1
|
Ghafari S, Alavi SM, Khaghani S. Potentially pathogenic culturable bacteria in hemodialysis waters. BMC Microbiol 2024; 24:276. [PMID: 39054498 PMCID: PMC11270894 DOI: 10.1186/s12866-024-03430-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 07/16/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND Hemodialysis patients are at risk of acquiring healthcare-related infections due to using non-sterile water to prepare hemodialysis fluid. Therefore, microbiological control and monitoring of used water are of crucial importance. MATERIALS AND METHODS In this work, we identified bacterial populations occupying a hemodialysis water distribution system for almost a 6-month period in Ahvaz city, southwest of Iran. A total of 18 samples from three points were collected. We found high colony counts of bacteria on R2A agar. 31 bacteria with different morphological and biochemical characteristics were identified by molecular-genetic methods based on 16 S rRNA gene sequencing. Endotoxin concentrations were measured, using Endosafe® Rapid LAL Single-Test Vials. RESULTS A diverse bacterial community was identified, containing predominantly Gram-negative bacilli. The most frequently isolated genus was Sphingomonas. Five species including M. fortuitum, M. lentiflavum, M.szulgai, M. barrassiae, and M. gordonae was identified .Despite the presence of Gram-negative bacteria the endotoxin analysis of all samples revealed that their endotoxin values were below the detection limit. CONCLUSION The members of Sphingomonas genus along with Bosea and mycobacteria could be regarded as pioneers in surface colonization and biofilm creation. These bacteria with others like Pelomonas, Bradyrhizobium, staphylococcus, and Microbacterium may represent a potential health risk to patients under hemodialysis treatment.
Collapse
Affiliation(s)
- Shokouh Ghafari
- Cellular and Molecular Research Center, Faculty of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Seyed Mohammad Alavi
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Soheila Khaghani
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
2
|
Graziosi S, Puliga F, Iotti M, Amicucci A, Zambonelli A. In vitro interactions between Bradyrhizobium spp. and Tuber magnatum mycelium. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13271. [PMID: 38692852 PMCID: PMC11062863 DOI: 10.1111/1758-2229.13271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/06/2024] [Indexed: 05/03/2024]
Abstract
Tuber magnatum is the most expensive truffle, but its large-scale cultivation is still a challenge compared to other valuable Tuber species. T. magnatum mycelium has never been grown profitably until now, which has led to difficulties to studying it in vitro. This study describes beneficial interactions between T. magnatum mycelium and never before described bradyrhizobia, which allows the in vitro growth of T. magnatum mycelium. Three T. magnatum strains were co-isolated on modified Woody Plant Medium (mWPM) with aerobic bacteria and characterised through microscopic observations. The difficulties of growing alone both partners, bacteria and T. magnatum mycelium, on mWPM demonstrated the reciprocal dependency. Three bacterial isolates for each T. magnatum strain were obtained and molecularly characterised by sequencing the 16S rRNA, glnII, recA and nifH genes. Phylogenetic analyses showed that all nine bacterial strains were distributed among five subclades included in a new monophyletic lineage belonging to the Bradyrhizobium genus within the Bradyrhizobium jicamae supergroup. The nifH genes were detected in all bacterial isolates, suggesting nitrogen-fixing capacities. This is the first report of consistent T. magnatum mycelium growth in vitro conditions. It has important implications for the development of new technologies in white truffle cultivation and for further studies on T. magnatum biology and genetics.
Collapse
Affiliation(s)
- Simone Graziosi
- Department of Agricultural and Food SciencesUniversity of BolognaBolognaItaly
| | - Federico Puliga
- Department of Agricultural and Food SciencesUniversity of BolognaBolognaItaly
| | - Mirco Iotti
- Department of Life, Health and Environmental ScienceUniversity of L'AquilaL'AquilaItaly
| | | | | |
Collapse
|
3
|
Pokluda R, Ragasová LN, Jurica M, Kalisz A, Komorowska M, Niemiec M, Caruso G, Gąstoł M, Sekara A. The shaping of onion seedlings performance through substrate formulation and co-inoculation with beneficial microorganism consortia. FRONTIERS IN PLANT SCIENCE 2023; 14:1222557. [PMID: 37521928 PMCID: PMC10382143 DOI: 10.3389/fpls.2023.1222557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 06/26/2023] [Indexed: 08/01/2023]
Abstract
Introduction Smart management in crop cultivation is increasingly supported by application of arbuscular mycorrhizal fungi (AMF) and plant growth-promoting microorganisms (PGPM), which sustain soil fertility and plant performance. The aim of this study was the evaluation of the effects of consortia composed of (Claroideoglomus claroideum BEG96, Claroideoglomus etunicatum BEG92, Funneliformis geosporum BEG199, Funneliformis mosseae BEG 95, and Rhizophagus irregularis BEG140) and PGPM (Azospirillum brasilense - AZ, or Saccharothrix sp. - S) on onion cultivated in growing media with a composition corresponding to a degraded soil. Methods Three types of substrate formulations were used, with peat:sand ratios of 50:50, 70:30, 100:0 (v:v). The analysis of substrate parameters crucial for its fertility (pH, salinity, sorption complex capacity, and elements' content) and characteristics reflecting onion seedlings' performance (fresh weight, stress biomarkers, and elements' content) was performed. Results AMF colonized onion roots in all treatments, showing increasing potential to form intercellular structures in the substrates rich in organic matter. Additionally, co-inoculation with PGPM microorganisms accelerated arbuscular mycorrhiza establishment. Increased antioxidant activity and glutathione peroxidase (GPOX) activity of onion roots sampled from the formulations composed of peat and sand in the ratio of 100:0, inoculated with AMF+S, and positive correlation between GPOX, fresh weight and antioxidant activity of onion roots reflected the successful induction of plant acclimatization response. Total phenols content was the highest in roots and leaves of onion grown in substrates with 70:30 peat:sand ratio, and, in the case of roots, it was correlated with AMF colonization parameters but not with antioxidant activity. Discussion AMF and PGPM efficiency in supporting onion growth should be linked to the increased onion root system capacity in mineral salts absorption, resulting in more efficient aboveground biomass production. AMF and PGPM consortia were effective in releasing minerals to soluble fraction in substrates rich in organic matter, making elements available for uptake by onion root system, though this phenomenon depended on the PGPM species. Microorganism consortia enhanced onion seedlings' performance also in substrates with lower content of organic carbon through plant biofertilization and phytostimulation.
