1
|
Montgomery BL. Following the Principles of the Universe: Lessons from Plants on Individual and Communal Thriving. Integr Comp Biol 2023; 63:1391-1398. [PMID: 37604783 PMCID: PMC10755201 DOI: 10.1093/icb/icad117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/06/2023] [Accepted: 08/13/2023] [Indexed: 08/23/2023] Open
Abstract
The means by which plants and other organisms exist in and respond to dynamic environments to support their thriving as individuals and in communities provide lessons for humans on sustainable and resilient thriving. First examined in my book, Lessons from Plants (Harvard University Press, 2021), I explore herein the following question: "How can plants teach us to be better humans?" I consider how insights gathered from plant physiology, phenotypic plasticity, and other plant growth phenomena can help us improve our lives and our society, with a focus on highlighting academic and scientific environments. Genetically identical plants can have very different appearances, metabolisms, and behaviors if the external environments in which they are growing differ in light or nutrient availability, among other environmental differences. Plants are even capable of transformative behaviors that enable them to maximize their chances of survival in dynamic and sometimes unfriendly environments, while also transforming the environment in which they exist in the process. Highlighting examples from research on, for instance, plants' responses to light and nutrient cues, I focus on insights for humans derived from lessons from plants. These lessons focus on how plants achieve their own purposes by following common principles of the universe on thriving and resilience as individuals and in communities.
Collapse
Affiliation(s)
- Beronda L Montgomery
- Department of Biology, Grinnell College, 1121 Park Street, Grinnell, IA 50112, USA
| |
Collapse
|
2
|
Molinari J. A bare-bones scheme to choose between the species, subspecies, and ‘evolutionarily significant unit’ categories in taxonomy and conservation. J Nat Conserv 2023. [DOI: 10.1016/j.jnc.2023.126335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
3
|
He XJ, Barron AB, Yang L, Chen H, He YZ, Zhang LZ, Huang Q, Wang ZL, Wu XB, Yan WY, Zeng ZJ. Extent and complexity of RNA processing in honey bee queen and worker caste development. iScience 2022; 25:104301. [PMID: 35573188 PMCID: PMC9097701 DOI: 10.1016/j.isci.2022.104301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/12/2022] [Accepted: 04/21/2022] [Indexed: 11/03/2022] Open
Abstract
The distinct honeybee (Apis mellifera) worker and queen castes have become a model for the study of genomic mechanisms of phenotypic plasticity. Here we performed a nanopore-based direct RNA sequencing with exceptionally long reads to compare the mRNA transcripts between queen and workers at three points during their larval development. We found thousands of significantly differentially expressed transcript isoforms (DEIs) between queen and worker larvae. These DEIs were formatted by a flexible splicing system. We showed that poly(A) tails participated in this caste differentiation by negatively regulating the expression of DEIs. Hundreds of isoforms uniquely expressed in either queens or workers during their larval development, and isoforms were expressed at different points in queen and worker larval development demonstrating a dynamic relationship between isoform expression and developmental mechanisms. These findings show the full complexity of RNA processing and transcript expression in honey bee phenotypic plasticity. Honeybee caste differentiation has a complexity of RNA processing Isoforms differentially express between queens and workers during larval development Isoforms are formatted by a flexible alternative splicing system Poly(A) tails are negatively correlated with isoform expression
Collapse
Affiliation(s)
- Xu Jiang He
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, P. R. of China.,Jiangxi Province Honeybee Biology and Beekeeping Nanchang, Jiangxi 330045, P. R. of China
| | - Andrew B Barron
- Department of Biological Sciences, Macquarie University, North Ryde, NSW 2109, Australia
| | - Liu Yang
- Wuhan Benagen Tech Solutions Company Limited, Wuhan, Hubei 430021, P. R. of China
| | - Hu Chen
- Wuhan Benagen Tech Solutions Company Limited, Wuhan, Hubei 430021, P. R. of China
| | - Yu Zhu He
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, P. R. of China
| | - Li Zhen Zhang
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, P. R. of China
| | - Qiang Huang
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, P. R. of China
| | - Zi Long Wang
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, P. R. of China
| | - Xiao Bo Wu
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, P. R. of China
| | - Wei Yu Yan
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, P. R. of China
| | - Zhi Jiang Zeng
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, P. R. of China.,Jiangxi Province Honeybee Biology and Beekeeping Nanchang, Jiangxi 330045, P. R. of China
| |
Collapse
|
4
|
