1
|
Gollapudi PK, Nimmagadda P, Gollapudi KK. A Novel, Simple, Isocratic HPLC-UV Method for Determination of Chiral Purity for Dibenzoyl-L-Tartaric Acid (L-DBTA). Chirality 2025; 37:e70028. [PMID: 39957674 DOI: 10.1002/chir.70028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 01/29/2025] [Indexed: 02/18/2025]
Abstract
Dibenzoyl-L-tartaric acid (L-DBTA) is a crucial compound in the synthesis of chiral molecules, particularly within the pharmaceutical industry. Ensuring the enantiomeric purity of L-DBTA is essential for regulatory compliance, quality control, and process optimization. To achieve this, a high-performance liquid chromatography (HPLC) method was developed and validated for determining the D-DBTA content in L-DBTA. The method validation adhered to ICH Q2(R2) guidelines, covering parameters such as system suitability, solution stability, robustness, linearity, range, limit of detection (LOD), limit of quantification (LOQ), accuracy, and precision. HPLC separation was performed using a Chiral PAK IA column (250 × 4.6 mm, 5.0 μm) with an isocratic mobile phase consisting of n-heptane, isopropanol (IPA), and trifluoroacetic acid (900:100:1 v/v/v). The column temperature was maintained at 40°C, and the sample cooler was kept at ambient conditions. Detection was carried out at 230 nm, achieving a resolution greater than 1.5 between L-DBTA and D-DBTA. The method demonstrated excellent linearity over a range of 30%-200% of the specification limit, with accuracy and range established from the LOQ level to 200%. Solution stability was confirmed for 1 day at room temperature, and precision was validated at both the LOQ and 100% levels. All validation parameters met the acceptance criteria, confirming the method's suitability for routine testing and batch release at quality control sites. This HPLC method is both sensitive and selective, ensuring the reliable determination of chiral purity in L-DBTA and its impurities.
Collapse
Affiliation(s)
- Pradeep Kumar Gollapudi
- Dr. Reddy's Laboratories, IPDO, API AR&D Bachupally, Hyderabad, India
- Andhra University, AUTDR HUB, Visakhapatnam, Andhra Pradesh, India
| | - Padmaja Nimmagadda
- Department of Chemistry, Anil Neerukonda Institute of Technology and Sciences (ANITS) College, Visakhapatnam, India
| | | |
Collapse
|
2
|
Tsui HW, Wang YJ, Wu PJ. Conformational changes in polysaccharide-based chiral selectors induced by mobile phase composition: Effects on enantioselective retention and enantiomer elution order reversal. J Chromatogr A 2025; 1742:465660. [PMID: 39799868 DOI: 10.1016/j.chroma.2025.465660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 01/01/2025] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
Despite having identical physicochemical properties, chiral molecules require effective separation techniques due to their distinct pharmacological effects. Polysaccharide-based chiral stationary phases (CSPs) are widely used for chiral separations in liquid chromatography; however, the mechanisms of chiral recognition are not well understood. This research explored the adsorption, retention, and chiral recognition mechanisms of three amylose-based CSPs: Chiralpak ID, IF, and IG. The effect of mobile phase composition on enantioselective retention was examined using four acyloin-type chiral solutes in normal-phase mode. For pantolactone (PL) and methyl mandelate (MM), reversals in enantiomer elution order were observed with ID and IG sorbents, respectively, at 2 vol.% isopropanol (iPrOH). As the iPrOH concentration increased, the adsorption of MM enantiomers reached an energetic barrier at this concentration, causing discontinuities in the enthalpy-entropy compensation. Conversely, while the reversal behavior of PL was also attributed to conformational changes in the ID polymer, it did not encounter an energetic barrier and thus remained in line with the enthalpy-entropy compensation. For the IF sorbent, no significant changes in enantioselective retention or enthalpic curves were noted. Nevertheless, a reversal was observed for benzoin (B) enantiomers on the IF sorbent at 10 vol.% iPrOH. It was postulated that the IF sorbent contains two chiral sites with opposing recognition abilities, and their relative contributions to the apparent enantioselectivity of B are influenced by the iPrOH concentration. These findings highlight the importance of conformational changes in chiral selectors, driven by mobile phase composition, in chiral recognition mechanisms. Understanding these effects is crucial for developing predictive models of chiral retention and enhancing optimization of chiral separation processes.
Collapse
Affiliation(s)
- Hung-Wei Tsui
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan.
| | - Yu-Jiun Wang
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608 Taiwan
| | - Pei-Jia Wu
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608 Taiwan
| |
Collapse
|
3
|
De Gauquier P, Peeters J, Vanommeslaeghe K, Vander Heyden Y, Mangelings D. Modelling the enantiorecognition of structurally diverse pharmaceuticals on O-substituted polysaccharide-based stationary phases. Talanta 2023; 259:124497. [PMID: 37030098 DOI: 10.1016/j.talanta.2023.124497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023]
Abstract
This study aims to develop models to predict the retention, separation and elution sequence of the enantiomers of structurally diverse pharmaceuticals. More specifically, Quantitative Structure Retention Relationships (QSRR) models are built that describe the relationship between molecular descriptors and retention. Eighteen structurally diverse chiral mixtures, each consisting of a pair of enantiomers, were analyzed on two polysaccharide chiral stationary phases, Chiralcel OD-RH (cellulose tris(3,5-dimethylphenylcarbamate)) and Lux amylose-2 (amylose tris(5-chloro-2-methylphenylcarbamate)), applying either a basic or an acidic mobile phase, and their retention factor and elution sequence were determined. Both achiral and, in-house defined, chiral descriptors were used as descriptive variables to build the models. Linear regression techniques, i.e. stepwise multiple linear regression (sMLR) and partial least squares (PLS) regression, were applied to model the retention or separation as a function of the descriptors. In a first step, models were built with only achiral descriptors to model the global retention of both enantiomers of a chiral molecule. Subsequently, models were built with only chiral descriptors to predict the enantioseparation and elution sequence, and finally, models were considered with both descriptor types to predict the retention, the separation and the elution sequence of the enantiomers. The global retention was predicted well by the sMLR models with only achiral descriptors. The models with only chiral descriptors were not found suitable to predict the enantioseparation and elution sequence. Finally, the models containing both chiral and achiral descriptors allowed predicting the retention well, but their ability to predict the elution sequence and separation of the enantiomers differed widely for the chromatographic systems considered.