Collapse
Affiliation(s)
- Robert Pokluda
- Department of Vegetable Sciences and Floriculture, Faculty of Horticulture, Mendel University, Brno, Czechia
| | - Lucia Nedorost Ragasová
- Department of Vegetable Sciences and Floriculture, Faculty of Horticulture, Mendel University, Brno, Czechia
| | - Miloš Jurica
- Department of Vegetable Sciences and Floriculture, Faculty of Horticulture, Mendel University, Brno, Czechia
| | - Andrzej Kalisz
- Department of Horticulture, Faculty of Biotechnology and Horticulture, University of Agriculture, Krakow, Poland
| | - Monika Komorowska
- Department of Agricultural and Environmental Chemistry, Faculty of Agriculture and Economics, University of Agriculture, Krakow, Poland
| | - Marcin Niemiec
- Department of Agricultural and Environmental Chemistry, Faculty of Agriculture and Economics, University of Agriculture, Krakow, Poland
| | - Gianluca Caruso
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Maciej Gąstoł
- Department of Horticulture, Faculty of Biotechnology and Horticulture, University of Agriculture, Krakow, Poland
| | - Agnieszka Sekara
- Department of Horticulture, Faculty of Biotechnology and Horticulture, University of Agriculture, Krakow, Poland
| |
Collapse
|
4
|
Chamani M, Naseri B, Rafiee-Dastjerdi H, Emaratpardaz J, Ebadollahi A, Palla F. Some Physiological Effects of Nanofertilizers on Wheat-Aphid Interactions. PLANTS (BASEL, SWITZERLAND) 2023; 12:2602. [PMID: 37514217 PMCID: PMC10385016 DOI: 10.3390/plants12142602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/24/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023]
Abstract
The increasing use of nanofertilizers in modern agriculture and their impact on crop yield and pest management require further research. In this study, the effects of nano-Fe, -Zn, and -Cu (which are synthesized based on nanochelating technology), and urea (N) fertilizers on the antioxidant activities of wheat plants (cv. Chamran), and the wheat green aphid Schizaphis graminum (Rondani) are investigated. The authors observed the highest levels of phenolics in non-infested nano-Zn-treated plants (26% higher compared with control). The highest H2O2 levels are in the infested and non-infested nano-Zn-treated and infested nano-Fe-treated plants (in infested nano-Zn and nano-Fe treated plants, 18% and non-infested nano-Zn-treated plants, 28% higher compared with control). The highest peroxidase (POX) activity is observed in the infested and non-infested N-treated and non-infested water-treated plants (almost 14%, 37%, and 46% higher than control, respectively). The lowest activity is in the infested plants' nano-Zn and -Fe treatments (almost 7 and 5 folds lower compared to the control, respectively). The highest and lowest catalase (CAT) activity are in the infested N-treated plants (almost 42% higher than control) and water-treated plants, respectively. The infested nano-Zn, -Fe, -Cu and Hoagland-treated plants showed the highest superoxide dismutase (SOD) activity. Regarding the antioxidant enzyme activities of S. graminum, the highest POX activity is in the nano-Cu treatment (more than two folds higher compared with control); the highest CAT and SOD activities are in the nano-Cu and -Zn treatments. It can be concluded that the application of nanofertilizers caused increasing effects on the wheat plant's antioxidant system and its resistance to S. graminum.