Ashra H, Nair S. Review: Trait plasticity during plant-insect interactions: From molecular mechanisms to impact on community dynamics. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 317:111188. [PMID: 35193737 DOI: 10.1016/j.plantsci.2022.111188] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Phenotypic plasticity, prevalent in all domains of life, enables organisms to cope with unpredictable or novel changes in their growing environment. Plants represent an interesting example of phenotypic plasticity which also directly represents and affects the dynamics of biological interactions occurring in a community. Insects, which interact with plants, manifest phenotypic plasticity in their developmental, physiological, morphological or behavioral traits in response to the various host plant defenses induced upon herbivory. However, plant-insect interactions are generally more complex and multidimensional because of their dynamic association with their respective microbiomes and macrobiomes. Moreover, these associations can alter plant and insect responses towards each other by modulating the degree of phenotypic plasticity in their various traits and studying them will provide insights into how plants and insects reciprocally affect each other's evolutionary trajectory. Further, we explore the consequences of phenotypic plasticity on relationships and interactions between plants and insects and its impact on their development, evolution, speciation and ecological organization. This overview, obtained after exploring and comparing data obtained from several inter-disciplinary studies, reveals how genetic and molecular mechanisms, underlying plasticity in traits, impact species interactions at the community level and also identifies mechanisms that could be exploited in breeding programs.
Collapse
Affiliation(s)
- Himani Ashra
- Plant-Insect Interaction Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi 110 067, India
| | - Suresh Nair
- Plant-Insect Interaction Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi 110 067, India.
| |
Collapse
|
5
|
Karban R, Orrock JL, Preisser EL, Sih A. A comparison of plants and animals in their responses to risk of consumption. CURRENT OPINION IN PLANT BIOLOGY 2016; 32:1-8. [PMID: 27262943 DOI: 10.1016/j.pbi.2016.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 05/06/2016] [Accepted: 05/17/2016] [Indexed: 06/05/2023]
Abstract
Both plants and animals reduce their risk of being eaten by detecting and responding to herbivore and predator cues. Plants tend to be less mobile and rely on more local information perceived with widely dispersed and redundant tissues. As such, plants can more easily multi-task. Plants are more tolerant of damage and use damage to their own tissues as reliable cues of risk; plants have a higher threshold before responding to the threat of herbivory. Plants also use diverse cues that include fragments of plant tissue and molecular patterns from herbivores, herbivore feeding, or microbial associates of herbivores. Instead of fleeing from attackers, plants reallocate valuable resources to organs at less risk. They minimize unnecessary defenses against unrealized risks and costs of failing to defend against actual risk. Plants can remember and learn, although these abilities are poorly understood.
Collapse
Affiliation(s)
- Richard Karban
- Department of Entomology and Nematology, University of California, Davis, CA 95616, United States.
| | - John L Orrock
- Department of Zoology, University of Wisconsin, Madison, WI 53706, United States
| | - Evan L Preisser
- Department of Biological Sciences, University of Rhode Island, Kingston, RI 02881, United States
| | - Andrew Sih
- Department of Environmental Science and Policy, University of California, Davis, CA 95616, United States
| |
Collapse
|
6
|
Grenier S, Barre P, Litrico I. Phenotypic Plasticity and Selection: Nonexclusive Mechanisms of Adaptation. SCIENTIFICA 2016; 2016:7021701. [PMID: 27313957 PMCID: PMC4895053 DOI: 10.1155/2016/7021701] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 04/05/2016] [Accepted: 05/03/2016] [Indexed: 05/07/2023]
Abstract
Selection and plasticity are two mechanisms that allow the adaptation of a population to a changing environment. Interaction between these nonexclusive mechanisms must be considered if we are to understand population survival. This review discusses the ways in which plasticity and selection can interact, based on a review of the literature on selection and phenotypic plasticity in the evolution of populations. The link between selection and phenotypic plasticity is analysed at the level of the individual. Plasticity can affect an individual's response to selection and so may modify the end result of genetic diversity evolution at population level. Genetic diversity increases the ability of populations or communities to adapt to new environmental conditions. Adaptive plasticity increases individual fitness. However this effect must be viewed from the perspective of the costs of plasticity, although these are not easy to estimate. It is becoming necessary to engage in new experimental research to demonstrate the combined effects of selection and plasticity for adaptation and their consequences on the evolution of genetic diversity.
