1
|
Delehedde C, Culcasi M, Ricquebourg E, Cassien M, Siri D, Blaive B, Pietri S, Thétiot-Laurent S. Novel Sterically Crowded and Conformationally Constrained α-Aminophosphonates with a Near-Neutral p Ka as Highly Accurate 31P NMR pH Probes. Application to Subtle pH Gradients Determination in Dictyostelium discoideum Cells. Molecules 2022; 27:molecules27144506. [PMID: 35889385 PMCID: PMC9320275 DOI: 10.3390/molecules27144506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 11/16/2022] Open
Abstract
In order to discover new 31P NMR markers for probing subtle pH changes (<0.2 pH unit) in biological environments, fifteen new conformationally constrained or sterically hindered α-aminophosphonates derived from diethyl(2-methylpyrrolidin-2-yl)phosphonate were synthesized and tested for their pH reporting and cytotoxic properties in vitro. All compounds showed near-neutral pKas (ranging 6.28−6.97), chemical shifts not overlapping those of phosphorus metabolites, and spectroscopic sensitivities (i.e., chemical shifts variation Δδab between the acidic and basic forms) ranging from 9.2−10.7 ppm, being fourfold larger than conventional endogenous markers such as inorganic phosphate. X-ray crystallographic studies combined with predictive empirical relationships and ab initio calculations addressed the inductive and stereochemical effects of substituents linked to the protonated amine function. Satisfactory correlations were established between pKas and both the 2D structure and pyramidalization at phosphorus, showing that steric crowding around the phosphorus is crucial for modulating Δδab. Finally, the hit 31P NMR pH probe 1b bearing an unsubstituted 1,3,2-dioxaphosphorinane ring, which is moderately lipophilic, nontoxic on A549 and NHLF cells, and showing pKa = 6.45 with Δδab = 10.64 ppm, allowed the first clear-cut evidence of trans-sarcolemmal pH gradients in normoxic Dictyostelium discoideum cells with an accuracy of <0.05 pH units.
Collapse
Affiliation(s)
- Caroline Delehedde
- Aix Marseille Univ, CNRS, ICR, UMR 7273, SMBSO, 13397 Marseille, France; (C.D.); (M.C.); (E.R.); (B.B.); (S.P.)
| | - Marcel Culcasi
- Aix Marseille Univ, CNRS, ICR, UMR 7273, SMBSO, 13397 Marseille, France; (C.D.); (M.C.); (E.R.); (B.B.); (S.P.)
| | - Emilie Ricquebourg
- Aix Marseille Univ, CNRS, ICR, UMR 7273, SMBSO, 13397 Marseille, France; (C.D.); (M.C.); (E.R.); (B.B.); (S.P.)
| | - Mathieu Cassien
- Yelen Analytics, 10 Boulevard Tempête, 13820 Ensuès-la-Redonne, France;
| | - Didier Siri
- Aix Marseille Univ, CNRS, ICR, UMR 7273, CT, 13397 Marseille, France;
| | - Bruno Blaive
- Aix Marseille Univ, CNRS, ICR, UMR 7273, SMBSO, 13397 Marseille, France; (C.D.); (M.C.); (E.R.); (B.B.); (S.P.)
| | - Sylvia Pietri
- Aix Marseille Univ, CNRS, ICR, UMR 7273, SMBSO, 13397 Marseille, France; (C.D.); (M.C.); (E.R.); (B.B.); (S.P.)
| | - Sophie Thétiot-Laurent
- Aix Marseille Univ, CNRS, ICR, UMR 7273, SMBSO, 13397 Marseille, France; (C.D.); (M.C.); (E.R.); (B.B.); (S.P.)