Collapse
|
4
|
Dallocchio R, Dessì A, Sechi B, Chankvetadze B, Jibuti G, Cossu S, Mamane V, Peluso P. Enantioseparation of planar chiral ferrocenes on cellulose-based chiral stationary phases: Benzoate versus carbamate pendant groups. Electrophoresis 2023; 44:203-216. [PMID: 36177685 DOI: 10.1002/elps.202200205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/19/2022] [Accepted: 09/25/2022] [Indexed: 02/01/2023]
Abstract
In this study, the enantioseparation of 14 planar chiral ferrocenes containing halogen atoms, and methyl, iodoethynyl, phenyl, and 2-naphthyl groups, as substituents, was explored with a cellulose tris(4-methylbenzoate) (CMB)-based chiral column under multimodal elution conditions. n-Hexane/2-propanol (2-PrOH) 95:5 v/v, pure methanol (MeOH), and MeOH/water 90:10 v/v were used as mobile phases (MPs). With CMB, baseline enantioseparations were achieved for nine analytes with separation factors (α) ranging from 1.24 to 1.77, whereas only three analytes could be enantioseparated with 1.14 ≤ α ≤ 1.51 on a cellulose tris(3,5-dimethylphenylcarbamate) (CDMPC)-based column, used as a reference for comparison, under the same elution conditions. Pendant group-dependent reversal of the enantiomer elution order was observed in several cases by changing CMB to CDMPC. The impact of analyte and chiral stationary phase (CSP) structure, and MP polarity on the enantioseparation, was evaluated. The two cellulose-based CSPs featured by different pendant groups were also compared in terms of thermodynamics. For this purpose, enthalpy (ΔΔH°), entropy (ΔΔS°) and free energy (ΔΔG°) differences, isoenantioselective temperatures (Tiso ), and enthalpy/entropy ratios (Q), associated with the enantioseparations, were derived from van 't Hoff plots by using n-hexane/2-PrOH 95:5 v/v and methanol/water 90:10 v/v as MPs. With the aim to disclose the functions of the different substituents in mechanisms and noncovalent interactions underlying analyte-selector complex formation at molecular level, electrostatic potential (V) analysis and molecular dynamics simulations were used as computational techniques. On this basis, enantioseparations and related mechanisms were investigated by integrating theoretical and experimental data.
Collapse
Affiliation(s)
- Roberto Dallocchio
- Enantioselective Chromatography and Molecular Recognition Unit, Istituto di Chimica Biomolecolare (ICB) CNR, Sassari, Italy
| | - Alessandro Dessì
- Enantioselective Chromatography and Molecular Recognition Unit, Istituto di Chimica Biomolecolare (ICB) CNR, Sassari, Italy
| | - Barbara Sechi
- Enantioselective Chromatography and Molecular Recognition Unit, Istituto di Chimica Biomolecolare (ICB) CNR, Sassari, Italy
| | - Bezhan Chankvetadze
- Institute of Physical and Analytical Chemistry, School of Exact and Natural Sciences, Tbilisi State University, Tbilisi, Georgia
| | - Giorgi Jibuti
- Institute of Physical and Analytical Chemistry, School of Exact and Natural Sciences, Tbilisi State University, Tbilisi, Georgia
| | - Sergio Cossu
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari Venezia, Mestre Venezia, Italy
| | - Victor Mamane
- Institut de Chimie de Strasbourg, UMR 7177, CNRS-Université de Strasbourg, Strasbourg, France
| | - Paola Peluso
- Enantioselective Chromatography and Molecular Recognition Unit, Istituto di Chimica Biomolecolare (ICB) CNR, Sassari, Italy
| |
Collapse
|
5
|
Peluso P, Chankvetadze B. Recognition in the Domain of Molecular Chirality: From Noncovalent Interactions to Separation of Enantiomers. Chem Rev 2022; 122:13235-13400. [PMID: 35917234 DOI: 10.1021/acs.chemrev.1c00846] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
It is not a coincidence that both chirality and noncovalent interactions are ubiquitous in nature and synthetic molecular systems. Noncovalent interactivity between chiral molecules underlies enantioselective recognition as a fundamental phenomenon regulating life and human activities. Thus, noncovalent interactions represent the narrative thread of a fascinating story which goes across several disciplines of medical, chemical, physical, biological, and other natural sciences. This review has been conceived with the awareness that a modern attitude toward molecular chirality and its consequences needs to be founded on multidisciplinary approaches to disclose the molecular basis of essential enantioselective phenomena in the domain of chemical, physical, and life sciences. With the primary aim of discussing this topic in an integrated way, a comprehensive pool of rational and systematic multidisciplinary information is provided, which concerns the fundamentals of chirality, a description of noncovalent interactions, and their implications in enantioselective processes occurring in different contexts. A specific focus is devoted to enantioselection in chromatography and electromigration techniques because of their unique feature as "multistep" processes. A second motivation for writing this review is to make a clear statement about the state of the art, the tools we have at our disposal, and what is still missing to fully understand the mechanisms underlying enantioselective recognition.
