1
|
Kumar P, Maji B. Formation to Transportation: En-Route Fission-Facilitated Formation of Spheres in a Phosphorus-Based Porous Organic Polymer for Transportation of Iodine. Chemistry 2024; 30:e202402559. [PMID: 39225335 DOI: 10.1002/chem.202402559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/27/2024] [Accepted: 09/03/2024] [Indexed: 09/04/2024]
Abstract
Despite its potential as a clean power source to meet rising electricity demands, nuclear energy generates radioactive waste, including isotopes of iodine, that pose significant environmental and health risks. There is a growing demand to capture radioactive iodine and repurpose it effectively. However, achieving this dual functionality with a single material remains a significant challenge. This study explores phosphorus-based porous organic polymers (P-POPs) as probes for these dual functionalities. By employing 4-formyl(triphenyl)phosphine (BB1) and phenyl-1,4-diacetonitrile (BB2) under the Knoevenagel polycondensation method, P-POPs (PKPOPs) have been synthesized that exhibit a smooth spherical morphology, which efficiently capture and release iodine under ambient conditions, facilitating efficient transportation of molecular iodine. This novel approach aims to potentially transform nuclear waste into valuable organic feedstock via an iodination reaction. The innovative application of PKPOP has also been demonstrated for iodination reactions using ball mills and under continuous flow conditions, showcasing its potential for safer waste management and utilization.
Collapse
Affiliation(s)
- Pramod Kumar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Biplab Maji
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| |
Collapse
|
2
|
Szyk P, Czarczynska-Goslinska B, Mlynarczyk DT, Ślusarska B, Kocki T, Ziegler-Borowska M, Goslinski T. Polymer-Based Nanoparticles as Drug Delivery Systems for Purines of Established Importance in Medicine. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2647. [PMID: 37836288 PMCID: PMC10574807 DOI: 10.3390/nano13192647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023]
Abstract
Many purine derivatives are active pharmaceutical ingredients of significant importance in the therapy of autoimmune diseases, cancers, and viral infections. In many cases, their medical use is limited due to unfavorable physicochemical and pharmacokinetic properties. These problems can be overcome by the preparation of the prodrugs of purines or by combining these compounds with nanoparticles. Herein, we aim to review the scientific progress and perspectives for polymer-based nanoparticles as drug delivery systems for purines. Polymeric nanoparticles turned out to have the potential to augment antiviral and antiproliferative effects of purine derivatives by specific binding to receptors (ASGR1-liver, macrophage mannose receptor), increase in drug retention (in eye, intestines, and vagina), and permeation (intranasal to brain delivery, PEPT1 transport of acyclovir). The most significant achievements of polymer-based nanoparticles as drug delivery systems for purines were found for tenofovir disoproxil in protection against HIV, for acyclovir against HSV, for 6-mercaptopurine in prolongation of mice ALL model life, as well as for 6-thioguanine for increased efficacy of adoptively transferred T cells. Moreover, nanocarriers were able to diminish the toxic effects of acyclovir, didanosine, cladribine, tenofovir, 6-mercaptopurine, and 6-thioguanine.
Collapse
Affiliation(s)
- Piotr Szyk
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznań, Poland;
| | - Beata Czarczynska-Goslinska
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznań, Poland;
| | - Dariusz T. Mlynarczyk
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznań, Poland;
| | - Barbara Ślusarska
- Department of Family and Geriatric Nursing, Faculty of Health Sciences, Medical University of Lublin, 20-081 Lublin, Poland;
| | - Tomasz Kocki
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, 20-081 Lublin, Poland;
| | - Marta Ziegler-Borowska
- Department of Biomedical Chemistry and Polymer Science, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland;
| | - Tomasz Goslinski
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznań, Poland;
| |
Collapse
|
3
|
Ullah B, Khan SR, Ali S, Jamil S. Synthesis, parameters, properties and applications of responsive molecularly imprinted microgels: a review. REV CHEM ENG 2021. [DOI: 10.1515/revce-2020-0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Responsive molecularly imprinted microgels (MIGs) have gained a lot of interest due to their responsive specificity and selectivity for target compounds. Study on MIGs is rapidly increasing due to their quick responsive behavior in various stimuli like pH and temperature. MIGs show unique property of morphology control on in-situ synthesis of nanoparticles in response of variation in reactant concentration. Literature related to synthesis, parameters, characterization, applications and prospects of MIGs are critically reviewed here. Range of templates, monomers, initiators and crosslinkers are summarized for designing of desired MIGs. This review article describes effect of variation in reactants combination and composition on morphology, imprinting factor and percentage yield of MIGs. Hydrolysis of similar templates using MIGs is also described. Relation between percentage hydrolysis and hydrolysis time of targets at different temperatures and template:monomer ratio is also analyzed. Possible imprinting modes of ionic/non-ionic templates and its series are also generalized on the basis of previous literature. MIGs are investigated as efficient anchoring vehicles for adsorption, catalysis, bio-sensing, drug delivery, inhibition and detection.
