1
|
Kuba K, Kawasaki T, Enoki Y, Inoue H, Matsumura S, Yamazaki T, Ebihara Y, Nakahira M, Sugasawa M. Follicular adenoma with a papillary architecture originating from an ectopic thyroid gland: a case report. BMC Endocr Disord 2024; 24:16. [PMID: 38287285 PMCID: PMC10826198 DOI: 10.1186/s12902-024-01547-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/24/2024] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND Follicular adenomas with papillary architecture are rare tumors of thyroid origin and are composed of completely encapsulated follicular cells with a papillary architecture lacking the nuclear characteristics of papillary carcinoma. Herein, we present a case of follicular adenoma with papillary architecture originating from an ectopic thyroid gland, diagnosed from a mass in the submandibular region. CASE PRESENTATION A 70-year-old woman was referred to our hospital with the chief complaint of a painless left submandibular mass that had been present for one year. The patient underwent left submandibular dissection for therapy and diagnosis. Microscopically, papillary lesions with fibrovascular cores were observed in the interior, and the epithelial cells were cylindrical in shape with eosinophilic cytoplasm, round or oval nuclei, with no pathological features, leading to a diagnosis of papillary carcinoma or follicular carcinoma. The mass was diagnosed as a follicular thyroid adenoma with papillary architecture. This is the first report of a follicular adenoma with a papillary architecture originating from an ectopic thyroid gland. CONCLUSION This experience suggests that follicular adenoma should be included in the differential diagnosis of ectopic thyroid tumors.
Collapse
Affiliation(s)
- Kiyomi Kuba
- Department of Head and Neck Surgery, Ageo Central General Hospital, Ageo, Saitama, Japan.
| | - Tomonori Kawasaki
- Department of Diagnostic Pathology, Saitama Medical University International Medical Center, Hidaka, Saitama, Japan
| | - Yuichiro Enoki
- Department of Head and Neck Surgery and Otolaryngology, Saitama Medical University International Medical Center, Hidaka, Saitama, Japan
| | - Hitoshi Inoue
- Department of Head and Neck Surgery and Otolaryngology, Saitama Medical University International Medical Center, Hidaka, Saitama, Japan
| | - Satoko Matsumura
- Department of Head and Neck Surgery and Otolaryngology, Saitama Medical University International Medical Center, Hidaka, Saitama, Japan
| | - Tomoko Yamazaki
- Department of Head and Neck Surgery and Otolaryngology, Saitama Medical University International Medical Center, Hidaka, Saitama, Japan
| | - Yasuhiro Ebihara
- Department of Head and Neck Surgery and Otolaryngology, Saitama Medical University International Medical Center, Hidaka, Saitama, Japan
| | - Mitsuhiko Nakahira
- Department of Head and Neck Surgery and Otolaryngology, Saitama Medical University International Medical Center, Hidaka, Saitama, Japan
| | - Masashi Sugasawa
- Department of Head and Neck Surgery, Kameda Medical Center, Kamogawa, Chiba, Japan
| |
Collapse
|
2
|
Guérineau NC, Campos P, Le Tissier PR, Hodson DJ, Mollard P. Cell Networks in Endocrine/Neuroendocrine Gland Function. Compr Physiol 2022; 12:3371-3415. [PMID: 35578964 DOI: 10.1002/cphy.c210031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Reproduction, growth, stress, and metabolism are determined by endocrine/neuroendocrine systems that regulate circulating hormone concentrations. All these systems generate rhythms and changes in hormone pulsatility observed in a variety of pathophysiological states. Thus, the output of endocrine/neuroendocrine systems must be regulated within a narrow window of effective hormone concentrations but must also maintain a capacity for plasticity to respond to changing physiological demands. Remarkably most endocrinologists still have a "textbook" view of endocrine gland organization which has emanated from 20th century histological studies on thin 2D tissue sections. However, 21st -century technological advances, including in-depth 3D imaging of specific cell types have vastly changed our knowledge. We now know that various levels of multicellular organization can be found across different glands, that organizational motifs can vary between species and can be modified to enhance or decrease hormonal release. This article focuses on how the organization of cells regulates hormone output using three endocrine/neuroendocrine glands that present different levels of organization and complexity: the adrenal medulla, with a single neuroendocrine cell type; the anterior pituitary, with multiple intermingled cell types; and the pancreas with multiple intermingled cell types organized into distinct functional units. We give an overview of recent methodologies that allow the study of the different components within endocrine systems, particularly their temporal and spatial relationships. We believe the emerging findings about network organization, and its impact on hormone secretion, are crucial to understanding how homeostatic regulation of endocrine axes is carried out within endocrine organs themselves. © 2022 American Physiological Society. Compr Physiol 12:3371-3415, 2022.
