharmacology", Moscow, Russian Federation
| | - Тatiana Gudasheva
- Department of Medicinal Chemistry, FSBI "Zakusov Institute of Pharmacology", Moscow, Russian Federation
| | - Аndrey Durnev
- Laboratory of Drug Toxicology, FSBI "Zakusov Institute of Pharmacology", Moscow, Russian Federation
| | - Sergey Seredenin
- Department of Pharmacogenetics, FSBI "Zakusov Institute of Pharmacology", Moscow, Russian Federation
| |
Collapse
|
38
|
Valdovinos-Flores C, Limón-Pacheco JH, León-Rodríguez R, Petrosyan P, Garza-Lombó C, Gonsebatt ME. Systemic L-Buthionine -S-R-Sulfoximine Treatment Increases Plasma NGF and Upregulates L-cys/L-cys2 Transporter and γ-Glutamylcysteine Ligase mRNAs Through the NGF/TrkA/Akt/Nrf2 Pathway in the Striatum. Front Cell Neurosci 2019; 13:325. [PMID: 31396052 PMCID: PMC6664075 DOI: 10.3389/fncel.2019.00325] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/03/2019] [Indexed: 01/31/2023] Open
Abstract
Glutathione (GSH) is the most abundant intracellular antioxidant. GSH depletion leads to oxidative stress and neuronal damage in the central nervous system (CNS). In mice, the acute systemic inhibition of GSH synthesis by L-buthionine-S-R-sulfoximine (BSO) triggers a protective response and a subsequent increase in the CNS GSH content. This response might be modulated by a peripheral increment of circulating nerve growth factor (NGF). NGF is an important activator of antioxidant pathways mediated by tropomyosin-related kinase receptor A (TrkA). Here, we report that peripheral administration of BSO increased plasma NGF levels. Additionally, BSO increased NGF levels and activated the NGF/TrkA/Akt pathway in striatal neurons. Moreover, the response in the striatum included an increased transcription of nrf2, gclm, lat1, eaac1, and xct, all of which are involved in antioxidant responses, and L-cys/L-cys2 and glutamate transporters. Using antibody against NGF confirmed that peripheral NGF activated the NGF/TrkA/Akt/Nrf2 pathway in the striatum and subsequently increased the transcription of gclm, nrf2, lat1, eaac1, and xct. These results provide evidence that the reduction of peripheral GSH pools increases peripheral NGF circulation that orchestrates a neuroprotective response in the CNS, at least in the striatum, through the NGF/TrkA/Akt/Nrf2 pathway.
Collapse
Affiliation(s)
- Cesar Valdovinos-Flores
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Jorge H Limón-Pacheco
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Renato León-Rodríguez
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Pavel Petrosyan
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Carla Garza-Lombó
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Maria E Gonsebatt
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
39
|
Haberberger RV, Barry C, Dominguez N, Matusica D. Human Dorsal Root Ganglia. Front Cell Neurosci 2019; 13:271. [PMID: 31293388 PMCID: PMC6598622 DOI: 10.3389/fncel.2019.00271] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/04/2019] [Indexed: 12/14/2022] Open
Abstract
Sensory neurons with cell bodies situated in dorsal root ganglia convey information from external or internal sites of the body such as actual or potential harm, temperature or muscle length to the central nervous system. In recent years, large investigative efforts have worked toward an understanding of different types of DRG neurons at transcriptional, translational, and functional levels. These studies most commonly rely on data obtained from laboratory animals. Human DRG, however, have received far less investigative focus over the last 30 years. Nevertheless, knowledge about human sensory neurons is critical for a translational research approach and future therapeutic development. This review aims to summarize both historical and emerging information about the size and location of human DRG, and highlight advances in the understanding of the neurochemical characteristics of human DRG neurons, in particular nociceptive neurons.