Collapse
Affiliation(s)
- Masoud Chamani
- Department of Plant Protection, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil 5619911367, Iran
| | - Bahram Naseri
- Department of Plant Protection, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil 5619911367, Iran
| | - Hooshang Rafiee-Dastjerdi
- Department of Plant Protection, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil 5619911367, Iran
| | - Javid Emaratpardaz
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Tabriz, Tabriz 5137779619, Iran
| | - Asgar Ebadollahi
- Department of Plant Sciences, Moghan College of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil 5697194781, Iran
| | - Franco Palla
- Department of Biological, Chemical and Pharmacological Sciences and Technology-Botany Section, The University of Palermo, 38-90123 Palermo, Italy
| |
Collapse
|
5
|
Maitra D, Roy B, Chandra A, Choudhury SS, Mitra AK. Biofilm producing Bacillus vallismortis TR01K from tea rhizosphere acting as plant growth promoting agent. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
6
|
Molecular mechanisms associated with microbial biostimulant-mediated growth enhancement, priming and drought stress tolerance in maize plants. Sci Rep 2022; 12:10450. [PMID: 35729338 PMCID: PMC9213556 DOI: 10.1038/s41598-022-14570-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 06/08/2022] [Indexed: 02/07/2023] Open
Abstract
Microbial-based biostimulants are emerging as effective strategies to improve agricultural productivity; however, the modes of action of such formulations are still largely unknown. Thus, herein we report elucidated metabolic reconfigurations in maize (Zea mays) leaves associated with growth promotion and drought stress tolerance induced by a microbial-based biostimulant, a Bacillus consortium. Morphophysiological measurements revealed that the biostimulant induced a significant increase in biomass and enzymatic regulators of oxidative stress. Furthermore, the targeted metabolomics approach revealed differential quantitative profiles in amino acid-, phytohormone-, flavonoid- and phenolic acid levels in plants treated with the biostimulant under well-watered, mild, and severe drought stress conditions. These metabolic alterations were complemented with gene expression and global DNA methylation profiles. Thus, the postulated framework, describing biostimulant-induced metabolic events in maize plants, provides actionable knowledge necessary for industries and farmers to confidently and innovatively explore, design and fully implement microbial-based formulations and strategies into agronomic practices for sustainable agriculture and food production.
Collapse
|
7
|
Recreating in vitro tripartite mycorrhizal associations through functional bacterial biofilms. Appl Microbiol Biotechnol 2022; 106:4237-4250. [DOI: 10.1007/s00253-022-11996-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 05/14/2022] [Accepted: 05/16/2022] [Indexed: 12/19/2022]
|
8
|
Henagamage AP, Peries CM, Seneviratne G. Fungal-bacterial biofilm mediated heavy metal rhizo-remediation. World J Microbiol Biotechnol 2022; 38:85. [PMID: 35380298 DOI: 10.1007/s11274-022-03267-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 03/21/2022] [Indexed: 12/01/2022]
Abstract
Heavy metal pollution due to excessive use of chemical fertilizers (CF) causes major damage to the environment. Microbial biofilms, closely associated with the rhizosphere can remediate heavy metal-contaminated soil by reducing plant toxicity. Thus, this study was undertaken to examine the remedial effects of microbial biofilms against contaminated heavy metals. Fungi and bacteria isolated from soil were screened for their tolerance against Cd2+, Pb2+, and Zn2+. Three bacterial and two fungal isolates were selected upon the tolerance index (TI) percentage. Fungal-bacterial biofilms (FBBs) were developed with the most tolerant isolates and were further screened for their bioremediation capabilities against heavy metals. The best biofilm was evaluated for its rhizoremediation capability with different CF combinations using a pot experiment conducted under greenhouse conditions with potatoes. Significantly (P < 0.05), the highest metal removal percentage was observed in Trichoderma harzianum and Bacillus subtilis biofilm under in situ conditions. When compared to the 100% recommended CF, the biofilm with 50% of the recommended CF (50CB) significantly (P < 0.05) reduced soil available Pb2+ by 77%, Cd2+ by 78% and Zn2+ by 62%. In comparison to initial soil, it was 73%, 76%, and 57% lower of Pb2+, Cd2+, and Zn2+, respectively. In addition, 50CB treatment significantly (P < 0.05) reduced the metal penetration into the tuber tissues in comparison with 100 C. Thus, the function of the developed FBB with T. harzianum-B. subtilis can be used as a potential solution to remediate soil polluted with Pb2+ Cd2+ and Zn2+ metal contaminants.
Collapse
Affiliation(s)
- A P Henagamage
- Department of Science and Technology, Faculty of Applied Sciences, Uva Wellassa University, Passara Road, Badulla, Sri Lanka.