- Correspondence: ; Tel.: +33-(0)4-13-94-58-07
| |
Collapse
|
2
|
Culcasi M, Casano G, Lucchesi C, Mercier A, Clément JL, Pique V, Michelet L, Krieger-Liszkay A, Robin M, Pietri S. Synthesis and Biological Characterization of New Aminophosphonates for Mitochondrial pH Determination by 31P NMR Spectroscopy. J Med Chem 2013; 56:2487-99. [DOI: 10.1021/jm301866e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Marcel Culcasi
- Aix-Marseille Université, CNRS UMR 7273, Equipe Sondes Moléculaires en Biologie et
Stress Oxydant, Institut de Chimie Radicalaire, Marseille, France
| | - Gilles Casano
- Aix-Marseille Université, CNRS UMR 7273, Equipe Sondes Moléculaires en Biologie et
Stress Oxydant, Institut de Chimie Radicalaire, Marseille, France
| | - Céline Lucchesi
- Aix-Marseille Université, CNRS UMR 7273, Equipe Sondes Moléculaires en Biologie et
Stress Oxydant, Institut de Chimie Radicalaire, Marseille, France
| | - Anne Mercier
- Aix-Marseille Université, CNRS UMR 7273, Equipe Sondes Moléculaires en Biologie et
Stress Oxydant, Institut de Chimie Radicalaire, Marseille, France
| | - Jean-Louis Clément
- Aix-Marseille Université, CNRS UMR 7273, Equipe Sondes Moléculaires en Biologie et
Stress Oxydant, Institut de Chimie Radicalaire, Marseille, France
| | - Valérie Pique
- Aix-Marseille Université, CNRS UMR 7273, Equipe Sondes Moléculaires en Biologie et
Stress Oxydant, Institut de Chimie Radicalaire, Marseille, France
| | - Laure Michelet
- CNRS UMR 8221, Institut de Biologie et de Technologie de Saclay (iBiTec-S),
CEA Saclay, Gif-sur-Yvette, France
| | - Anja Krieger-Liszkay
- CNRS UMR 8221, Institut de Biologie et de Technologie de Saclay (iBiTec-S),
CEA Saclay, Gif-sur-Yvette, France
| | - Maxime Robin
- Aix-Marseille Université, CNRS UMR 7273, Equipe Sondes Moléculaires en Biologie et
Stress Oxydant, Institut de Chimie Radicalaire, Marseille, France
| | - Sylvia Pietri
- Aix-Marseille Université, CNRS UMR 7273, Equipe Sondes Moléculaires en Biologie et
Stress Oxydant, Institut de Chimie Radicalaire, Marseille, France
| |
Collapse
|
3
|
Culcasi M, Rockenbauer A, Mercier A, Clément JL, Pietri S. The line asymmetry of electron spin resonance spectra as a tool to determine the cis:trans ratio for spin-trapping adducts of chiral pyrrolines N-oxides: the mechanism of formation of hydroxyl radical adducts of EMPO, DEPMPO, and DIPPMPO in the ischemic-reperfused rat liver. Free Radic Biol Med 2006; 40:1524-38. [PMID: 16632113 DOI: 10.1016/j.freeradbiomed.2005.12.029] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2005] [Revised: 12/13/2005] [Accepted: 12/20/2005] [Indexed: 11/27/2022]
Abstract
Nonstereospecific addition of free radicals to chiral nitrones yields cis/trans diastereoisomeric nitroxides often displaying different electron spin resonance (ESR) characteristics. Glutathione peroxidase-glutathione (GPx-GSH) reaction was applied to reduce the superoxide adducts (nitrone/*OOH) to the corresponding hydroxyl radical (HO*) adducts (nitrone/*OH) of two nitrones increasingly used in biological spin trapping, namely 5-diethoxyphosphoryl-5-methyl-1-pyrroline N-oxide (DEPMPO) and 5-ethoxycarbonyl-5-methyl-1-pyrroline N-oxide, and of 5-diisopropoxyphosphoryl-5-methyl-1-pyrroline N-oxide (DIPPMPO), a sterically hindered DEPMPO analogue. The method offered improved conditions to record highly resolved ESR spectra and by accurate simulation of line asymmetry we obtained clear evidence for the existence of previously unrecognized isomer pairs of cis- and trans-[DEPMPO/*OH] and [DIPPMPO/*OH]. Additional nitrone/*OH generation methods were used, i.e. photolysis of hydrogen peroxide and the Fenton reaction. We developed a kinetic model involving first- and second-order decay and a secondary conversion of trans to cis isomer to fully account for the strongly configuration-dependent behavior of nitrone/*OH. In the reductive system and, to a lower extent, in the Fenton or photolytic systems cis-nitrone/*OH was the more stable diastereoisomer. In various biologically relevant milieu, we found that the cis:trans-nitrone/*OH ratio determined right after the spin adduct formation significantly differed upon the GPx-GSH vs (Fenton or photolytic) systems of formation. This new mechanistic ESR index consistently showed for all nitrones that nitrone/*OH signals detected in the postischemic effluents of ischemic isolated rat livers are the reduction products of primary nitrone/*OOH. Thus, ESR deconvolution of cis/trans diastereoisomers is of great interest in the study of HO* formation in biological systems.