Collapse
Affiliation(s)
- Burhan Ullah
- Department of Chemistry , University of Agriculture , Faisalabad 38000 , Pakistan
| | - Shanza Rauf Khan
- Department of Chemistry , University of Agriculture , Faisalabad 38000 , Pakistan
| | - Sarmed Ali
- Department of Physics , University of Agriculture , Faisalabad 38000 , Pakistan
| | - Saba Jamil
- Department of Chemistry , University of Agriculture , Faisalabad 38000 , Pakistan
- Department of Materials Science and Engineering , Cornell University , Ithaca , NY 14853 , USA
| |
Collapse
|
4
|
Lim KF, Holdsworth CI. Effect of Formulation on the Binding Efficiency and Selectivity of Precipitation Molecularly Imprinted Polymers. Molecules 2018; 23:E2996. [PMID: 30453535 PMCID: PMC6278369 DOI: 10.3390/molecules23112996] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 11/05/2018] [Accepted: 11/13/2018] [Indexed: 11/16/2022] Open
Abstract
This study investigated the effect of feed formulation: the template:functional monomer (T:fM) and functional monomer:crosslinker (fM:X) ratios as well as the initiator concentration, on the binding performance and selectivity of caffeine (CAF) and theophylline (THP) imprinted polymers obtained by precipitation polymerisation in acetonitrile at 60 °C using methacrylic acid (MAA) and ethylene glycol dimethacrylate (EGDMA) as functional monomer and crosslinker, respectively. Template incorporation, monitored by quantitative ¹H-NMR spectroscopy, ranged from 8 to 77% and was found to be more favourable at both high and low T:fM ratios, low fM:X ratio and high initiator concentration. The resulting T:fM ratio in most MIPs were found to be lower than their feed ratios. Incorporation of THP into the polymers was observed to be consistently higher than CAF and, for most MIPs, the observed binding capacities represent less than 10% of the incorporated template. Improved imprinting factors were obtained from molecularly imprinted polymers (MIPs) with high crosslinker content, i.e., fM:X ratio of 1:10, and high initiator concentration, i.e., initiator:total monomer (I:tM) ratio of 1:5, while T:fM ratio (1:2 to 1:8) was found not to influence binding capacities and imprinting factors (IF). The NIPs showed no preference for either CAF or THP in competitive selectivity studies while MIPs were observed to bind preferentially to their template with THP displaying higher selectivity (72⁻94%) than CAF (63⁻84%). Template selectivity was observed to increase with increasing initiator concentration, with MIPs from I:tM ratio of 1:5 shown to be the most selective towards CAF (84%) and THP (93%). The fM:X ratio only showed minimal effect on MIP selectivity. Overall, for the MIP systems under study, template incorporation, binding capacity, imprinting factor and selectivity are enhanced at a faster rate of polymerisation using an I:tM ratio of 1:5. Polymer particles obtained were between 66 to 140 nm, with MIPs generally smaller than their NIP counterparts, and have been observed to decrease with increasing T:fM and fM:X ratios and increase with increasing initiator concentration.
Collapse
Affiliation(s)
- K Fremielle Lim
- Discipline of Chemistry, School of Environmental and Life Sciences, University of Newcastle, Callaghan 2308, NSW, Australia.
| | - Clovia I Holdsworth
- Discipline of Chemistry, School of Environmental and Life Sciences, University of Newcastle, Callaghan 2308, NSW, Australia.