| | - C M Peries
- Department of Science and Technology, Faculty of Applied Sciences, Uva Wellassa University, Passara Road, Badulla, Sri Lanka
| | - G Seneviratne
- National Institute of Fundamental Studies, Hantana Road, Kandy, Sri Lanka
| |
Collapse
|
9
|
Pokluda R, Ragasová L, Jurica M, Kalisz A, Komorowska M, Niemiec M, Sekara A. Effects of growth promoting microorganisms on tomato seedlings growing in different media conditions. PLoS One 2021; 16:e0259380. [PMID: 34731216 PMCID: PMC8565787 DOI: 10.1371/journal.pone.0259380] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/18/2021] [Indexed: 11/30/2022] Open
Abstract
Plant growth-promoting microbes (PGPM) play vital roles in maintaining crop fitness and soil health in stressed environments. Research have included analysis-based cultivation of soil-microbial-plant relationships to clarify microbiota potential. The goal of the research was to (i) evaluate the symbiotic microorganism effects on tomato seedling fitness under stressed conditions simulating a fragile soil susceptible to degradation; (ii) compare the plant-microbial interactions after inoculation with microbial isolates and fungi-bacteria consortia; (iii) develop an effective crop-microbial network, which improves soil and plant status. The experimental design included non-inoculated treatments with peat and sand at ratios of 50:50, 70:30, 100:0 (v:v), inoculated treatments with arbuscular mycorrhizal fungi (AMF) and Azospirillum brasilense (AZ) using the aforementioned peat:sand ratios; and treatment with peat co-inoculated with AMF and Saccharothrix tamanrassetensis (S). AMF + AZ increased root fresh weight in peat substrate compared to the control (4.4 to 3.3 g plant–1). An increase in shoot fresh weight was detected in the AMF + AZ treatment with a 50:50 peat:sand ratio (10.1 to 8.5 g plant-1). AMF + AZ reduced antioxidant activity (DPPH) (18–34%) in leaves, whereas AMF + S had the highest DPPH in leaves and roots (45%). Total leaf phenolic content was higher in control with a decreased proportion of peat. Peroxidase activity was enhanced in AMF + AZ and AMF + S treatments, except for AMF + AZ in peat. Microscopic root assays revealed the ability of AMF to establish strong fungal-tomato symbiosis; the colonization rate was 78–89%. AMF + AZ accelerated K and Mg accumulation in tomato leaves in treatments reflecting soil stress. To date, there has been no relevant information regarding the successful AMF and Saccharothrix co-inoculation relationship. This study confirmed that AMF + S could increase the P, S, and Fe status of seedlings under high organic C content conditions. The improved tomato growth and nutrient acquisition demonstrated the potential of PGPM colonization under degraded soil conditions.
Collapse
Affiliation(s)
- Robert Pokluda
- Faculty of Horticulture, Department of Vegetable Sciences and Floriculture, Mendel University in Brno, Brno, Czech Republic
- * E-mail:
| | - Lucia Ragasová
- Faculty of Horticulture, Department of Vegetable Sciences and Floriculture, Mendel University in Brno, Brno, Czech Republic
| | - Miloš Jurica
- Faculty of Horticulture, Department of Vegetable Sciences and Floriculture, Mendel University in Brno, Brno, Czech Republic
| | - Andrzej Kalisz
- Faculty of Biotechnology and Horticulture, Department of Horticulture, University of Agriculture in Krakow, Krakow, Poland
| | - Monika Komorowska
- Faculty of Biotechnology and Horticulture, Department of Horticulture, University of Agriculture in Krakow, Krakow, Poland
| | - Marcin Niemiec
- Faculty of Agriculture and Economics, Department of Agricultural and Environmental Chemistry, University of Agriculture in Krakow, Krakow, Poland
| | - Agnieszka Sekara
- Faculty of Biotechnology and Horticulture, Department of Horticulture, University of Agriculture in Krakow, Krakow, Poland
| |
Collapse
|
10
|
de Andrade Reis RJ, Alves AF, Dos Santos PHD, Aguiar KP, da Rocha LO, da Silveira SF, Canellas LP, Olivares FL. Mutualistic interaction of native Serratia marcescens UENF-22GI with Trichoderma longibrachiatum UENF-F476 boosting seedling growth of tomato and papaya. World J Microbiol Biotechnol 2021; 37:211. [PMID: 34729659 DOI: 10.1007/s11274-021-03179-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 10/26/2021] [Indexed: 11/28/2022]
Abstract
A plethora of bacteria-fungal interactions occur on the extended fungal hyphae network in soil. The mycosphere of saprophytic fungi can serve as a bacterial niche boosting their survival, dispersion, and activity. Such ecological concepts can be converted to bioproducts for sustainable agriculture. Accordingly, we tested the hypothesis that the well-characterised beneficial bacterium Serratia marcescens UENF-22GI can enhance plant growth-promoting properties when combined with Trichoderma longibrachiatum UENF-F476. The cultural and cell interactions demonstrated S. marcescens and T. longibrachiatum mutual compatibility. Bacteria cells were able to attach, forming aggregates to biofilms and migrating through the fungal hyphae network. Long-distance bacterial migration through growing hyphae was confirmed using a two-compartment Petri dishes assay. Fungal inoculation increased the bacteria survival rates into the vermicompost substrate over the experimental time. Also, in vitro indolic compound, phosphorus, and zinc solubilisation bacteria activities increased in the presence of the fungus. In line with the ecophysiological bacteria fitness, the bacterium-fungal combination boosted tomato and papaya plantlet growth when applied into the plant substrate under nursery conditions. Mutualistic interaction between mycosphere-colonizing bacterium S. marcescens UENF-22GI and the saprotrophic fungi T. longibrachiatum UENF-F467 increased the ecological fitness of the bacteria alongside with beneficial potential for plant growth. A proper combination and delivery of mutual compatible beneficial bacteria-fungal represent an open avenue for microbial-based products for the biological enrichment of plant substrates in agricultural systems.