Collapse
Affiliation(s)
- Paola Peluso
- Istituto di Chimica Biomolecolare ICB, CNR, Sede secondaria di Sassari, Traversa La Crucca 3, Regione Baldinca, Li Punti, I-07100 Sassari, Italy
| | - Bezhan Chankvetadze
- Institute of Physical and Analytical Chemistry, School of Exact and Natural Sciences, Tbilisi State University, Chavchavadze Avenue 3, 0179 Tbilisi, Georgia
| |
Collapse
|
6
|
Onishi T, Ueda T, Yoshida K, Uosaki K, Ando H, Hamasaki R, Ohnishi A. Characteristic and complementary chiral recognition ability of four recently developed immobilized chiral stationary phases based on amylose and cellulose phenyl carbamates and benzoates. Chirality 2022; 34:925-940. [PMID: 35413148 PMCID: PMC9321961 DOI: 10.1002/chir.23446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/15/2022] [Accepted: 03/18/2022] [Indexed: 11/10/2022]
Abstract
To date, various immobilized chiral stationary phases (CSPs) have been developed. The immobilized CSPs have opened up possibilities not only maintaining the high chiral recognition abilities as well as corresponding coated ones but also affording high durability to various mobile phase. This report directed to investigate enantioseparation of recently launched four immobilized CSPs with cellulose and amylose backbones under normal phase liquid chromatography conditions. Their chiral recognition abilities were compared with previously developed six immobilized CSPs. Particularly, we focused on the complementarity for chiral recognitions. Among them, amylose tris(3‐chloro‐5‐methylphenylcarbamate) CSP, namely, CHIRALPAK IG, showed notable chiral recognition abilities to various racemates. As expected, the investigated immobilized CSPs represented remarkable durability to wide range of mobile phases, whereas the corresponding coated CSPs could not be run due to the irreversible degradation. Taking advantage of unrestricted solvent compatibility, chiral separation selectivities were improved for some racemates.
Collapse
Affiliation(s)
- Takafumi Onishi
- DAICEL Corporation, CPI Company, Analytical Tools BU Research and Development Center, Arai Factory, Myoko, Niigata, Japan
| | - Takunori Ueda
- DAICEL Corporation, CPI Company, Analytical Tools BU Research and Development Center, Arai Factory, Myoko, Niigata, Japan
| | - Kenichi Yoshida
- DAICEL Corporation, CPI Company, Analytical Tools BU Research and Development Center, Arai Factory, Myoko, Niigata, Japan
| | - Kosuke Uosaki
- DAICEL Corporation, CPI Company, Analytical Tools BU Research and Development Center, Arai Factory, Myoko, Niigata, Japan
| | - Hiroyuki Ando
- DAICEL Corporation, CPI Company, Analytical Tools BU Research and Development Center, Arai Factory, Myoko, Niigata, Japan
| | - Ryota Hamasaki
- DAICEL Corporation, CPI Company, Analytical Tools BU Research and Development Center, Arai Factory, Myoko, Niigata, Japan
| | - Atsushi Ohnishi
- DAICEL Corporation, CPI Company, Analytical Tools BU Research and Development Center, Arai Factory, Myoko, Niigata, Japan
| |
Collapse
|
7
|
Ohji T, Ohnishi A, Ogasawara M. Application of Polysaccharide-Based Chiral High-Performance Liquid Chromatography Columns for the Separation of Regio-, E/ Z-, and Enantio-Isomeric Mixtures of Allylic Compounds. ACS OMEGA 2022; 7:5146-5153. [PMID: 35187330 PMCID: PMC8851445 DOI: 10.1021/acsomega.1c06187] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Daicel Chiralpak IA, IB, and IC, which are the polysaccharide-based chiral stationary phase (CSP) columns for high-performance liquid chromatography (HPLC), were applied in the separation of the non-enantiomeric isomeric mixtures obtained by the various allylation reactions and were highly effective in separating the regio- and (E)/(Z)-isomers in the allylation products. Due to the close structural similarity of the isomeric allylic compounds in the reaction mixtures, separations of the isomers are laborious and could not be accomplished by the conventional methods such as silica gel column chromatography, silica gel HPLC, preparative GPC, distillation, and so forth. This study has shown potential advantages of using the polysaccharide-based CSP columns in the separation of not only enantiomeric but also non-enantiomeric isomeric mixtures.
Collapse
Affiliation(s)
- Takehito Ohji
- Department
of Natural Science, Graduate School of Science and Technology and
Research Cluster on “Innovative Chemical Sensing”, Tokushima University, Tokushima 770-8506, Japan
| | - Atsushi Ohnishi
- Daicel
Corporation, CPI Company, Analytical Tools
BU, Research & Development Center, Arai 944-8550, Japan
| | - Masamichi Ogasawara
- Department
of Natural Science, Graduate School of Science and Technology and
Research Cluster on “Innovative Chemical Sensing”, Tokushima University, Tokushima 770-8506, Japan
- Tokushima
International Science Institute, Tokushima
University, Tokushima 770-8501, Japan
| |
Collapse
|
8
|
Chankvetadze B. Application of enantioselective separation techniques to bioanalysis of chiral drugs and their metabolites. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116332] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Fan X, Cao L, Geng L, Ma Y, Wei Y, Wang Y. Polysaccharides as separation media for the separation of proteins, peptides and stereoisomers of amino acids. Int J Biol Macromol 2021; 186:616-638. [PMID: 34242648 DOI: 10.1016/j.ijbiomac.2021.07.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/29/2021] [Accepted: 07/03/2021] [Indexed: 10/20/2022]
Abstract
Reliable separation of peptides, amino acids and proteins as accurate as possible with the maximum conformation and biological activity is crucial and essential for drug discovery. Polysaccharide, as one of the most abundant natural biopolymers with optical activity on earth, is easy to be functionalized due to lots of hydroxyl groups on glucose units. Over the last few decades, polysaccharide derivatives are gradually employed as effective separation media. The highly-ordered helical structure contributes to complex, diverse molecular recognition ability, allowing polysaccharide derivatives to selectively interact with different analytes. This article reviews the development, application and prospects of polysaccharides as separation media in the separation of proteins, peptides and amino acids in recent years. The chiral molecules mechanism, advantages, limitations, development status and challenges faced by polysaccharides as separation media in molecular recognition are summarized. Meanwhile, the direction of its continued development and future prospects are also discussed.