Collapse
Affiliation(s)
- Rainer Viktor Haberberger
- Pain and Pulmonary Neurobiology Laboratory, Centre for Neuroscience, Anatomy and Histology, Flinders University, Adelaide, SA, Australia.,Órama Institute, Flinders University, Adelaide, SA, Australia
| | - Christine Barry
- Pain and Pulmonary Neurobiology Laboratory, Centre for Neuroscience, Anatomy and Histology, Flinders University, Adelaide, SA, Australia
| | - Nicholas Dominguez
- Pain and Pulmonary Neurobiology Laboratory, Centre for Neuroscience, Anatomy and Histology, Flinders University, Adelaide, SA, Australia
| | - Dusan Matusica
- Pain and Pulmonary Neurobiology Laboratory, Centre for Neuroscience, Anatomy and Histology, Flinders University, Adelaide, SA, Australia.,Órama Institute, Flinders University, Adelaide, SA, Australia
| |
Collapse
|
40
|
Kermani P, Hempstead B. BDNF Actions in the Cardiovascular System: Roles in Development, Adulthood and Response to Injury. Front Physiol 2019; 10:455. [PMID: 31105581 PMCID: PMC6498408 DOI: 10.3389/fphys.2019.00455] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 04/01/2019] [Indexed: 01/08/2023] Open
Abstract
The actions of BDNF (Brain-derived Neurotrophic Factor) in regulating neuronal development and modulating synaptic activity have been extensively studied and well established. Equally important roles for this growth factor have been uncovered in the cardiovascular system, through the examination of gene targeted animals to define critical actions in development, and to the unexpected roles of BDNF in modulating the response of the heart and vasculature to injury. Here we review the compartmentally distinct realm of cardiac myocytes, vascular smooth muscle cells, endothelial cells, and hematopoietic cells, focusing upon the actions of BDNF to modulate contractility, migration, neoangiogenesis, apoptosis and survival. These studies indicate that BDNF is an important growth factor which directs the response of the cardiovascular system to acute and chronic injury.
Collapse
Affiliation(s)
- Pouneh Kermani
- Department of Medicine, Weill Cornell Medical College, New York, NY, United States
| | - Barbara Hempstead
- Department of Medicine, Weill Cornell Medical College, New York, NY, United States.,Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY, United States
| |
Collapse
|
41
|
Duraikannu A, Krishnan A, Chandrasekhar A, Zochodne DW. Beyond Trophic Factors: Exploiting the Intrinsic Regenerative Properties of Adult Neurons. Front Cell Neurosci 2019; 13:128. [PMID: 31024258 PMCID: PMC6460947 DOI: 10.3389/fncel.2019.00128] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 03/14/2019] [Indexed: 01/19/2023] Open
Abstract
Injuries and diseases of the peripheral nervous system (PNS) are common but frequently irreversible. It is often but mistakenly assumed that peripheral neuron regeneration is robust without a need to be improved or supported. However, axonal lesions, especially those involving proximal nerves rarely recover fully and injuries generally are complicated by slow and incomplete regeneration. Strategies to enhance the intrinsic growth properties of reluctant adult neurons offer an alternative approach to consider during regeneration. Since axons rarely regrow without an intimately partnered Schwann cell (SC), approaches to enhance SC plasticity carry along benefits to their axon partners. Direct targeting of molecules that inhibit growth cone plasticity can inform important regenerative strategies. A newer approach, a focus of our laboratory, exploits tumor suppressor molecules that normally dampen unconstrained growth. However several are also prominently expressed in stable adult neurons. During regeneration their ongoing expression “brakes” growth, whereas their inhibition and knockdown may enhance regrowth. Examples have included phosphatase and tensin homolog deleted on chromosome ten (PTEN), a tumor suppressor that inhibits PI3K/pAkt signaling, Rb1, the protein involved in retinoblastoma development, and adenomatous polyposis coli (APC), a tumor suppressor that inhibits β-Catenin transcriptional signaling and its translocation to the nucleus. The identification of several new targets to manipulate the plasticity of regenerating adult peripheral neurons is exciting. How they fit with canonical regeneration strategies and their feasibility require additional work. Newer forms of nonviral siRNA delivery may be approaches for molecular manipulation to improve regeneration.