Collapse
Affiliation(s)
- Régis Josué de Andrade Reis
- Núcleo de Desenvolvimento de Insumos Biológicos para Agricultura (NUDIBA), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Alice Ferreira Alves
- Laboratório de Biologia Celular e Tecidual (LBCT), Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Pedro Henrique Dias Dos Santos
- Laboratório de Entomologia e Fitopatologia (LEF), Centro de Ciências e Tecnologias Agropecuárias (CCTA), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Kamilla Pereira Aguiar
- Núcleo de Desenvolvimento de Insumos Biológicos para Agricultura (NUDIBA), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Letícia Oliveira da Rocha
- Laboratório de Biologia Celular e Tecidual (LBCT), Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Silvaldo Felipe da Silveira
- Laboratório de Entomologia e Fitopatologia (LEF), Centro de Ciências e Tecnologias Agropecuárias (CCTA), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Luciano Pasqualoto Canellas
- Núcleo de Desenvolvimento de Insumos Biológicos para Agricultura (NUDIBA), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Fabio Lopes Olivares
- Núcleo de Desenvolvimento de Insumos Biológicos para Agricultura (NUDIBA), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, Rio de Janeiro, Brazil. .,Laboratório de Biologia Celular e Tecidual (LBCT), Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, Rio de Janeiro, Brazil.
| |
Collapse
|
11
|
Szparaga A, Kocira S, Kapusta I. Identification of a Biostimulating Potential of an Organic Biomaterial Based on the Botanical Extract from Arctium lappa L. Roots. MATERIALS (BASEL, SWITZERLAND) 2021; 14:4920. [PMID: 34501011 PMCID: PMC8434616 DOI: 10.3390/ma14174920] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/20/2021] [Accepted: 08/27/2021] [Indexed: 01/24/2023]
Abstract
The development of novel biomaterials based on plant extracts is expected to boost yields without adversely affecting environmental diversity. The potential biostimulating effects have so far been underreported. The assessment of the stimulating effect of botanical biomaterials is essential in the cultivation of economically-important crops. An attempt was undertaken in this study to develop a new biostimulating material in the form of granules, based on an extract from the roots of Arctium lappa L. The scope of the research included the characterization of the new material and the identification of its biostimulating potential. The designed and produced biogranulate is rich in bioactive compounds, including polyphenolic compounds, carbohydrates, and micro- and macro-elements. The analysis of the physicochemical properties of the biomaterial has shown that it had the features of intelligent biopreparations, i.e., slow-release preparations, at the pH appropriate for legume plants. Thus, knowledge about the design of new biomaterials is a milestone in the practical development of new perspectives for enhancing sustainability in agriculture.
Collapse
Affiliation(s)
- Agnieszka Szparaga
- Department of Agrobiotechnology, Koszalin University of Technology, Racławicka 15-17, 75-620 Koszalin, Poland;
| | - Sławomir Kocira
- Department of Machinery Exploitation and Management of Production Processes, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
| | - Ireneusz Kapusta
- Department of Food Technology and Human Nutrition, College of Natural Science, University of Rzeszow, Zelwerowicza 4., 35-601 Rzeszow, Poland;
| |
Collapse
|
12
|
Nobahar A, Carlier JD, Miguel MG, Costa MC. A review of plant metabolites with metal interaction capacity: a green approach for industrial applications. Biometals 2021; 34:761-793. [PMID: 33961184 DOI: 10.1007/s10534-021-00315-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 04/28/2021] [Indexed: 01/20/2023]
Abstract
Rapid industrial development is responsible for severe problems related to environmental pollution. Many human and industrial activities require different metals and, as a result, great amounts of metals/heavy metals are discharged into the water and soil making them dangerous for both human and ecosystems and this is being aggravated by intensive demand and utilization. In addition, compounds with metal binding capacities are needed to be used for several purposes including in activities related to the removal and/or recovery of metals from effluents and soils, as metals' corrosion inhibitors, in the synthesis of metallic nanoparticles and as metal related pharmaceuticals, preferably a with minimum risks associated to the environment. Plants are able to synthesize an uncountable number of compounds with numerous functions, including compounds with metal binding capabilities. In fact, some of the plants' secondary metabolites can bind to various metals through different mechanisms, as such they are excellent sources of such compounds due to their high availability and vast diversity. In addition, the use of plant-based compounds is desirable from an environmental and economical point of view, thus being potential candidates for utilization in different industrial activities, replacing conventional physiochemical methods. This review focuses on the ability of some classes of compounds that can be found in relatively high concentrations in plants, having good metal binding capacities and thus with potential utilization in metal based industrial activities and that can be involved in the progressive development of new environmentally friendly strategies.
Collapse
Affiliation(s)
- Amir Nobahar
- Centre of Marine Sciences (CCMAR), University of the Algarve, Gambelas Campus, 8005-139, Faro, Portugal.,Faculty of Sciences and Technology, University of the Algarve, Gambelas Campus, 8005-139, Faro, Portugal
| | - Jorge Dias Carlier
- Centre of Marine Sciences (CCMAR), University of the Algarve, Gambelas Campus, 8005-139, Faro, Portugal
| | - Maria Graça Miguel
- Faculty of Sciences and Technology, University of the Algarve, Gambelas Campus, 8005-139, Faro, Portugal
| | - Maria Clara Costa
- Centre of Marine Sciences (CCMAR), University of the Algarve, Gambelas Campus, 8005-139, Faro, Portugal. .,Faculty of Sciences and Technology, University of the Algarve, Gambelas Campus, 8005-139, Faro, Portugal.