Collapse
Affiliation(s)
- S. Grenier
- INRA, UR004, P3F, RD 150, Site du Chêne, BP 86006, 86600 Lusignan, France
| | - P. Barre
- INRA, UR004, P3F, RD 150, Site du Chêne, BP 86006, 86600 Lusignan, France
| | - I. Litrico
- INRA, UR004, P3F, RD 150, Site du Chêne, BP 86006, 86600 Lusignan, France
- *I. Litrico:
| |
Collapse
|
7
|
Meyer KM, Soldaat LL, Auge H, Thulke HH. Adaptive and selective seed abortion reveals complex conditional decision making in plants. Am Nat 2014; 183:376-83. [PMID: 24561600 DOI: 10.1086/675063] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Behavior is traditionally attributed to animals only. Recently, evidence for plant behavior is accumulating, mostly from plant physiological studies. Here, we provide ecological evidence for complex plant behavior in the form of seed abortion decisions conditional on internal and external cues. We analyzed seed abortion patterns of barberry plants exposed to seed parasitism and different environmental conditions. Without abortion, parasite infestation of seeds can lead to loss of all seeds in a fruit. We statistically tested a series of null models with Monte Carlo simulations to establish selectivity and adaptiveness of the observed seed abortion patterns. Seed abortion was more frequent in parasitized fruits and fruits from dry habitats. Surprisingly, seed abortion occurred with significantly greater probability if there was a second intact seed in the fruit. This strategy provides a fitness benefit if abortion can prevent a sibling seed from coinfestation and if nonabortion of an infested but surviving single seed saves resources invested in the fruit coat. Ecological evidence for complex decision making in plants thus includes a structural memory (the second seed), simple reasoning (integration of inner and outer conditions), conditional behavior (abortion), and anticipation of future risks (seed predation).
Collapse
Affiliation(s)
- Katrin M Meyer
- UFZ-Helmholtz Centre for Environmental Research, Department of Ecological Modelling, Leipzig, Germany
| | | | | | | |
Collapse
|
8
|
Krouk G, Ruffel S, Gutiérrez RA, Gojon A, Crawford NM, Coruzzi GM, Lacombe B. A framework integrating plant growth with hormones and nutrients. TRENDS IN PLANT SCIENCE 2011; 16:178-82. [PMID: 21393048 DOI: 10.1016/j.tplants.2011.02.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 02/02/2011] [Accepted: 02/07/2011] [Indexed: 05/03/2023]
Abstract
It is well known that nutrient availability controls plant development. Moreover, plant development is finely tuned by a myriad of hormonal signals. Thus, it is not surprising to see increasing evidence of coordination between nutritional and hormonal signaling. In this opinion article, we discuss how nitrogen signals control the hormonal status of plants and how hormonal signals interplay with nitrogen nutrition. We further expand the discussion to include other nutrient-hormone pairs. We propose that nutrition and growth are linked by a multi-level, feed-forward cycle that regulates plant growth, development and metabolism via dedicated signaling pathways that mediate nutrient and hormonal regulation. We believe this model will provide a useful concept for past and future research in this field.
Collapse
Affiliation(s)
- Gabriel Krouk
- Center for Genomics and Systems Biology, New York University, 12 Waverly Place, New York, NY 10003, USA.
| | | | | | | | | | | | | |
Collapse
|
9
|
Pantzartzi C, Drosopoulou E, Yiangou M, Drozdov I, Tsoka S, Ouzounis CA, Scouras ZG. Promoter complexity and tissue-specific expression of stress response components in Mytilus galloprovincialis, a sessile marine invertebrate species. PLoS Comput Biol 2010; 6:e1000847. [PMID: 20628614 PMCID: PMC2900285 DOI: 10.1371/journal.pcbi.1000847] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Accepted: 06/02/2010] [Indexed: 11/19/2022] Open
Abstract
The mechanisms of stress tolerance in sessile animals, such as molluscs, can offer fundamental insights into the adaptation of organisms for a wide range of environmental challenges. One of the best studied processes at the molecular level relevant to stress tolerance is the heat shock response in the genus Mytilus. We focus on the upstream region of Mytilus galloprovincialis Hsp90 genes and their structural and functional associations, using comparative genomics and network inference. Sequence comparison of this region provides novel evidence that the transcription of Hsp90 is regulated via a dense region of transcription factor binding sites, also containing a region with similarity to the Gamera family of LINE-like repetitive sequences and a genus-specific element of unknown function. Furthermore, we infer a set of gene networks from tissue-specific expression data, and specifically extract an Hsp class-associated network, with 174 genes and 2,226 associations, exhibiting a complex pattern of expression across multiple tissue types. Our results (i) suggest that the heat shock response in the genus Mytilus is regulated by an unexpectedly complex upstream region, and (ii) provide new directions for the use of the heat shock process as a biosensor system for environmental monitoring.