Collapse
Affiliation(s)
- Arul Duraikannu
- Division of Neurology, Department of Medicine, and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Anand Krishnan
- Division of Neurology, Department of Medicine, and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Ambika Chandrasekhar
- Division of Neurology, Department of Medicine, and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Douglas W Zochodne
- Division of Neurology, Department of Medicine, and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
42
|
Enhancement of HGF-induced tubulogenesis by endothelial cell-derived GDNF. PLoS One 2019; 14:e0212991. [PMID: 30845150 PMCID: PMC6405134 DOI: 10.1371/journal.pone.0212991] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 02/13/2019] [Indexed: 12/22/2022] Open
Abstract
Tubulogenesis, the organization of epithelial cells into tubular structures, is an essential step during renal organogenesis as well as during the regeneration process of renal tubules after injury. In the present study, endothelial cell-derived factors that modulate tubule formation were examined using an in vitro human tubulogenesis system. When human renal proximal tubular epithelial cells (RPTECs) were cultured in gels, tubular structures with lumens were induced in the presence of hepatocyte growth factor (HGF). Aquaporin 1 was localized in the apical membrane of these tubular structures, suggesting that these structures are morphologically equivalent to renal tubules in vivo. HGF-induced tubule formation was significantly enhanced when co-cultured with human umbilical vein endothelial cells (HUVECs) or in the presence of HUVEC-conditioned medium (HUVEC-CM). Co-culture with HUVECs did not induce tubular structures in the absence of HGF. A phospho-receptor tyrosine kinase array revealed that HUVEC-CM markedly enhanced phosphorylation of Ret, glial cell-derived neurotrophic factor (GDNF) receptor, in HGF-induced tubular structures compared to those without HUVEC-CM. HUVECs produced GDNF, and RPTECs expressed both Ret and GDNF family receptor alpha1 (co-receptor). HGF-induced tubule formation was significantly enhanced by addition of GDNF. Interestingly, not only HGF but also GDNF significantly induced phosphorylation of the HGF receptor, Met. These data indicate that endothelial cell-derived GDNF potentiates the tubulogenic properties of HGF and may play a critical role in the epithelial-endothelial crosstalk during renal tubulogenesis as well as tubular regeneration after injury.
Collapse
|
43
|
Coelho A, Oliveira R, Antunes-Lopes T, Cruz CD. Partners in Crime: NGF and BDNF in Visceral Dysfunction. Curr Neuropharmacol 2019; 17:1021-1038. [PMID: 31204623 PMCID: PMC7052822 DOI: 10.2174/1570159x17666190617095844] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/23/2019] [Accepted: 06/03/2019] [Indexed: 12/12/2022] Open
Abstract
Neurotrophins (NTs), particularly Nerve Growth Factor (NGF) and Brain-Derived Neurotrophic Factor (BDNF), have attracted increasing attention in the context of visceral function for some years. Here, we examined the current literature and presented a thorough review of the subject. After initial studies linking of NGF to cystitis, it is now well-established that this neurotrophin (NT) is a key modulator of bladder pathologies, including Bladder Pain Syndrome/Interstitial Cystitis (BPS/IC) and Chronic Prostatitis/Chronic Pelvic Pain Syndrome (CP/CPPS. NGF is upregulated in bladder tissue and its blockade results in major improvements on urodynamic parameters and pain. Further studies expanded showed that NGF is also an intervenient in other visceral dysfunctions such as endometriosis and Irritable Bowel Syndrome (IBS). More recently, BDNF was also shown to play an important role in the same visceral dysfunctions, suggesting that both NTs are determinant factors in visceral pathophysiological mechanisms. Manipulation of NGF and BDNF improves visceral function and reduce pain, suggesting that clinical modulation of these NTs may be important; however, much is still to be investigated before this step is taken. Another active area of research is centered on urinary NGF and BDNF. Several studies show that both NTs can be found in the urine of patients with visceral dysfunction in much higher concentration than in healthy individuals, suggesting that they could be used as potential biomarkers. However, there are still technical difficulties to be overcome, including the lack of a large multicentre placebo-controlled studies to prove the relevance of urinary NTs as clinical biomarkers.