| |
Collapse
|
13
|
Sharma A, Shahzad B, Rehman A, Bhardwaj R, Landi M, Zheng B. Response of Phenylpropanoid Pathway and the Role of Polyphenols in Plants under Abiotic Stress. Molecules 2019; 24:E2452. [PMID: 31277395 PMCID: PMC6651195 DOI: 10.3390/molecules24132452] [Citation(s) in RCA: 783] [Impact Index Per Article: 130.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 06/26/2019] [Accepted: 07/02/2019] [Indexed: 01/23/2023] Open
Abstract
Phenolic compounds are an important class of plant secondary metabolites which play crucial physiological roles throughout the plant life cycle. Phenolics are produced under optimal and suboptimal conditions in plants and play key roles in developmental processes like cell division, hormonal regulation, photosynthetic activity, nutrient mineralization, and reproduction. Plants exhibit increased synthesis of polyphenols such as phenolic acids and flavonoids under abiotic stress conditions, which help the plant to cope with environmental constraints. Phenylpropanoid biosynthetic pathway is activated under abiotic stress conditions (drought, heavy metal, salinity, high/low temperature, and ultraviolet radiations) resulting in accumulation of various phenolic compounds which, among other roles, have the potential to scavenge harmful reactive oxygen species. Deepening the research focuses on the phenolic responses to abiotic stress is of great interest for the scientific community. In the present article, we discuss the biochemical and molecular mechanisms related to the activation of phenylpropanoid metabolism and we describe phenolic-mediated stress tolerance in plants. An attempt has been made to provide updated and brand-new information about the response of phenolics under a challenging environment.
Collapse
Affiliation(s)
- Anket Sharma
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China.
| | - Babar Shahzad
- School of Land and Food, University of Tasmania, Hobart, TAS 7005, Australia
| | - Abdul Rehman
- Department of Crop Science and Biotechnology, Dankook University, Chungnam 31116, Korea
| | - Renu Bhardwaj
- Plant Stress Physiology Laboratory, Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, India
| | - Marco Landi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto, 80-56124 Pisa, Italy
| | - Bingsong Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China.
| |
Collapse
|
14
|
Li T, Zhang J, Shen C, Li H, Qiu L. 1-Aminocyclopropane-1-Carboxylate: A Novel and Strong Chemoattractant for the Plant Beneficial Rhizobacterium Pseudomonas putida UW4. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:750-759. [PMID: 30640574 DOI: 10.1094/mpmi-11-18-0317-r] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Plant growth-promoting rhizobacteria (PGPR) and fungi-bacterial biofilms are both important biofertilizer inoculants for sustainable agriculture. However, the strongest chemoattractant for bacteria to colonize the rhizosphere and mycelia is not clear. Coincidentally, almost all the PGPRs possess 1-aminocyclopropane-1-carboxylate (ACC) deaminase (AcdS) and can utilize ACC as the sole nitrogen source. Here, we found that ACC was a novel, metabolic dependent and methyl-accepting chemoreceptor-involved chemoattractant for Pseudomonas putida UW4. The chemotactic response of UW4 to ACC is significantly greater than that to the amino acids and organic acids identified in the plant root and fungal hyphal exudates. The colonization counts of the UW4 acdS or cheR deletion mutants in the wheat rhizosphere and on Agaricus bisporus mycelia were reduced one magnitude compared with those of UW4. The colonization counts of UW4 on A. bisporus antisense ACC oxidase mycelia with a high ACC production significantly increased compared with A. bisporus, followed by the UW4 cheR complementary strain and the ethylene chemoreceptor gene-deletion mutant. The colonization counts of the UW4 strains on A. bisporus acdS+ mycelia with a low ACC production decreased significantly compared with A. bisporus wild type. These results suggested that ACC and not ethylene should be the strongest chemoattractant for the PGPR that contain AcdS.
Collapse
Affiliation(s)
- Tao Li
- College of Sciences, Henan Agricultural University, Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture, Zhengzhou, 450002, China
| | - Jun Zhang
- College of Sciences, Henan Agricultural University, Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture, Zhengzhou, 450002, China
| | - Chaohui Shen
- College of Sciences, Henan Agricultural University, Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture, Zhengzhou, 450002, China
| | - Huiru Li
- College of Sciences, Henan Agricultural University, Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture, Zhengzhou, 450002, China
| | - Liyou Qiu
- College of Sciences, Henan Agricultural University, Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture, Zhengzhou, 450002, China
| |
Collapse
|
15
|
Nigmatullina LR, Lavina AM, Vershinina ZR, Baymiev AK. Role of bacterial adhesin RAPA1 in formation of efficient symbiosis of Rhizobium leguminosarum with bean plants. Microbiology (Reading) 2015. [DOI: 10.1134/s0026261715060089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
16
|
Optimization of conditions for in vitro development of Trichoderma viride-based biofilms as potential inoculants. Folia Microbiol (Praha) 2012; 57:431-7. [DOI: 10.1007/s12223-012-0154-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 04/20/2012] [Indexed: 11/30/2022]
|
17
|
Bhattacharya A, Sood P, Citovsky V. The roles of plant phenolics in defence and communication during Agrobacterium and Rhizobium infection. MOLECULAR PLANT PATHOLOGY 2010; 11:705-19. [PMID: 20696007 PMCID: PMC6640454 DOI: 10.1111/j.1364-3703.2010.00625.x] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Phenolics are aromatic benzene ring compounds with one or more hydroxyl groups produced by plants mainly for protection against stress. The functions of phenolic compounds in plant physiology and interactions with biotic and abiotic environments are difficult to overestimate. Phenolics play important roles in plant development, particularly in lignin and pigment biosynthesis. They also provide structural integrity and scaffolding support to plants. Importantly, phenolic phytoalexins, secreted by wounded or otherwise perturbed plants, repel or kill many microorganisms, and some pathogens can counteract or nullify these defences or even subvert them to their own advantage. In this review, we discuss the roles of phenolics in the interactions of plants with Agrobacterium and Rhizobium.