Collapse
Affiliation(s)
- Marcel Culcasi
- Laboratoire Structure et Réactivité des Espèces Paramagnétiques, Sondes Moléculaires en Biologie, CNRS-UMR 6517, Universités d'Aix-Marseille I & III, 13397 Marseille cedex 20, France
| | | | | | | | | |
Collapse
|
4
|
Pietri S, Mercier A, Mathieu C, Caffaratti S, Culcasi M. Hemodynamic and metabolic effects of the beta-phosphorylated nitroxide 2-diethoxyphosphoryl-2,5,5-trimethylpyrrolidinoxyl during myocardial ischemia and reperfusion. Free Radic Biol Med 2003; 34:1167-77. [PMID: 12706497 DOI: 10.1016/s0891-5849(03)00069-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In vitro, the stable six-membered ring nitroxide 2,2,6,6-tetramethyl-1-piperidine-N-oxyl (TEMPO) is known to protect the ischemic and reperfused myocardium through a mechanism likely to involve the limitation of free radical damage. In vivo, TEMPO's high rate of reduction into diamagnetic nonactive compounds could limit its pharmacological use and its potential as an ESR probe in oxymetry studies. Recently, beta-phosphorylated nitrones and pyrrolidines have been reported to protect against myocardial reperfusion injury better than their nonphosphorylated analogs. Using hemodynamic, metabolic, and enzymatic indices of reperfusion injury, the efficacy of 2-diethoxyphosphoryl-2,5,5-trimethylpyrrolidinoxyl (TMPPO), a five-membered ring beta-phosphorylated nitroxide, has been compared to that of TEMPO when added at a nontoxic concentration (1 mM) in buffer-perfused isolated rat hearts during low-flow ischemia, total ischemia, and reflow. TMPPO, which is five times as hydrophilic and eight times as resistant to reduction in a biological medium as TEMPO, was more effective in reducing postischemic contracture and myocardial enzymatic leakage. Since a diamagnetic analog of TMPPO was far less protective and both nitroxides showed an antilipoperoxidant effect and acted mainly when administered only at reflow, it was proposed that beta-phosphorylated nitroxides such as TMPPO could be interesting alternatives in pharmacological and ESR applications.
Collapse
Affiliation(s)
- Sylvia Pietri
- Laboratoire Structure et Réactivité des Espèces Paramagnétiques UMR 6517 du Centre National de la Recherche Scientifique, Universités d'Aix-Marseille I et III, France.
| | | | | | | | | |
Collapse
|
5
|
Abstract
The ultimate goal of in vivo electron spin resonance (ESR) spin trapping is to provide a window to the characterization and quantification of free radicals with time within living organisms. However, the practical application of in vivo ESR to systems involving reactive oxygen radicals has proven challenging. Some of these limitations relate to instrument sensitivity and particularly to the relative stability of these radicals and their nitrone adducts, as well as toxicity limitations with dosing. Our aim here is to review the strengths and weaknesses of both traditional and in vivo ESR spin trapping and to describe new approaches that couple the strengths of spin trapping with methodologies that promise to overcome some of the problems, in particular that of radical adduct decomposition. The new, complementary techniques include: (i) NMR spin trapping, which monitors new NMR lines resulting from diamagnetic products of radical spin adduct degradation and reduction, (ii) detection of *NO by ESR with dithiocarbamate: Fe(II) "spin trap-like" complexes, (iii) MRI spin trapping, which images the dithiocarbamate: Fe(II)-NO complexes by proton relaxation contrast enhancement, and (iv) the use of ESR to follow the reactions of sulfhydryl groups with dithiol biradical spin labels to form "thiol spin label adducts," for monitoring intracellular redox states of glutathione and other thiols. Although some of these approaches are in their infancy, they show promise of adding to the arsenal of techniques to measure and possibly "image" oxidative stress in living organisms in real time.
Collapse
Affiliation(s)
- L J Berliner
- Department of Chemistry, The Ohio State University, Columbus, OH, USA.
| | | | | | | |
Collapse
|