Collapse
Affiliation(s)
- Xiao Fan
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, PR China
| | - Lilong Cao
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, PR China
| | - Linna Geng
- Department of Infrastructure Engineering, The University of Melbourne, Victoria, Australia
| | - Yalu Ma
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, PR China.
| | - Yuping Wei
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, PR China; Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, PR China.
| | - Yong Wang
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, PR China.
| |
Collapse
|
10
|
Merino MED, Lancioni C, Padró JM, Castells CB. Study of enantioseparation of β-blockers using amylose tris(3-chloro-5-methylphenylcarbamate) as chiral stationary phase under polar-organic, reversed-phase and hydrophilic interaction liquid chromatography conditions. J Chromatogr A 2020; 1634:461685. [DOI: 10.1016/j.chroma.2020.461685] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/21/2020] [Accepted: 11/02/2020] [Indexed: 01/02/2023]
|
11
|
Noncovalent interactions in high-performance liquid chromatography enantioseparations on polysaccharide-based chiral selectors. J Chromatogr A 2020; 1623:461202. [DOI: 10.1016/j.chroma.2020.461202] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/02/2020] [Accepted: 05/04/2020] [Indexed: 12/13/2022]
|
12
|
Chankvetadze B. Recent trends in preparation, investigation and application of polysaccharide-based chiral stationary phases for separation of enantiomers in high-performance liquid chromatography. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.115709] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
13
|
Ianni F, Saluti G, Galarini R, Fiorito S, Sardella R, Natalini B. Enantioselective high-performance liquid chromatography analysis of oxygenated polyunsaturated fatty acids. Free Radic Biol Med 2019; 144:35-54. [PMID: 31055130 DOI: 10.1016/j.freeradbiomed.2019.04.038] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/11/2019] [Accepted: 04/29/2019] [Indexed: 11/16/2022]
Abstract
Oxygenated polyunsaturated fatty acids (PUFAs)play an outstanding role in the physiological and pathological regulation of several biological processes. These oxygenated metabolites can be produced both enzimatically, yielding almost pure enantiomers, and non-enzymatically. The free radical-mediated non-enzymatic oxidation commonly produces racemic mixtures which are used as biomarkers of oxidative stress and tissue damage. The biological activity of oxygenated PUFAs is often associated with only one enantiomer, making it necessary of availing of lipidomics platforms allowing to disclose the role of single enantiomers in health and disease. Polysaccharide-based chiral stationary phases (CSPs) play a dominating part in this setting. As for the cellulose backbone, 4-methylbenzoate derivatives exhibit very high chiral recognition ability towards this class of compounds. Concerning the phenylcarbamate derivatives of cellulose and amylose, the tris(3,5-dimethylphenylcarbamate) variants show the best enantioresolving ability for a variety of oxygenated PUFAs. Moreover, also the amylose tris(5-chloro-2-methylphenylcarbamate)-based selector produces relevant chromatographic performances. The extreme versatility of those CSPs mostly depends on their compatibility with the most relevant elution modes: normal- and reversed-phase, as well as polar organic/ionic-mode. In this review article, a selection of enantioseparation studies of different oxygenated PUFAs is reported, with both tris(benzoates) and tris(phenylcarbamates) of cellulose and amylose.
Collapse
Affiliation(s)
- Federica Ianni
- University of Perugia, Department of Pharmaceutical Sciences, Via Fabretti 48, 06123 Perugia, Italy
| | - Giorgio Saluti
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati", Via G. Salvemini 1, 06126 Perugia, Italy
| | - Roberta Galarini
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati", Via G. Salvemini 1, 06126 Perugia, Italy
| | - Serena Fiorito
- University "G. d'Annunzio" of Chieti-Pescara, Department of Pharmacy, Via dei Vestini 31, 66100 Chieti Scalo, Italy
| | - Roccaldo Sardella
- University of Perugia, Department of Pharmaceutical Sciences, Via Fabretti 48, 06123 Perugia, Italy.