Collapse
Affiliation(s)
- Amita Bhattacharya
- Institute of Himalayan Bioresource Technology (Council of Scientific and Industrial Research), Palampur, Himachal Pradesh, India
| | | | | |
Collapse
|
18
|
Seneviratne G, Weerasekara MLMAW, Seneviratne KACN, Zavahir JS, Kecskés ML, Kennedy IR. Importance of Biofilm Formation in Plant Growth Promoting Rhizobacterial Action. PLANT GROWTH AND HEALTH PROMOTING BACTERIA 2010. [DOI: 10.1007/978-3-642-13612-2_4] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
19
|
Abstract
Biofilms are bacterial communities enclosed within an extracellular matrix of polysaccharides produced by the bacteria, which adhere to a living or an inert macrosurface. In nature, biofilms constitute a protected growth modality allowing bacteria to survive in hostile environments. Studies of environmental isolates have revealed a highly ordered, three-dimensional organization of the extracellular matrix, which has important implications for biofilm physiology. The zone of soil immediately surrounding a plant root where complex biological and ecological processes occur, termed rhizosphere, forms an environment that fulfills the requirements for biofilm formation, including sufficient moisture and supply of nutrients, which are provided by the plant. Biofilm formation on plants appears to be associated with symbiotic and pathogenic responses, but it is unclear how plants regulate the association. Biofilms function as structures resistant against stress factors such as desiccation, UV radiation, predation, and antibiosis, which help create protective niches for rhizobia. However, the role of biofilms in rhizobial-legume symbiosis remains to be clarified. Here, the mechanisms involved in bacterial biofilm formation and attachment on plant roots, and the relation of these mechanisms to rhizobial function and survival are reviewed.
Collapse
Affiliation(s)
- Luciana V Rinaudi
- Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
| | | |
Collapse
|
20
|
Soybean Lectin Enhances Biofilm Formation by Bradyrhizobium japonicum in the Absence of Plants. Int J Microbiol 2009; 2009:719367. [PMID: 20016675 PMCID: PMC2775637 DOI: 10.1155/2009/719367] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Revised: 12/13/2008] [Accepted: 03/13/2009] [Indexed: 11/18/2022] Open
Abstract
Soybean lectin (SBL) purified from soybean seeds by affinity chromatography strongly bound to Bradyrhizobium japonicum USDA 110 cell surface. This lectin enhanced biofilm formation by B. japonicum in a concentration-dependent manner. Presence of galactose during biofilm formation had different effects in the presence or absence of SBL. Biofilms were completely inhibited in the presence of both SBL and galactose, while in the absence of SBL, galactose was less inhibitory. SBL was very stable, since its agglutinating activity of B. japonicum cells as well as of human group A+ erythrocytes was resistant to preincubation for one week at 60°C. Hence, we propose that plant remnants might constitute a source of this lectin, which might remain active in soil and thus favor B. japonicum biofilm formation in the interval between soybean crop seasons.
Collapse
|
21
|
Mongiardini EJ, Ausmees N, Pérez-Giménez J, Julia Althabegoiti M, Ignacio Quelas J, López-García SL, Lodeiro AR. The rhizobial adhesion protein RapA1 is involved in adsorption of rhizobia to plant roots but not in nodulation. FEMS Microbiol Ecol 2008; 65:279-88. [PMID: 18393991 DOI: 10.1111/j.1574-6941.2008.00467.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The effect of the rhizobium adhesion protein RapA1 on Rhizobium leguminosarum bv. trifolii adsorption to Trifolium pratense (red clover) roots was investigated. We altered RapA1 production by cloning its encoding gene under the plac promoter into the stable vector pHC60. After introducing this plasmid in R. leguminosarum bv. trifolii, three to four times more RapA1 was produced, and two to five times higher adsorption to red clover roots was obtained, as compared with results for the empty vector. Enhanced adsorption was also observed on soybean and alfalfa roots, not related to R. leguminosarum cross inoculation groups. Although the presence of 1 mM Ca2+ during rhizobial growth enhanced adsorption, it was unrelated to RapA1 level. Similar effects were obtained when the same plasmid was introduced in Rhizobium etli for its adsorption to bean roots. Although root colonization by the RapA1-overproducing strain was also higher, nodulation was not enhanced. In addition, in vitro biofilm formation was similar to the wild-type both on polar and on hydrophobic surfaces. These results suggest that RapA1 receptors are present in root but not on inert surfaces, and that the function of this protein is related to rhizosphere colonization.