Collapse
Affiliation(s)
| | - Pauline Campos
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK
| | - Paul R Le Tissier
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, Scotland, UK
| | - David J Hodson
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Edgbaston, UK.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK.,COMPARE University of Birmingham and University of Nottingham Midlands, UK.,Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), NIHR Oxford Biomedical Research Centre, Churchill Hospital, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Patrice Mollard
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
| |
Collapse
|
3
|
Deshmukh SD, Khandeparkar SGS, Gulati HK, Naik CS. Microfollicular adenoma of ectopic thyroid gland masquerading as salivary gland tumor - a diagnostic and therapeutic challenge: a case report. J Med Case Rep 2014; 8:270. [PMID: 25103611 PMCID: PMC4136397 DOI: 10.1186/1752-1947-8-270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Accepted: 06/11/2014] [Indexed: 11/23/2022] Open
Abstract
Introduction Ectopic thyroid tissue may appear in any location along the trajectory of the thyroglossal duct from the foramen cecum to the mediastinum. Rarely, there is incomplete descent of the gland where the final resting point may be high resulting in sublingual ectopic thyroid tissue. Ectopic thyroid tissue carries a low risk of malignancy. Most recently reported neoplasms in ectopic thyroid tissue have been papillary carcinoma of thyroid. Individual case reports of clear cell type of follicular adenoma within the ectopic thyroid tissue have been described in the literature. Case presentation We present a rare case of microfollicular follicular adenoma in an ectopic sublingual thyroid tissue presenting as submental swelling in a euthyroid 24-year-old Dravidian woman. Conclusion Findings in this case emphasize that when confronted with a submental/sublingual mass lesion, the evaluation of thyroid function tests and ultrasonography of the neck should be included in a pre-operative workup.
Collapse
Affiliation(s)
- Sanjay D Deshmukh
- Department of Pathology, Smt, Kashibai Navale Medical College & General Hospital, Narhe, Pune, Maharashtra, India.
| | | | | | | |
Collapse
|
4
|
Jiang MY, Cai DP. Oral arginine improves linear growth of long bones and the neuroendocrine mechanism. Neurosci Bull 2011; 27:156-62. [PMID: 21614098 DOI: 10.1007/s12264-011-1051-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
OBJECTIVE To investigate the effect of oral administration of arginine on linear growth of long bones in male pubertal rats and the underlying mechanisms, focusing on expression of genes related to the hypothalamus-pituitary growth axis and the nitric oxide (NO)-cyclic guanosine monophosphate (cGMP) pathway. METHODS Rats were randomly divided into control and intervention groups. In the intervention group, arginine was solved in water (0.045 g L-arginine was mixed with 1 mL water) and administered in rats (10 mL/kg) through gastric perfusion once per day, for totally 28 d. Rats in the control group received normal saline treatment. Bone histomorphometry analysis was used to measure growth plate width and mineral apposition rate of the tibia, as well as trabecular bone volume fraction, osteoblast surface and osteoclast surface of the femur. Serum growth hormone (GH) concentration was determined by radioimmunoassay. Real-time PCR was used to measure the expression of neuronal nitric oxide synthase (nNOS), soluble guanylyl cyclases (sGCα1 and sGCβ1), growth hormone-releasing hormone (Ghrh) and somatostatin (SS) in hypothalamus, as well as Gh in pituitary. Western blot was used to detect the protein levels of nNOS, sGCα1 and sGCβ1 in hypothalamus. RESULTS After treatment with arginine, the growth plate width of tibia and osteoblast surface of femur were increased (P < 0.05), and serum GH concentration was elevated (P < 0.05). Besides, mRNA and protein levels of nNOS and sGCα1 (P < 0.05), as well as the expression of Gh mRNA (P < 0.01), were significantly up-regulated, while the expression of SS mRNA was down-regulated (P < 0.05). CONCLUSION Oral administration of arginine could improve linear growth of long bones by regulating mRNA expression of SS and Gh and inducing GH secretion, possibly via nNOS-NO-sGC-cGMP signal transduction pathway.