| | - Benedetto Natalini
- University of Perugia, Department of Pharmaceutical Sciences, Via Fabretti 48, 06123 Perugia, Italy
| |
Collapse
|
14
|
Roy D, Armstrong DW. Fast super/subcritical fluid chromatographic enantioseparations on superficially porous particles bonded with broad selectivity chiral selectors relative to fully porous particles. J Chromatogr A 2019; 1605:360339. [PMID: 31350029 DOI: 10.1016/j.chroma.2019.06.060] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 06/24/2019] [Accepted: 06/28/2019] [Indexed: 12/24/2022]
Abstract
Superficially porous particles (SPPs) have shown advantages in enantiomeric separations in HPLC by conserving selectivity while providing higher efficiency separations with significantly reduced analysis times. The question arises as to whether the same advantages can be found to the same extent in super/subcritical fluid chromatography. In this work, the low viscosity advantage of carbon dioxide/MeOH mixtures is coupled with high-efficiency 2.7 μm superficially porous particles for enantiomeric separations. Given the fact that the viscosity of the mobile phase is typically ten times lower than liquid mobile phases it is possible to use flow rates as high as 14 mL/min on 5 cm packed columns. Superficially porous particles (SPPs) were grafted with teicoplanin (TeicoShell), a chemically modified macrocyclic glycopeptide (NicoShell), vancomycin (VancoShell), and isopropyl derivatized cyclofructan-6 (LarihcShell-P). One hundred chiral analytes were separated in a very short time frame, as little as 0.2 min (13 s). Even shorter separations can be obtained with advances in SFC instrumentation. The LarihcShell-P is the only chiral crown ether-based selector which showed high selectivity for primary amines. The Teicoshell column offered unique separations for acidic and neutral analytes. The NicoShell and the VancoShell were useful in separating amine (secondary and tertiary) containing pharmaceutical drugs and controlled substances. By chemically modifying a macrocyclic glycopeptide (NicoShell) we report the first enantiomeric separation of nicotine under SFC conditions within 3 min with a resolution of >3. Additionally, van Deemter plots are constructed comparing the fully porous particles and superficially porous particles bonded with the same chiral selectors. In toto the SPP advantages also were found for SFC. However instrumental shortcomings involving extra column effects and pressure limitations need to be addressed by instrument manufacturers to realize the full advantages of SPPs and other smaller particle supports.
Collapse
Affiliation(s)
- Daipayan Roy
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, TX, United States
| | - Daniel W Armstrong
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, TX, United States.
| |
Collapse
|
15
|
Polysaccharide-Based Chiral Stationary Phases for Enantioseparations by High-Performance Liquid Chromatography: An Overview. Methods Mol Biol 2019; 1985:93-126. [PMID: 31069731 DOI: 10.1007/978-1-4939-9438-0_6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This chapter summarizes the application of polysaccharide-based chiral stationary phases (CSPs) for separation of enantiomers in high-performance liquid chromatography (HPLC). Since this book contains dedicated chapters on enantioseparations using supercritical fluid chromatography (SFC), or capillary electrochromatography (CEC), the application of polysaccharide-based materials in these modes of liquid-phase separation techniques is touched just superficially. Special emphasis is directed toward a discussion of the optimization of polysaccharide-based chiral selectors, their attachment onto the carrier, and the optimization of the support. The optimization of the separation of enantiomers based on various parameters such as mobile phase composition and temperature is discussed.
Collapse
|
16
|
Ogasawara M, Enomoto Y, Uryu M, Yang X, Kataoka A, Ohnishi A. Application of Polysaccharide-Based Chiral HPLC Columns for Separation of Nonenantiomeric Isomeric Mixtures of Organometallic Compounds. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00819] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Masamichi Ogasawara
- Department of Natural Science, Graduate School of Science and Technology and Research Cluster on “Innovative Chemical Sensing”, Tokushima University, Tokushima 770-8506, Japan
| | - Yuuki Enomoto
- Department of Natural Science, Graduate School of Science and Technology and Research Cluster on “Innovative Chemical Sensing”, Tokushima University, Tokushima 770-8506, Japan
| | - Mizuho Uryu
- Department of Natural Science, Graduate School of Science and Technology and Research Cluster on “Innovative Chemical Sensing”, Tokushima University, Tokushima 770-8506, Japan
- Graduate School of Life Science, Hokkaido University, Kita-ku, Sapporo 001-0021, Japan
| | - Xicheng Yang
- Graduate School of Life Science, Hokkaido University, Kita-ku, Sapporo 001-0021, Japan
| | - Ayami Kataoka
- Department of Natural Science, Graduate School of Science and Technology and Research Cluster on “Innovative Chemical Sensing”, Tokushima University, Tokushima 770-8506, Japan
| | - Atsushi Ohnishi
- Daicel Corporation, CPI Company, Life Sciences Development Center, Arai 944-8550, Japan
| |
Collapse
|
17
|
Padró JM, Keunchkarian S. State-of-the-art and recent developments of immobilized polysaccharide-based chiral stationary phases for enantioseparations by high-performance liquid chromatography (2013–2017). Microchem J 2018. [DOI: 10.1016/j.microc.2018.04.017] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
18
|
D’Orazio G, Fanali C, Karchkhadze M, Chankvetadze B, Fanali S. Enantiomeric separation of some chiral analytes using amylose 3,5-dimethylphenylcarbamate covalently immobilized on silica by nano-liquid chromatography and capillary electrochromatography. J Chromatogr A 2017; 1520:127-134. [DOI: 10.1016/j.chroma.2017.09.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 09/04/2017] [Accepted: 09/06/2017] [Indexed: 10/18/2022]
|
19
|
Chiral Stationary Phases for Liquid Chromatography Based on Chitin- and Chitosan-Derived Marine Polysaccharides. Symmetry (Basel) 2017. [DOI: 10.3390/sym9090190] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