Collapse
Affiliation(s)
| | | | | | - Célia Duarte Cruz
- Address correspondence to this author at the Department of Experimental Biology, Experimental Biology Unit, Faculty of Medicine of the University of Porto, Alameda Hernâni Monteiro; Tel: 351 220426740; Fax: +351 225513655; E-mail:
| |
Collapse
|
44
|
Chen S, Wang F, Liu Z, Zhao Y, Jiang Y, Chen L, Li C, Zhou X. Brain-derived neurotrophic factor promotes proliferation and progesterone synthesis in bovine granulosa cells. J Cell Physiol 2018; 234:8776-8787. [PMID: 30456817 DOI: 10.1002/jcp.27536] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 09/10/2018] [Indexed: 12/15/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) is involved in regulating the growth of ovarian follicles, maturation of the oocyte, and development of the early embryo through its receptor, tyrosine kinase receptor B (TrkB). However, it is still unclear as to how BDNF influences proliferation and steroidogenesis of bovine granulosa cells (GCs). In this paper, we confirmed that BDNF and TrkB were expressed in bovine GCs, and that proliferation and steroidogenesis by bovine GCs were reduced by knockdown of BDNF or inhibition of TrkB. With respect to GC proliferation, BDNF enhanced cellular viability and the percentage of cells in the S phase. BDNF also activated both protein kinase B (PKB, also known as AKT) and the extracellular signal-regulated protein kinase 1/2 (ERK1/2)-signaling pathway. Through the AKT-signaling pathway, BDNF increased the expression of proliferation-related genes, including cyclin A1 (CCNA1), cyclin E2 (CCNE2), cyclin D1 (CCND1), and cyclin-dependent kinase 1 (CDK1). However, through the ERK1/2 signaling pathway, BDNF only increased the expression of CCNA1 and CCNE2. Regarding steroidogenesis by bovine GCs, BDNF promoted progesterone (P 4 ) synthesis, but had no effect on estradiol; it also activated the AKT-signaling pathway and increased the expression of steroidogenesis-related genes, including steroidogenic acute regulatory protein (STAR) and hydroxy-δ-5-steroid dehydrogenase, 3β- and steroid δ-isomerase 1 (HSD3B1). In summary, our data are the first to show that BDNF promotes the proliferation of bovine GCs through TrkB-AKT and ERK1/2 signaling pathways and increases P4 synthesis by bovine GCs through the TrkB-AKT signaling pathway.
Collapse
Affiliation(s)
- Shuxiong Chen
- Laboratory for Regulation of Reproduction, College of Animal Sciences, Jilin University, Changchun, China
| | - Fengge Wang
- Laboratory for Regulation of Reproduction, College of Animal Sciences, Jilin University, Changchun, China
| | - Zhuo Liu
- Laboratory for Regulation of Reproduction, College of Animal Sciences, Jilin University, Changchun, China
| | - Yun Zhao
- Laboratory for Regulation of Reproduction, College of Animal Sciences, Jilin University, Changchun, China
| | - Yanwen Jiang
- Laboratory for Regulation of Reproduction, College of Animal Sciences, Jilin University, Changchun, China
| | - Lu Chen
- Laboratory for Regulation of Reproduction, College of Animal Sciences, Jilin University, Changchun, China
| | - Chunjin Li
- Laboratory for Regulation of Reproduction, College of Animal Sciences, Jilin University, Changchun, China
| | - Xu Zhou
- Laboratory for Regulation of Reproduction, College of Animal Sciences, Jilin University, Changchun, China
| |
Collapse
|
45
|
Sari LM, Zampini R, Argañaraz ME, Carretero MI, Fumuso FG, Barraza DE, Ratto M, Apichela SA. Expression of β‐NGF and high‐affinity NGF receptor (TrKA) in llama (
Lama glama
) male reproductive tract and spermatozoa. Mol Reprod Dev 2018; 85:934-944. [DOI: 10.1002/mrd.23075] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/14/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Luciana M. Sari
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET‐UNT, and Instituto de Biología “Dr. Francisco D. Barbieri,” Facultad de Bioquímica, Química y Farmacia, UNTSan Miguel de Tucumán Argentina
| | - Renato Zampini
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET‐UNT, and Instituto de Biología “Dr. Francisco D. Barbieri,” Facultad de Bioquímica, Química y Farmacia, UNTSan Miguel de Tucumán Argentina
- Cátedra de Biología Celular y Molecular, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de TucumánSan Miguel de Tucumán Tucumán Argentina
| | - Martin E. Argañaraz
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET‐UNT, and Instituto de Biología “Dr. Francisco D. Barbieri,” Facultad de Bioquímica, Química y Farmacia, UNTSan Miguel de Tucumán Argentina
- Cátedra de Biología Celular y Molecular, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de TucumánSan Miguel de Tucumán Tucumán Argentina
| | - María I. Carretero