Collapse
Affiliation(s)
- Ming-Yu Jiang
- Department of Integrated Traditional Chinese and Western Medicine, Children's Hospital of Fudan University, Shanghai 201102, China
| | | |
Collapse
|
5
|
Gutiérrez S, Petiti JP, Sosa LDV, Fozzatti L, De Paul AL, Masini-Repiso AM, Torres AI. 17β-oestradiol acts as a negative modulator of insulin-induced lactotroph cell proliferation through oestrogen receptor α, via nitric oxide/guanylyl cyclase/cGMP. Cell Prolif 2010; 43:505-14. [PMID: 20887556 DOI: 10.1111/j.1365-2184.2010.00700.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVES 17β-oestradiol interacts with growth factors to modulate lactotroph cell population. However, contribution of isoforms of the oestrogen receptor in these activities is not fully understood. In the present study, we have established participation of α and β oestrogen receptors in effects of 17β-oestradiol on lactotroph proliferation induced by insulin and shown involvement of the NO/sGC/cGMP pathway. MATERIALS AND METHODS Cell cultures were prepared from anterior pituitaries of female rats to evaluate lactotroph cell proliferation using bromodeoxyuridine (BrdUrd) detection, protein expression by western blotting and cGMP by enzyme immunoassay. RESULTS In serum-free conditions, 17β-oestradiol and α and β oestrogen receptor agonists (PPT and DPN) failed to increase numbers of lactotroph cells undergoing mitosis. Co-incubation of 17β-oestradiol/insulin and PPT/insulin significantly decreased lactotroph mitogenic activity promoted by insulin alone. Both ICI 182780 and NOS inhibitors (L-NMMA and L-NAME) induced reversal of the anti-proliferative effect promoted by 17β-oestradiol/insulin and PPT/insulin. Moreover, 17β-oestradiol, PPT and insulin increased sGC α1 protein expression and inhibited β1, whereas co-incubation of 17β-oestradiol/insulin or PPT/insulin induced increases of the two isoforms α1 and β1. 17β-oestradiol and insulin reduced cGMP production, while 17β-oestradiol/insulin co-incubation increased this cyclic nucleotide. CONCLUSIONS Our results suggest that 17β-oestradiol is capable of arresting lactotroph proliferation induced by insulin through ER α with participation of the signalling NO/sGC/cGMP pathway.
Collapse
Affiliation(s)
- S Gutiérrez
- Center of Electron Microscopy, Faculty of Medical Sciences, National University of Córdoba, Córdoba, Argentina.