20
|
Quinine bonded to superficially porous particles for high-efficiency and ultrafast liquid and supercritical fluid chromatography. Anal Chim Acta 2017; 963:164-174. [DOI: 10.1016/j.aca.2017.02.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 02/02/2017] [Accepted: 02/10/2017] [Indexed: 11/20/2022]
|
21
|
Ohnishi A, Onishi T, Hamasaki R. Development and Application of Immobilized Chiral Columns based on Polysaccharide Derivatives, as Common Name “<i>i</i>-CHIRAL” Columns. J SYN ORG CHEM JPN 2017. [DOI: 10.5059/yukigoseikyokaishi.75.548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
22
|
Patel DC, Wahab MF, Armstrong DW, Breitbach ZS. Advances in high-throughput and high-efficiency chiral liquid chromatographic separations. J Chromatogr A 2016; 1467:2-18. [DOI: 10.1016/j.chroma.2016.07.040] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 07/13/2016] [Accepted: 07/15/2016] [Indexed: 01/08/2023]
|
23
|
Shen J, Okamoto Y. Efficient Separation of Enantiomers Using Stereoregular Chiral Polymers. Chem Rev 2015; 116:1094-138. [DOI: 10.1021/acs.chemrev.5b00317] [Citation(s) in RCA: 465] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Jun Shen
- Polymer
Materials Research Center, Key Laboratory of Superlight Materials
and Surface Technology, Ministry of Education, College of Materials
Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, People’s Republic of China
| | - Yoshio Okamoto
- Polymer
Materials Research Center, Key Laboratory of Superlight Materials
and Surface Technology, Ministry of Education, College of Materials
Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, People’s Republic of China
- Graduate
School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| |
Collapse
|
24
|
OKAMOTO Y. Precision synthesis, structure and function of helical polymers. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2015; 91:246-261. [PMID: 26062738 PMCID: PMC4565974 DOI: 10.2183/pjab.91.246] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 02/06/2015] [Indexed: 06/04/2023]
Abstract
Helical structures are chiral, which means that if we can synthesize a polymer having a stable one-handed helicity, the polymer is optically active. In 1979, we succeeded in the synthesis of a one-handed helical polymer from an optically inactive achiral monomer, triphenylmethyl methacrylate (TrMA). This is the first example of the asymmetric synthesis of an optically active one-handed helical polymer. The polymer (PTrMA) exhibited an unexpected high chiral recognition ability and afforded a practically useful chiral stationary phase (CSP) for high-performance liquid chromatography (HPLC) by coating it on silica gel. In addition, we also succeeded in the development of very useful CSPs for HPLC using the phenylcarbamate derivatives of polysaccharides, cellulose and amylose. These CSPs can efficiently resolve a broad range of chiral compounds, and have been used all over the world for separating and analyzing chiral compounds.
Collapse
Affiliation(s)
- Yoshio OKAMOTO
- Graduate School of Engineering, Nagoya University, Nagoya, Japan
| |
Collapse
|
25
|
Togashi D, Otsuka I, Borsali R, Takeda K, Enomoto K, Kawaguchi S, Narumi A. Maltopentaose-Conjugated CTA for RAFT Polymerization Generating Nanostructured Bioresource-Block Copolymer. Biomacromolecules 2014; 15:4509-19. [DOI: 10.1021/bm501314f] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Daichi Togashi
- Department
of Polymer Science and Engineering, Graduate School of Science and
Engineering, Yamagata University, Jonan 4-3-16, Yonezawa 992-8510, Japan
| | - Issei Otsuka
- Univ. Grenoble
Alpes, CERMAV, F-38000 Grenoble, France
- CNRS, CERMAV, F-38000 Grenoble, France
| | - Redouane Borsali
- Univ. Grenoble
Alpes, CERMAV, F-38000 Grenoble, France
- CNRS, CERMAV, F-38000 Grenoble, France
| | - Koichi Takeda
- Department
of Polymer Science and Engineering, Graduate School of Science and
Engineering, Yamagata University, Jonan 4-3-16, Yonezawa 992-8510, Japan
| | - Kazushi Enomoto
- Department
of Polymer Science and Engineering, Graduate School of Science and
Engineering, Yamagata University, Jonan 4-3-16, Yonezawa 992-8510, Japan
| | - Seigou Kawaguchi
- Department
of Polymer Science and Engineering, Graduate School of Science and
Engineering, Yamagata University, Jonan 4-3-16, Yonezawa 992-8510, Japan
| | - Atsushi Narumi
- Department
of Polymer Science and Engineering, Graduate School of Science and
Engineering, Yamagata University, Jonan 4-3-16, Yonezawa 992-8510, Japan
| |
Collapse
|
26
|
Shen J, Ikai T, Okamoto Y. Synthesis and application of immobilized polysaccharide-based chiral stationary phases for enantioseparation by high-performance liquid chromatography. J Chromatogr A 2014; 1363:51-61. [DOI: 10.1016/j.chroma.2014.06.042] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 06/10/2014] [Accepted: 06/11/2014] [Indexed: 11/30/2022]
|
27
|
Insights into chiral recognition mechanism in supercritical fluid chromatography III. Non-halogenated polysaccharide stationary phases. J Chromatogr A 2014; 1363:278-93. [DOI: 10.1016/j.chroma.2014.06.084] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 06/18/2014] [Accepted: 06/24/2014] [Indexed: 11/19/2022]
|
28
|
Novel synthesis of cellulose-based diblock copolymer of poly(hydroxyethyl methacrylate) by mechanochemical reaction. ScientificWorldJournal 2014; 2014:127506. [PMID: 24741340 PMCID: PMC3972831 DOI: 10.1155/2014/127506] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 02/02/2014] [Indexed: 11/17/2022] Open
Abstract
The mechanical fracture of polymer produces polymeric free radical chain-ends, by which liner block copolymers have been synthesized. A diblock copolymer of microcrystalline cellulose (MCC) and poly 2-hydroxyethyl methacrylate (pHEMA) was produced by the mechanochemical polymerization under vacuum and room temperature. The fraction of pHEMA in MCC-block-pHEMA produced by the mechanochemical polymerization increased up to 21 mol% with increasing fracture time (~6 h). Then, the tacticities of HEMA sequences in MCC-block-pHEMA varied according to the reaction time. In the process of mechanochemical polymerization, cellulose could play the role of a radical polymerization initiator capable of controlling stereoregularity.