| |
Collapse
|
5
|
Development of high performance and facile to pack molecularly imprinted particles for aqueous applications. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2016.03.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
6
|
Selective extraction and sensitive determination of mercury (II) ions by flame atomic absorption spectrometry after preconcentration on an ion-imprinted polymer-coated maghemite nanoparticles. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2015. [DOI: 10.1007/s13738-015-0587-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
7
|
Gao L, Li X, Zhang Q, Dai J, Wei X, Song Z, Yan Y, Li C. Molecularly imprinted polymer microspheres for optical measurement of ultra trace nonfluorescent cyhalothrin in honey. Food Chem 2014; 156:1-6. [DOI: 10.1016/j.foodchem.2013.12.065] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 12/16/2013] [Accepted: 12/16/2013] [Indexed: 11/25/2022]
|
8
|
Panahi HA, Mehramizi A, Ghassemi S, Moniri E. Selective extraction of clonazepam from human plasma and urine samples by molecularly imprinted polymeric beads. J Sep Sci 2014; 37:691-5. [DOI: 10.1002/jssc.201301144] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Revised: 12/19/2013] [Accepted: 12/23/2013] [Indexed: 11/10/2022]
Affiliation(s)
| | | | - Somayeh Ghassemi
- Department of Chemistry; Islamic Azad University; Central Tehran Branch; Iran
| | - Elham Moniri
- Department of Chemistry; Islamic Azad University; Varamin (Pishva) Branch; Iran
| |
Collapse
|
9
|
Madrakian T, Ahmadi M, Afkhami A, Soleimani M. Selective solid-phase extraction of naproxen drug from human urine samples using molecularly imprinted polymer-coated magnetic multi-walled carbon nanotubes prior to its spectrofluorometric determination. Analyst 2013; 138:4542-9. [DOI: 10.1039/c3an00686g] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Panahi HA, Mehramizi A, Hosseinifard Z, Moniri E. Synthesis and characterization of new molecular imprinting poly[1-(N,N-bis-carboxymethyl)amino-3-allylglycerol-co-dimethylacrylamide] for selective sorption and determination of cefuroxime sodium in biological and pharmaceutical samples. REACT FUNCT POLYM 2013. [DOI: 10.1016/j.reactfunctpolym.2012.08.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
11
|
Phutthawong N, Pattarawarapan M. Synthesis of highly selective spherical caffeine imprinted polymers via ultrasound-assisted precipitation polymerization. J Appl Polym Sci 2012. [DOI: 10.1002/app.38596] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
12
|
Panahi HA, Feizbakhsh A, Khaledi S, Moniri E. Fabrication of new drug imprinting polymer beads for selective extraction of naproxen in human urine and pharmaceutical samples. Int J Pharm 2012; 441:776-80. [PMID: 23064129 DOI: 10.1016/j.ijpharm.2012.10.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2012] [Revised: 09/30/2012] [Accepted: 10/01/2012] [Indexed: 11/17/2022]
Abstract
A drug imprinting polymer based on suspension polymerization was prepared with N,N-dimethylacrylamide and 1-(N,N-bis-carboxymethyl) amino-3-allylglycerol as functional monomers, N,N methylene diacrylamid as the cross-linker, naproxen as the template and 2,2'-azobis (2-methylbutyronitrile) as the initiator. The drug imprinted polymer was characterized by Fourier transform infrared spectroscopy, elemental analysis, thermogravimetric analysis and transmission electron microscopy. The imprinted polymer of agglomerated micro-particles with multi-pores was used for solid phase extraction. The drug imprinted polymer sorbent was selective for naproxen. The profile of the naproxen uptake by the sorbent reflects good accessibility of the active sites in the imprinted polymer sorbent. In addition, the equilibrium adsorption data of naproxen by imprinted polymer were analyzed by Langmuir isotherm models. The developed method was utilized for determination of naproxen in pharmaceutical and human urine samples by high performance liquid chromatography with satisfactory results.
Collapse
|
13
|
Facile synthesis of magnetic molecularly imprinted polymers for caffeine via ultrasound-assisted precipitation polymerization. Polym Bull (Berl) 2012. [DOI: 10.1007/s00289-012-0836-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
14
|
|
15
|
Turner NW, Holdsworth CI, Donne SW, McCluskey A, Bowyer MC. Microwave induced MIP synthesis: comparative analysis of thermal and microwave induced polymerisation of caffeine imprinted polymers. NEW J CHEM 2010. [DOI: 10.1039/b9nj00538b] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Yan S, Fang Y, Yao W, Gao Z. Characterization and quality assessment of binding properties of the monocrotophos molecularly imprinted microspheres prepared by precipitation polymerization in toluene. POLYM ENG SCI 2007. [DOI: 10.1002/pen.20806] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
17
|
Alexander C, Andersson HS, Andersson LI, Ansell RJ, Kirsch N, Nicholls IA, O'Mahony J, Whitcombe MJ. Molecular imprinting science and technology: a survey of the literature for the years up to and including 2003. J Mol Recognit 2006; 19:106-80. [PMID: 16395662 DOI: 10.1002/jmr.760] [Citation(s) in RCA: 782] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Over 1450 references to original papers, reviews and monographs have herein been collected to document the development of molecular imprinting science and technology from the serendipitous discovery of Polyakov in 1931 to recent attempts to implement and understand the principles underlying the technique and its use in a range of application areas. In the presentation of the assembled references, a section presenting reviews and monographs covering the area is followed by papers dealing with fundamental aspects of molecular imprinting and the development of novel polymer formats. Thereafter, literature describing attempts to apply these polymeric materials to a range of application areas is presented.
Collapse
Affiliation(s)
- Cameron Alexander
- The School of Pharmacy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Park JK, Kim SJ. Separation of phenylalanine by ultrafiltration using D-Phe imprinted polyacrylonitrile-poly(acrylic acid)-poly(acryl amide) terpolymer membrane. KOREAN J CHEM ENG 2004. [DOI: 10.1007/bf02705583] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
19
|
Structural and Functional Characterization of CRAMP-18 Derived from a Cathelicidin-Related Antimicrobial Peptide CRAMP. B KOREAN CHEM SOC 2003. [DOI: 10.5012/bkcs.2003.24.10.1478] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|