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Instituto de Investigación y Tecnología en Reproducción Animal, Cátedra de TeriogenologíaBuenos Aires Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos Aires Argentina
| | - Fernanda G. Fumuso
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Instituto de Investigación y Tecnología en Reproducción Animal, Cátedra de TeriogenologíaBuenos Aires Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos Aires Argentina
| | - Daniela E. Barraza
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET‐UNT, and Instituto de Biología “Dr. Francisco D. Barbieri,” Facultad de Bioquímica, Química y Farmacia, UNTSan Miguel de Tucumán Argentina
| | - Marcelo Ratto
- Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Campus Isla TejaValdivia Chile
| | - Silvana A. Apichela
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET‐UNT, and Instituto de Biología “Dr. Francisco D. Barbieri,” Facultad de Bioquímica, Química y Farmacia, UNTSan Miguel de Tucumán Argentina
- Cátedra de Zootecnia General I, Facultad de Agronomía y Zootecnia, Universidad Nacional de TucumánEl Manantial Tucumán Argentina
| |
Collapse
|
46
|
Netzahualcoyotzi C, Tapia R. Tetanus toxin C-fragment protects against excitotoxic spinal motoneuron degeneration in vivo. Sci Rep 2018; 8:16584. [PMID: 30410110 PMCID: PMC6224557 DOI: 10.1038/s41598-018-35027-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/24/2018] [Indexed: 12/11/2022] Open
Abstract
The tetanus toxin C-fragment is a non-toxic peptide that can be transported from peripheral axons into spinal motoneurons. In in vitro experiments it has been shown that this peptide activates signaling pathways associated with Trk receptors, leading to cellular survival. Because motoneuron degeneration is the main pathological hallmark in motoneuron diseases, and excitotoxicity is an important mechanism of neuronal death in this type of disorders, in this work we tested whether the tetanus toxin C-fragment is able to protect MN in the spinal cord in vivo. For this purpose, we administered the peptide to rats subjected to excitotoxic motoneuron degeneration induced by the chronic infusion of AMPA in the rat lumbar spinal cord, a well-established model developed in our laboratory. Because the intraspinal infusion of the fragment was only weakly effective, whereas the i.m. administration was remarkably neuroprotective, and because the i.m. injection of an inhibitor of Trk receptors diminished the protection, we conclude that such effects require a retrograde signaling from the neuromuscular junction to the spinal motoneurons. The protection after a simple peripheral route of administration of the fragment suggests a potential therapeutic use of this peptide to target spinal MNs exposed to excitotoxic conditions in vivo.
Collapse
Affiliation(s)
- Citlalli Netzahualcoyotzi
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico.
| | - Ricardo Tapia
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico.
| |
Collapse
|
47
|
Sherkawy MM, Abo-Youssef AM, Salama AAA, Ismaiel IE. Fluoxetine protects against OVA induced bronchial asthma and depression in rats. Eur J Pharmacol 2018; 837:25-32. [PMID: 30145150 DOI: 10.1016/j.ejphar.2018.08.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 08/17/2018] [Accepted: 08/21/2018] [Indexed: 10/28/2022]
Abstract
Depression is very common in asthmatic patients and may increases risk for morbidity and mortality. The present work aimed to investigate the protective effect of fluoxetine, on behavioral and biochemical changes, associated with ovalbumin (OVA) - induced bronchial asthma and depression in rats. Rats were sensitized with intraperitoneal administration of OVA plus aluminum hydroxide for 3 consecutive days then at day 11 followed by OVA intranasal challenge at days 19, 20, 21. Rats were either pretreated with dexamethasone, fluoxetine10mg/kg or fluoxetine 20 mg/kg. At the end of the experiment, various tests were performed, including open field, forced swimming and respiratory function tests. Blood was drawn for serum IgE detection. Finally, rats were euthanized, brain-derived neurotrophic factor (BDNF) was estimated in bronchoalveolar lavage (BAL) fluid and lung content of reduced glutathione (GSH), superoxide dismutase (SOD), tumor necrosis factor-alpha (TNF-α) and interleukin 4 (IL-4) were determined. Histopathological study was also performed. The results showed that fluoxetine significantly ameliorated OVA- induced biochemical and behavioral changes. Fluoxetine may protect against OVA-induced asthma and depression in rats. This effect may be mediated at least in part by its antioxidant, anti-inflammatory and immunosuppressant effect.