Collapse
|
29
|
Cirilli R, Ferretti R, Gallinella B, Zanitti L. Retention behavior of proton pump inhibitors using immobilized polysaccharide-derived chiral stationary phases with organic-aqueous mobile phases. J Chromatogr A 2013; 1304:147-53. [DOI: 10.1016/j.chroma.2013.07.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 07/03/2013] [Accepted: 07/04/2013] [Indexed: 10/26/2022]
|
30
|
Minoda T. Chiral separations by simulated moving bed method using polysaccharide-based chiral stationary phases. Methods Mol Biol 2013; 970:257-270. [PMID: 23283783 DOI: 10.1007/978-1-62703-263-6_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Generally, in using chromatography as an industrial-scale production process, batch separation is not adequate from the standpoint of productivity and mobile phase consumption; thus, a continuous separation is preferred. The simulated moving bed (SMB) method is one of the best popular practices of continuous chromatographic separation. In this chapter, I would like to introduce actual practices of chiral SMB using polysaccharide-derived chiral stationary phases (CSPs), together with some laboratory-scale separation data.
Collapse
|
31
|
Chankvetadze B. Enantioseparations by high-performance liquid chromatography using polysaccharide-based chiral stationary phases: an overview. Methods Mol Biol 2013; 970:81-111. [PMID: 23283772 DOI: 10.1007/978-1-62703-263-6_5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
This chapter summarizes the application of polysaccharide-based chiral stationary phases (CSPs) for separation of enantiomers in high-performance liquid chromatography (HPLC). Since this book contains dedicated chapters on enantioseparations using supercritical fluid chromatography (SFC), capillary electrochromatography (CEC), and simulated moving bed (SMB) chromatography, the application of polysaccharide-based materials in these modes of liquid phase separation techniques are touched just superficially. More emphasis is directed toward a discussion of the optimization of polysaccharide-based chiral selectors, their attachment onto the carrier, and the optimization of the support. The optimization of the separation of enantiomers based on various parameters such as mobile phase composition and temperature is also discussed.
Collapse
Affiliation(s)
- Bezhan Chankvetadze
- Institute of Physical and Analytical Chemistry, Tbilisi State University, Tbilisi, Georgia.
| |
Collapse
|
32
|
Helical Polymers for Efficient Enantiomer Separation. HIERARCHICAL MACROMOLECULAR STRUCTURES: 60 YEARS AFTER THE STAUDINGER NOBEL PRIZE I 2013. [DOI: 10.1007/12_2013_240] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
33
|
Chankvetadze B. Recent developments on polysaccharide-based chiral stationary phases for liquid-phase separation of enantiomers. J Chromatogr A 2012; 1269:26-51. [DOI: 10.1016/j.chroma.2012.10.033] [Citation(s) in RCA: 329] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 10/11/2012] [Accepted: 10/15/2012] [Indexed: 10/27/2022]
|
34
|
Bubba M, Checchini L, Cincinelli A, Lepri L. Enantiomeric resolution of chiral aromatic sulfoxides on non-commercial cellulose tribenzoate plates. JPC-J PLANAR CHROMAT 2012. [DOI: 10.1556/jpc.25.2012.3.5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
35
|
Cavazzini A, Pasti L, Massi A, Marchetti N, Dondi F. Recent applications in chiral high performance liquid chromatography: A review. Anal Chim Acta 2011; 706:205-22. [DOI: 10.1016/j.aca.2011.08.038] [Citation(s) in RCA: 203] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 08/08/2011] [Accepted: 08/25/2011] [Indexed: 01/17/2023]
|
36
|
Del Bubba M, Cincinelli A, Checchini L, Lepri L. Chiral separations and quantitative analysis of optical isomers on cellulose tribenzoate plates. J Chromatogr A 2011; 1218:2737-44. [DOI: 10.1016/j.chroma.2011.01.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 01/03/2011] [Accepted: 01/04/2011] [Indexed: 10/18/2022]
|
37
|
Zheng C, Zhang D, Wu Q, Lin X. High performance liquid chromatography enantioseparation of the novel designed mexiletine derivatives and its analogs. Chirality 2011; 23:99-104. [DOI: 10.1002/chir.20880] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
38
|
|
39
|
Enantioseparation using amylose esters as chiral stationary phases for high-performance liquid chromatography. Polym J 2010. [DOI: 10.1038/pj.2009.300] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
40
|
Ikai T, Okamoto Y. Structure Control of Polysaccharide Derivatives for Efficient Separation of Enantiomers by Chromatography. Chem Rev 2009; 109:6077-101. [DOI: 10.1021/cr8005558] [Citation(s) in RCA: 347] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Tomoyuki Ikai
- EcoTopia Science Institute, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan, and College of Material Science and Chemical Engineering, Harbin Engineering University, 145 Nantong St. Harbin 150001, P. R. China
| | - Yoshio Okamoto
- EcoTopia Science Institute, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan, and College of Material Science and Chemical Engineering, Harbin Engineering University, 145 Nantong St. Harbin 150001, P. R. China
| |
Collapse
|
41
|
Felix G, Berthod A. Part II: From Dermatologicals to Sensory Organ and Various Drugs. SEPARATION AND PURIFICATION REVIEWS 2008. [DOI: 10.1080/15422110701873007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