Collapse
Affiliation(s)
- Elías J Mongiardini
- Instituto de Biotecnología y Biología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata-CONICET, La Plata, Argentina
| | | | | | | | | | | | | |
Collapse
|
22
|
Seneviratne G, Zavahir JS, Bandara WMMS, Weerasekara MLMAW. Fungal-bacterial biofilms: their development for novel biotechnological applications. World J Microbiol Biotechnol 2007. [DOI: 10.1007/s11274-007-9539-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
23
|
Seneviratne G, Indrasena IK. Nitrogen fixation in lichens is important for improved rock weathering. J Biosci 2007; 31:639-43. [PMID: 17301502 DOI: 10.1007/bf02708416] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
It is known that cyanobacteria in cyanolichens fix nitrogen for their nutrition.However, specific uses of the fixed nitrogen have not been examined. The present study shows experimentally that a mutualistic interaction between a heterotrophic N2 fixer and lichen fungi in the presence of a carbon source can contribute to enhanced release of organic acids, leading to improved solubilization of the mineral substrate. Three lichen fungi were isolated from Xanthoparmelia mexicana, a foliose lichen, and they were cultured separately or with a heterotrophic N2 fixer in nutrient broth media in the presence of a mineral substrate. Cells of the N2-fixing bacteria attached to the mycelial mats of all fungi, forming biofilms. All biofilms showed higher solubilizations of the substrate than cultures of their fungi alone. This finding has bearing on the significance of the origin and existence of N2-fixing activity in the evolution of lichen symbiosis. Further, our results may explain why there are N2-fixing photobionts even in the presence of non- fixing photobionts (green algae) in some remarkable lichens such as Placopsis gelida. Our study sheds doubt on the idea that the establishment of terrestrial eukaryotes was possible only through the association between a fungus and a phototroph.
Collapse
Affiliation(s)
- Gamini Seneviratne
- Biological Nitrogen Fixation Project, Institute of Fundamental Studies, Hantana Road, Kandy, Sri Lanka.
| | | |
Collapse
|
24
|
Rinaudi L, Fujishige NA, Hirsch AM, Banchio E, Zorreguieta A, Giordano W. Effects of nutritional and environmental conditions on Sinorhizobium meliloti biofilm formation. Res Microbiol 2006; 157:867-75. [PMID: 16887339 DOI: 10.1016/j.resmic.2006.06.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Revised: 05/24/2006] [Accepted: 06/08/2006] [Indexed: 10/24/2022]
Abstract
Rhizobia are non-spore-forming soil bacteria that fix atmospheric nitrogen into ammonia in a symbiosis with legume roots. However, in the absence of a legume host, rhizobia manage to survive and hence must have evolved strategies to adapt to diverse environmental conditions. The capacity to respond to variations in nutrient availability enables the persistence of rhizobial species in soil, and consequently improves their ability to colonize and to survive in the host plant. Rhizobia, like many other soil bacteria, persist in nature most likely in sessile communities known as biofilms, which are most often composed of multiple microbial species. We have been employing in vitro assays to study environmental parameters that might influence biofilm formation in the Medicago symbiont Sinorhizobium meliloti. These parameters include carbon source, amount of nitrate, phosphate, calcium and magnesium as well as the effects of osmolarity and pH. The microtiter plate assay facilitates the detection of subtle differences in rhizobial biofilms in response to these parameters, thereby providing insight into how environmental stress or nutritional status influences rhizobial survival. Nutrients such as sucrose, phosphate and calcium enhance biofilm formation as their concentrations increase, whereas extreme temperatures and pH negatively affect biofilm formation.
Collapse
Affiliation(s)
- Luciana Rinaudi
- Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, 5800-Río Cuarto, Córdoba, Argentina
| | | | | | | | | | | |
Collapse
|
25
|
Abstract
It is generally reported that fungi like Pleurotus spp. can fix nitrogen (N2). The way they do it is still not clear. The present study hypothesized that only associations of fungi and diazotrophs can fix N2. This was tested in vitro. Pleurotus ostreatus was inoculated with a bradyrhizobial strain nodulating soybean and P. ostreatus with no inoculation was maintained as a control. At maximum mycelial colonization by the bradyrhizobial strain and biofilm formation, the cultures were subjected to acetylene reduction assay (ARA). Another set of the cultures was evaluated for growth and nitrogen accumulation. Nitrogenase activity was present in the biofilm, but not when the fungus or the bradyrhizobial strain was alone. A significant reduction in mycelial dry weight and a significant increase in nitrogen concentration were observed in the inoculated cultures compared to the controls. The mycelial weight reduction could be attributed to C transfer from the fungus to the bradyrhizobial strain, because of high C cost of biological N2 fixation. This needs further investigations using 14C isotopic tracers. It is clear from the present study that mushrooms alone cannot fix atmospheric N2. But when they are in association with diazotrophs, nitrogenase activity is detected because of the diazotrophic N2 fixation. It is not the fungus that fixes N2 as reported earlier. Effective N2 fixing systems, such as the present one, may be used to increase protein content of mushrooms. Our study has implications for future identification of as yet unidentified N2 systems occurring in the environment.
Collapse
Affiliation(s)
- H S Jayasinghearachchi
- Biological Nitrogen Fixation Project, Institute of Fundamental Studies, Hantana Road, Kandy, Sri Lanka
| | | |
Collapse
|