Collapse
Affiliation(s)
- Marwa M Sherkawy
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt.
| | - Amira M Abo-Youssef
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt.
| | | | | |
Collapse
|
48
|
Endlich N, Lange T, Kuhn J, Klemm P, Kotb AM, Siegerist F, Kindt F, Lindenmeyer MT, Cohen CD, Kuss AW, Nath N, Rettig R, Lendeckel U, Zimmermann U, Amann K, Stracke S, Endlich K. BDNF: mRNA expression in urine cells of patients with chronic kidney disease and its role in kidney function. J Cell Mol Med 2018; 22:5265-5277. [PMID: 30133147 PMCID: PMC6201371 DOI: 10.1111/jcmm.13762] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 05/30/2018] [Indexed: 12/21/2022] Open
Abstract
Podocyte loss and changes to the complex morphology are major causes of chronic kidney disease (CKD). As the incidence is continuously increasing over the last decades without sufficient treatment, it is important to find predicting biomarkers. Therefore, we measured urinary mRNA levels of podocyte genes NPHS1, NPHS2, PODXL and BDNF, KIM‐1, CTSL by qRT‐PCR of 120 CKD patients. We showed a strong correlation between BDNF and the kidney injury marker KIM‐1, which were also correlated with NPHS1, suggesting podocytes as a contributing source. In human biopsies, BDNF was localized in the cell body and major processes of podocytes. In glomeruli of diabetic nephropathy patients, we found a strong BDNF signal in the remaining podocytes. An inhibition of the BDNF receptor TrkB resulted in enhanced podocyte dedifferentiation. The knockdown of the orthologue resulted in pericardial oedema formation and lowered viability of zebrafish larvae. We found an enlarged Bowman's space, dilated glomerular capillaries, podocyte loss and an impaired glomerular filtration. We demonstrated that BDNF is essential for glomerular development, morphology and function and the expression of BDNF and KIM‐1 is highly correlated in urine cells of CKD patients. Therefore, BDNF mRNA in urine cells could serve as a potential CKD biomarker.
Collapse
Affiliation(s)
- Nicole Endlich
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Tim Lange
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Jana Kuhn
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany.,Clinic for Diabetes and Metabolic Diseases, Karlsburg Hospital Dr. Guth GmbH & Co KG, Karlsburg, Germany
| | - Paul Klemm
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Ahmed M Kotb
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Florian Siegerist
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Frances Kindt
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Maja T Lindenmeyer
- Nephrological Center, Medical Clinic and Policlinic IV, University of Munich, Munich, Germany
| | - Clemens D Cohen
- Nephrological Center, Medical Clinic and Policlinic IV, University of Munich, Munich, Germany
| | - Andreas W Kuss
- Department of Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Neetika Nath
- Institute of Bioinformatics, University of Greifswald, Greifswald, Germany
| | - Rainer Rettig
- Department of Physiology, University of Greifswald, Karlsburg, Germany
| | - Uwe Lendeckel
- Department of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald, Germany
| | - Uwe Zimmermann
- Department of Urology, University Medicine Greifswald, Greifswald, Germany
| | - Kerstin Amann
- Department of Pathology, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Sylvia Stracke
- Department of Internal Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Karlhans Endlich
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
49
|
Pereira ES, Krause Neto W, Calefi AS, Georgetti M, Guerreiro L, Zocoler CAS, Gama EF. Significant Acute Response of Brain-Derived Neurotrophic Factor Following a Session of Extreme Conditioning Program Is Correlated With Volume of Specific Exercise Training in Trained Men. Front Physiol 2018; 9:823. [PMID: 30018570 PMCID: PMC6038715 DOI: 10.3389/fphys.2018.00823] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 06/12/2018] [Indexed: 12/18/2022] Open
Abstract
Several studies have demonstrated an acute and chronic increase of brain-derived neurotrophic factor (BDNF) in relation to different types of physical exercise. Currently, many individuals seek physical training strategies that present different types of stimulation and volume/intensity. Thus, the extreme conditioning methodology has gained great notoriety in the scientific and non-scientific environment. Knowing that BDNF values increase in an effort-dependent manner, it is necessary to study the effects of this strategy on BDNF levels. This study aimed to evaluate the acute response of BDNF in trained men submitted to an extreme conditioning program (ECP) session. Ten volunteers underwent an acute ECP session using the “as many reps as possible” (WOD-AMRAP) method, including three types of exercise (clean, wall ball and double or single-unders) for 9 min. BDNF was measured in the plasma, being collected baseline and immediately after the session. Total load of the clean exercise was five times greater than wall ball exercise (p < 0.05; 2096.1 ± 387.4 kg vs 415.8 ± 81.03 kg), which influenced little in the total load (p < 0.05, 2511.9 ± 358.52 kg) used. For the total volume, practitioners averaged 1.7 times more repetitions in the wall ball exercise compared to clean (46.2 ± 9 vs 29.5 ± 3.8 repetitions). The volunteers averaged 75.7 ± 12.6 double-unders repetitions, bringing the total volume of training to 151.4 ± 23.7 repetitions. Regarding the BDNF values, there was a significant difference (p = 0.05) between the pre- vs post-moments (11209.85 ± 1270.4 vs 12132.96 ± 1441.93 pg/ml). Effect size for this change as moderate (ES = 0.79). We found a positive correlation between total volume of clean exercise and delta BDNF values (p = 0.049). In conclusion, a single extreme conditioning session, through the practice of the WOD-AMRAP method, is capable of increasing the acute concentrations of plasma BDNF. In practical terms, we may suggest that future studies evaluate the effect of ECP as a strategy in the treatment of disorders associated with central degenerative changes.
