1
|
Szychowski KA, Skóra B. Elastin-derived peptides (EDPs) as a potential pro-malignancy factor in human leukemia cell lines. Immunol Res 2024; 72:1092-1107. [PMID: 38967692 PMCID: PMC11564322 DOI: 10.1007/s12026-024-09511-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 06/23/2024] [Indexed: 07/06/2024]
Abstract
The extracellular matrix (ECM) is currently considered to be an important factor influencing the migration and progression of cancer cells. Therefore, the aim of our study was to investigate the mechanism of action of elastin-derived peptides in cancerous cells derived from the immunological system, i.e., HL-60, K562, and MEG-A2 cell lines. Moreover, an attempt to clarify the involvement of c-SRC kinase in EDP mechanism of action was also undertaken. Our data show that the VGVAPG and VVGPGA peptides are not toxic in the studied cell lines. Moreover, due to the involvement of KI67 and PCNA proteins in the cell cycle and proliferation, we can assume that neither peptide stimulates cell proliferation. Our data suggest that both peptides could initiate the differentiation process in all the studied cell lines. However, due to the different origins (HL-60 and K562-leukemic cell line vs. MEG-A2-megakaryoblastic origin) of the cell lines, the mechanism may differ. The increase in the ELANE mRNA expression noted in our experiments may also suggest enhancement of the migration of the tested cells. However, more research is needed to fully explain the mechanism of action of the VGVAPG and VVGPGA peptides in the HL-60, K562, and MEG-A2 cell lines. HIGHLIGHTS: • VGVAPG and VVGPGA peptides do not affect the metabolic activity of HL-60, K562, and MEG-A2 cells. • mTOR and PPARγ proteins are involved in the mechanism of action of VGVAPG and VVGPGA peptides. • Both peptides may initiate differentiation in HL-60, K562, and MEG-A2 cell lines.
Collapse
Affiliation(s)
- Konrad A Szychowski
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225, Rzeszow, Poland.
| | - Bartosz Skóra
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225, Rzeszow, Poland
| |
Collapse
|
2
|
Kanakaveti V, Shanmugam A, Ramakrishnan C, Anoosha P, Sakthivel R, Rayala SK, Gromiha MM. Computational approaches for identifying potential inhibitors on targeting protein interactions in drug discovery. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 121:25-47. [PMID: 32312424 DOI: 10.1016/bs.apcsb.2019.11.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the era of big data, the interplay of artificial and human intelligence is the demanding job to address the concerns involving exchange of decisions between both sides. Drug discovery is one of the key sources of the big data, which involves synergy among various computational methods to achieve a clinical success. Rightful acquisition, mining and analysis of the data related to ligand and targets are crucial to accomplish reliable outcomes in the entire process. Novel designing and screening tactics are necessary to substantiate a potent and efficient lead compounds. Such methods are emphasized and portrayed in the current review targeting protein-ligand and protein-protein interactions involved in various diseases with potential applications.
Collapse
Affiliation(s)
- Vishnupriya Kanakaveti
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| | - Anusuya Shanmugam
- Department of Pharmaceutical Engineering, Vinayaka Mission's Kirupananda Variyar Engineering College, Vinayaka Mission's Research Foundation (Deemed to be University), Salem, Tamil Nadu, India
| | - C Ramakrishnan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| | - P Anoosha
- Department of Internal Medicine, Division of Medical Oncology and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - R Sakthivel
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| | - S K Rayala
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| | - M Michael Gromiha
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India; Advanced Computational Drug Discovery Unit (ACDD), Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovative Research, Tokyo Institute of Technology, Midori-ku, Yokohama, Japan
| |
Collapse
|
3
|
Ramakrishnan C, Mary Thangakani A, Velmurugan D, Anantha Krishnan D, Sekijima M, Akiyama Y, Gromiha MM. Identification of type I and type II inhibitors of c-Yes kinase using in silico and experimental techniques. J Biomol Struct Dyn 2017; 36:1566-1576. [DOI: 10.1080/07391102.2017.1329098] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Chandrasekaran Ramakrishnan
- Department of Biotechnology, Bhupat Jyoti Mehta School of Biosciences, Indian Institute of Technology (IIT) Madras, Chennai 600036, Tamilnadu, India
| | - Anthony Mary Thangakani
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600025, Tamilnadu, India
| | - Devadasan Velmurugan
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600025, Tamilnadu, India
| | - Dhanabalan Anantha Krishnan
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600025, Tamilnadu, India
| | - Masakazu Sekijima
- Education Academy of Computational Life Sciences (ACLS), Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama 226-8501, Japan
- Advanced Computational Drug Discovery Unit (ACDD), Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama 226-8501, Japan
- Department of Computer Science, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Yutaka Akiyama
- Education Academy of Computational Life Sciences (ACLS), Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama 226-8501, Japan
- Advanced Computational Drug Discovery Unit (ACDD), Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama 226-8501, Japan
- Department of Computer Science, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - M. Michael Gromiha
- Department of Biotechnology, Bhupat Jyoti Mehta School of Biosciences, Indian Institute of Technology (IIT) Madras, Chennai 600036, Tamilnadu, India
| |
Collapse
|
4
|
Boutin JA. Tyrosine protein kinase assays. JOURNAL OF CHROMATOGRAPHY. B, BIOMEDICAL APPLICATIONS 1996; 684:179-99. [PMID: 8906473 DOI: 10.1016/0378-4347(95)00563-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Protein kinases form a large family of enzymes that play a major role in a number of live processes. The study of their action is important for the understanding of the transformation mechanisms and of the normal and pathological growth events. The quality of an enzyme assay is often the key point of an enzymatic study. It must be flexible and compatible with various experimental conditions, such as those for the purification process, the screening of inhibitors and the substrate specificity studies. As will be shown in the present review, two categories of substrates, peptidic and proteic, should be distinguished. The use of peptide substrates facilitates the determination of the recognition requirements of the enzyme and of the kinetic effects of even minute variations in their sequence. These linear peptide structures are assumed to mimic a complex interaction between the enzyme and a protein substrate in which distant amino acids in the sequence are vicinal in the folded substrate. Less amenable to a systematic study, but probably more adequate to investigate the natural substrate of a given kinase, are the proteic substrates. Obviously the tools to measure protein kinase activities are not the same in these two cases. The main difficulty in assaying protein kinases is the use of labelled gamma-ATP, mostly at large excess concentration, since the final product of the reaction has to be separated from the non-reacted labelled ATP. In the case of peptide substrates, the difficulty is to separate them from ATP basing on differences of molecular mass. Despite the efforts of many investigators to rely upon differences in solubility, in charges or in "affinity", this separation, which is crucial for the assay, is still an unsolved experimental problem. Chromatographic, as well as electrophoretic assays appeared relatively late in this domain, and more work in assessing new methodologies might bring new breakthroughs in the next few years. Specific, simple and reliable kinase assays are still a major challenge. Their improvement will help to conduct specificity studies, to elucidate complex growth mechanisms in which they are involved and to discover more selective potent inhibitors.
Collapse
Affiliation(s)
- J A Boutin
- Instiut de Recherches Servier, Suresnes, France
| |
Collapse
|