Collapse
Affiliation(s)
- Chrysa Pantzartzi
- Department of Genetics, Development & Molecular Biology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Elena Drosopoulou
- Department of Genetics, Development & Molecular Biology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Minas Yiangou
- Department of Genetics, Development & Molecular Biology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ignat Drozdov
- Centre for Bioinformatics, School of Physical Sciences & Engineering, King's College London, London, United Kingdom
- BHF Centre of Research Excellence, Cardiovascular Division, School of Medicine, James Black Centre, Denmark Hill Campus, King's College London, London, United Kingdom
| | - Sophia Tsoka
- Centre for Bioinformatics, School of Physical Sciences & Engineering, King's College London, London, United Kingdom
| | - Christos A. Ouzounis
- Centre for Bioinformatics, School of Physical Sciences & Engineering, King's College London, London, United Kingdom
- Computational Genomics Unit, Institute of Agrobiotechnology, Centre for Research & Technology Hellas, Thessaloniki, Greece
- * E-mail: (CAO); (ZGS)
| | - Zacharias G. Scouras
- Department of Genetics, Development & Molecular Biology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
- * E-mail: (CAO); (ZGS)
| |
Collapse
|
10
|
Abstract
Immobile plants and immobile modular animals outlive unitary animals. This paper discusses competing but not necessarily mutually exclusive theories to explain this extreme longevity, especially from the perspective of phenotypic plasticity. Stem cell immortality, vascular autonomy, and epicormic branching are some important features of the phenotypic plasticity of plants that contribute to their longevity. Monocarpy versus polycarpy can also influence the kind of senescent processes experienced by plants. How density-dependent phenomena affecting the establishment of juveniles in these immobile organisms can influence the evolution of senescence, and consequently longevity, is reviewed and discussed. Whether climate change scenarios will favour long-lived or short-lived organisms, with their attendant levels of plasticity, is also presented.
Collapse
|
11
|
Metlen KL, Aschehoug ET, Callaway RM. Plant behavioural ecology: dynamic plasticity in secondary metabolites. PLANT, CELL & ENVIRONMENT 2009; 32:641-53. [PMID: 19021888 DOI: 10.1111/j.1365-3040.2008.01910.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Behaviour is in part the ability to respond rapidly and reversibly in response to environmental stimuli during the lifetime of an individual. Plants and animals both exhibit behaviour, but plant behaviour is most often examined in the context of morphologically plastic growth. Rapid and reversible secondary metabolite production and release is also a key mechanism by which plants behave. Here, we review plant biochemical plasticity as plant behaviour, and explicitly focus on evidence for responses that display rapid induction, reversibility and ecological relevance. Rapid induction and attenuation of plant secondary metabolites occur as chemically mediated root foraging, plant defence, allelochemistry and to regulate mutualistic relationships. We describe a wealth of information on the induction of various plant biochemical responses to environmental stimuli but found a limited body of literature on the reversibility of induced biochemical responses. Understanding the full cycle of dynamic plasticity in secondary metabolites is an important niche for future research. Biochemical behaviours extend beyond the plant kingdom; however, they clearly illustrate the capacity for plants to behave in ways that closely mirror the classic definitions and research approaches applied to behaviour in animals.
Collapse
Affiliation(s)
- Kerry L Metlen
- Division of Biological Sciences, The University of Montana, 32 Campus Drive-DBS/HS 104, Missoula, MT 59812, USA.