42
|
Felix G, Berthod A. Commercial Chiral Stationary Phases for the Separations of Clinical Racemic Drugs. SEPARATION AND PURIFICATION REVIEWS 2007. [DOI: 10.1080/15422110701826997] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
43
|
Félix G. Overview of the Separation of Agrochemical Enantiomers on Commercial CSPs. J LIQ CHROMATOGR R T 2007. [DOI: 10.1081/jlc-120027098] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Guy Félix
- a Laboratoire de Chimie Organique et Matériaux Moléculaires (UMR 6114), Faculté des Sciences de Luminy , 163 Avenue de Luminy, 13 288, Marseille , Cedex , 9 , France
| |
Collapse
|
44
|
Liu Y, Lantz AW, Armstrong DW. High Efficiency Liquid and Super‐/Subcritical Fluid‐Based Enantiomeric Separations: An Overview. J LIQ CHROMATOGR R T 2007. [DOI: 10.1081/jlc-120030600] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Ying Liu
- a Department of Chemistry , Iowa State University , Ames , Iowa , 50011‐3111 , USA
| | - Andrew W. Lantz
- a Department of Chemistry , Iowa State University , Ames , Iowa , 50011‐3111 , USA
| | - Daniel W. Armstrong
- a Department of Chemistry , Iowa State University , Ames , Iowa , 50011‐3111 , USA
| |
Collapse
|
45
|
Toga Y, Tachibana K, Ichida A. Preparative Chiral Chromatography of trans‐Stilbene Oxide Using Cellulose tris(Phenylcarbamate), Chiralcel® OC, as Stationary Phase. J LIQ CHROMATOGR R T 2007. [DOI: 10.1081/jlc-120025520] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Y. Toga
- a Himeji Research Center , Daicel Chemical Industries, Ltd. , 1239 Shinzaike, Aboshi‐ku Himeji, Hyogo, 671‐1283, Japan
| | - K. Tachibana
- a Himeji Research Center , Daicel Chemical Industries, Ltd. , 1239 Shinzaike, Aboshi‐ku Himeji, Hyogo, 671‐1283, Japan
| | - A. Ichida
- a Himeji Research Center , Daicel Chemical Industries, Ltd. , 1239 Shinzaike, Aboshi‐ku Himeji, Hyogo, 671‐1283, Japan
| |
Collapse
|
46
|
Polysaccharide derivatives as useful chiral stationary phases in high-performance liquid chromatography. PURE APPL CHEM 2007. [DOI: 10.1351/pac200779091561] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The chromatographic separation of enantiomers using chiral stationary phases (CSPs) has significantly advanced. The esters and carbamates of polysaccharides coated on silica gel have been extensively studied and widely used as CSPs for high-performance liquid chromatography (HPLC). In order to overcome the strict solvent limitation on these coated CSPs, the preparation of a new generation of CSPs consisting of immobilized polysaccharide derivatives has become increasingly important. The universal solvent compatibility of the new CSPs provides flexibility in both analytical and preparative chromatographies.
Collapse
|
47
|
Enein HA, Islam MR. Direct HPLC Separation of Carazolol Enantiomers on a Cellulose Tris-3, 5-Dimethylphenyl Carbamate Column. ANAL LETT 2006. [DOI: 10.1080/00032719008053439] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
48
|
Risley DS, Sharp VS, Palmer JR. Evaluation of a New Pepsin Enzyme Chiral Stationary Phase for the Optimized Separation of Seproxetine (S-Norfluoxetine) from R-Norfluoxetine. J LIQ CHROMATOGR R T 2006. [DOI: 10.1080/10826079608001227] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Donald S. Risley
- a Eli Lilly and Company Lilly Research Laboratories Pharmaceutical Sciences Division Lilly Corporate Center , Indianapolis, IN, 46285
| | - V. Scott Sharp
- a Eli Lilly and Company Lilly Research Laboratories Pharmaceutical Sciences Division Lilly Corporate Center , Indianapolis, IN, 46285
| | - John R. Palmer
- b Mac-Mod Analytical Inc. , 127 Commons Court, Chadds Ford, PA, 19317
| |
Collapse
|
49
|
Calabrò ML, Raneri D, Tommasini S, Ficarra R, Alcaro S, Gallelli A, Micale N, Zappalà M, Ficarra P. Enantioselective recognition of 2,3-benzodiazepin-4-one derivatives with anticonvulsant activity on several polysaccharide chiral stationary phases. J Chromatogr B Analyt Technol Biomed Life Sci 2006; 838:56-62. [PMID: 16723286 DOI: 10.1016/j.jchromb.2006.04.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2005] [Revised: 04/05/2006] [Accepted: 04/09/2006] [Indexed: 10/24/2022]
Abstract
The retention behaviour of racemic 1-(4-aminophenyl)-1,2,3,5-tetrahydro-7,8-methylendioxy-4H-2,3-benzodiazepin-4-one derivatives with anticonvulsant activity on several chiral stationary phases was investigated. The selective performances of six polysaccharide phases, namely, Chiralcel OA, OD, OF, OG, OJ and Chiralpak AD were studied and normal phase HPLC methods were optimized to separate the enantiomeric forms of this class of compounds. The chiral recognition mechanism between the analytes and the chiral selectors was discussed. A molecular modeling study was carried out with the aim to explore the enantioselective molecular recognition process with the Chiralcel OG stationary phase.
Collapse
Affiliation(s)
- Maria Luisa Calabrò
- Dipartimento Farmaco-Chimico, Facoltà di Farmacia, Università di Messina, Viale Annunziata, 98168 Messina, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Wink O, Luley U. Enantioselective transformation of the herbicides diclofop-methyl and fenoxaprop-ethyl in soil. ACTA ACUST UNITED AC 2006. [DOI: 10.1002/ps.2780220104] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|