Emken EA, Rohwedder WK, Dutton HJ. Dual-labeled technique for human lipid metabolism studies using deuterated fatty acid isomers.
Lipids 1976;
11:135-42. [PMID:
1250076 DOI:
10.1007/bf02532663]
[Citation(s) in RCA: 33] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Two deuterated fatty acids, elaidated2 and oleate-d4, were fed simultaneously to a human subject as a mixture of trielaidin-d6 and triolein-d12. Periodically, blood samples were drawn, and red blood cells were separated from the plasma. Red blood cells and plasma lipids were fractionated and analyzed by combined gas chromatography--multiple ion mass spectroscopy. Dual deuterium-labeling allows rate and extent of fatty acid incorporation to be followed in various plasma and red cell neutral and phospholipid fractions. Maximum amount of deuterated fat varied from 4% in cholescurred in either 6-, 8-, or 12-hr samples; generally, less than 1% labeled fatty acids could be detected in 72-hr samples. Because the method is based on dual-labeling, differences in the relative incorporation of both fatty acid isomers can be compared directly. Differences in rates of incorporation, rates of removal, and extent of incorporation of labeled fatty acids into blood plasma can also be determined reliably. Our experimental labeling of fats with deuterium permits for the first time the metabolism of two fatty acid isomers to be compared simultaneously in human subjects. This new method should be applicable to a variety of other lipid metabolic studies.
Collapse