| | | | | |
Collapse
|
12
|
Does weather shape rodents? Climate related changes in morphology of two heteromyid species. Naturwissenschaften 2008; 96:93-101. [PMID: 18843477 DOI: 10.1007/s00114-008-0456-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Revised: 09/15/2008] [Accepted: 09/18/2008] [Indexed: 10/21/2022]
Abstract
Geographical variation in morphometric characters in heteromyid rodents has often correlated with climate gradients. Here, we used the long-term database of rodents trapped in the Sevilleta National Wildlife Refuge in New Mexico, USA to test whether significant annual changes in external morphometric characters are observed in a region with large variations in temperature and precipitation. We looked at the relationships between multiple temperature and precipitation variables and a number of morphological traits (body mass, body, tail, hind leg, and ear length) for two heteromyid rodents, Dipodomys merriami and Perognathus flavescens. Because these rodents can live multiple years in the wild, the climate variables for the year of the capture and the previous 2 years were included in the analyses. Using multiple linear regressions, we found that all of our morphometric traits, with the exception of tail length in D. merriami, had a significant relationship with one or more of the climate variables used. Our results demonstrate that effects of climate change on morphological traits occur over short periods, even in noninsular mammal populations. It is unclear, though, whether these changes are the result of morphological plasticity or natural selection.
Collapse
|
13
|
Borges RM. Plasticity comparisons between plants and animals: Concepts and mechanisms. PLANT SIGNALING & BEHAVIOR 2008; 3:367-75. [PMID: 19513224 PMCID: PMC2634305 DOI: 10.4161/psb.3.6.5823] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2008] [Accepted: 03/03/2008] [Indexed: 05/14/2023]
Abstract
This review attempts to present an integrated update of the issue of comparisons of phenotypic plasticity between plants and animals by presenting the problem and its integrated solutions via a whole-organism perspective within an evolutionary framework. Plants and animals differ in two important aspects: mobility and longevity. These features can have important implications for plasticity, and plasticity may even have facilitated greater longevity in plants. Furthermore, somatic genetic mosaicism, intra-organismal selection, and genomic instability contribute to the maintenance of an adaptive phenotype that is especially relevant to long-lived plants. It is contended that a cross-kingdom phylogenetic examination of sensors, messengers and responses that constitute the plasticity repertoire would be more useful than dichotomizing the plant and animal kingdoms. Furthermore, physicochemical factors must be viewed cohesively in the signal reception and transduction pathways leading to plastic responses. Comparison of unitary versus modular organisms could also provide useful insights into the range of expected plastic responses. An integrated approach that combines evolutionary theory and evolutionary history with signal-response mechanisms will yield the most insights into phenotypic plasticity in all its forms.
Collapse
Affiliation(s)
- Renee M Borges
- Centre for Ecological Sciences; Indian Institute of Science; Bangalore, India
| |
Collapse
|
14
|
Abstract
Plant behaviours are defined as rapid morphological or physiological responses to events, relative to the lifetime of an individual. Since Darwin, biologists have been aware that plants behave but it has been an underappreciated phenomenon. The best studied plant behaviours involve foraging for light, nutrients, and water by placing organs where they can most efficiently harvest these resources. Plants also adjust many reproductive and defensive traits in response to environmental heterogeneity in space and time. Many plant behaviours rely on iterative active meristems that allow plants to rapidly transform into many different forms. Because of this modular construction, many plant responses are localized although the degree of integration within whole plants is not well understood. Plant behaviours have been characterized as simpler than those of animals. Recent findings challenge this notion by revealing high levels of sophistication previously thought to be within the sole domain of animal behaviour. Plants anticipate future conditions by accurately perceiving and responding to reliable environmental cues. Plants exhibit memory, altering their behaviours depending upon their previous experiences or the experiences of their parents. Plants communicate with other plants, herbivores and mutualists. They emit cues that cause predictable reactions in other organisms and respond to such cues themselves. Plants exhibit many of the same behaviours as animals even though they lack central nervous systems. Both plants and animals have faced spatially and temporally heterogeneous environments and both have evolved plastic response systems.
Collapse
Affiliation(s)
- Richard Karban
- Department of Entomology, University of California, Davis, CA 95619, USA.
| |
Collapse
|
15
|
Abstract
Phenotypic plasticity is the ability of a genotype to modify its phenotypic characteristics in response to different environments. Theory predicts that adaptive plasticity should primarily evolve in organisms that experience heterogeneous environments. An organism's dispersal rate is a key component in these models, because the degree of dispersal partly determines the extent of environmental heterogeneity. Here, I provide the first large-scale test of the theoretical prediction that phenotypic plasticity evolves in association with dispersal rate using meta-analysis of data from 258 experiments from the literature on plasticity in marine invertebrates. In line with predictions, phenotypic plasticity is generally greater in species with higher dispersal rates, suggesting that dispersal and environmental heterogeneity are important selective agents for evolution of plasticity in marine habitats.
Collapse
Affiliation(s)
- Johan Hollander
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, United Kingdom.
| |
Collapse
|