Collapse
Affiliation(s)
- Emy S Pereira
- Laboratory of Morphoquantitative Studies and Immunohistochemistry, Department of Physical Education, São Judas Tadeu University, São Paulo, Brazil.,Laboratory of Body Perception and Movement, Department of Physical Education, São Judas Tadeu University, São Paulo, Brazil
| | - Walter Krause Neto
- Laboratory of Morphoquantitative Studies and Immunohistochemistry, Department of Physical Education, São Judas Tadeu University, São Paulo, Brazil
| | - Atilio S Calefi
- Department of Pathology, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Mariana Georgetti
- Laboratory of Body Perception and Movement, Department of Physical Education, São Judas Tadeu University, São Paulo, Brazil
| | - Larissa Guerreiro
- Laboratory of Body Perception and Movement, Department of Physical Education, São Judas Tadeu University, São Paulo, Brazil
| | - Cesar A S Zocoler
- Laboratory of Human Movement, Department of Physical Education, São Judas Tadeu University, São Paulo, Brazil
| | - Eliane F Gama
- Laboratory of Morphoquantitative Studies and Immunohistochemistry, Department of Physical Education, São Judas Tadeu University, São Paulo, Brazil.,Laboratory of Body Perception and Movement, Department of Physical Education, São Judas Tadeu University, São Paulo, Brazil
| |
Collapse
|
50
|
Sha H, Tong X, Zhao J. Abnormal expressions of AGEs, TGF-β1, BDNF and their receptors in diabetic rat colon-Associations with colonic morphometric and biomechanical remodeling. Sci Rep 2018; 8:9437. [PMID: 29930382 PMCID: PMC6013484 DOI: 10.1038/s41598-018-27787-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 06/08/2018] [Indexed: 02/06/2023] Open
Abstract
Present study aims to investigate the role of AGEs, TGF-β1, BDNF and their receptors on diabetes-induced colon remodeling. Diabetes was induced by a single tail vein injection 40 mg/kg of STZ. The parameters of morphometric and biomechanical properties of colonic segments were obtained from diabetic and normal rats. The expressions of AGE, RAGE, TGF- β1, TGF- β1 receptor, BDNF and TrkB were immunohistochemically detected in different layers of the colon. The expressions of AGE, RAGE, TGF-β1 and TGF- β1 receptor were increased whereas BDNF and TrkB were decreased in the diabetic colon (P < 0.05, P < 0.01). AGE, RAGE and TGF-β1 receptor expressions were positively correlated whereas the BDNF expression was negatively correlated with most of the morphometry and biomechanical parameters (P < 0.05, P < 0.01, P < 0.001). AGE, TGF- β1 and BDNF in different layers correlated with their receptors RAGE, TGF- β1 receptor and TrkB respectively. STZ-induced diabetes up-regulated the expression of AGE, RAGE, TGF- β1 and TGF- β1 receptors and down-regulated BDNF and TrkB in different layers of diabetic colon mainly due to hyperglycemia. Such changes maybe important for diabetes-induced colon remodeling, however it is needed to further perform mechanistic experiments in order to study causality or approaches that explain the relevance of the molecular pathways.
Collapse
Affiliation(s)
- Hong Sha
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Xiaolin Tong
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Jingbo Zhao
- Department of Clinical Medicine, Aarhus University, 8200, Aarhus N, Denmark.
| |
Collapse
|