| | | | | | | | | | | | | |
Collapse
|
6
|
Chang JP, Sawisky GR, Mitchell G, Uretsky AD, Kwong P, Grey CL, Meints AN, Booth M. PACAP stimulation of maturational gonadotropin secretion in goldfish involves extracellular signal-regulated kinase, but not nitric oxide or guanylate cyclase, signaling. Gen Comp Endocrinol 2010; 165:127-35. [PMID: 19539623 DOI: 10.1016/j.ygcen.2009.06.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Revised: 06/02/2009] [Accepted: 06/12/2009] [Indexed: 10/20/2022]
Abstract
In goldfish, nitric oxide synthase (NOS) immunoreactivity is present in gonadotropes and extracellular signal-regulated protein kinase (ERK) mediates GnRH stimulation of gonadotropin release and synthesis. In this study, we tested the possible involvement of nitric oxide (NO) and ERK in mediating PACAP-stimulated maturational gonadotropin (GTH-II) release from primary cultures of dispersed goldfish pituitary cells. In static incubation experiments, PACAP-induced GTH-II release was unaffected by two inhibitors of NOS synthase, AGH and 1400W; whereas addition of a NO donor, SNAP, elevated GTH-II secretion. In perifusion experiments, neither NOS inhibitors (AGH, 1400W and 7-Ni) nor NO scavengers (PTIO and rutin hydrate) attenuated the GTH-II response to pulse applications of PACAP. In addition, the GTH-II responses to PACAP and the NO donor SNP were additive while PTIO blocked SNP action. Although dibutyryl cGMP increased GTH-II secretion in static incubation, inhibition of guanylate cyclase (GC), a known down-stream target for NO signaling, did not reduce the GTH-II response to pulse application of PACAP. On the other hand, GTH-II responses to PACAP in perifusion were attenuated in the presence of two inhibitors of ERK kinase (MEK), U 0126 and PD 98059. These results suggest that although increased availability of NO and cGMP can lead to increased GTH-II secretion, MEK/ERK signaling, rather than NOS/NO/GC activation, mediates PACAP action on GTH-II release in goldfish.
Collapse
Affiliation(s)
- John P Chang
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Mitchell G, Sawisky GR, Grey CL, Wong CJ, Uretsky AD, Chang JP. Differential involvement of nitric oxide signaling in dopamine and PACAP stimulation of growth hormone release in goldfish. Gen Comp Endocrinol 2008; 155:318-27. [PMID: 17574554 DOI: 10.1016/j.ygcen.2007.05.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2007] [Revised: 04/25/2007] [Accepted: 05/07/2007] [Indexed: 11/16/2022]
Abstract
Previous studies in goldfish pituitary cells have shown that nitric oxide synthase (NOS)/nitric oxide (NO) signaling is involved in mediating the growth hormone (GH) release response to gonadotropin-releasing hormones. In this study, the involvement of this signaling pathway in mediating the action of two cAMP-mobilizing neuroendocrine stimulators of GH release, pituitary adenylate cyclase-activating polypeptide (PACAP) and dopamine (DA), was investigated in cell column perifusion experiments with primary cultures of dispersed pituitary cells. GH responses to PACAP were unaffected by three NOS inhibitors, aminoguanidine hemisulfate, 1400W and 7-nitroindazole (7-Ni). PACAP-stimulated GH release was also not reduced by two NO scavengers, rutin hydrate and PTIO, but NO-donor sodium nitroprusside (SNP)-elicited GH release was additive to the GH response to PACAP. In contrast, DA-induced GH secretion was reduced by 7-Ni, rutin hydrate and PTIO while not being additive to the GH response induced by SNP. These results indicate that although both PACAP and DA stimulation of acute GH release involve activation of adenylate cyclase/cAMP, DA- but not PACAP-signaling also utilizes the NOS/NO second messenger system.
Collapse
Affiliation(s)
- Gabriel Mitchell
- Department of Biological Sciences, University of Alberta, CW 405, Biological Sciences Building, Edmonton, Alta., Canada T6G 2E9
| | | | | | | | | | | |
Collapse
|
8
|
Secondo A, Pannaccione A, Cataldi M, Sirabella R, Formisano L, Di Renzo G, Annunziato L. Nitric oxide induces [Ca2+]i oscillations in pituitary GH3 cells: involvement of IDR and ERG K+ currents. Am J Physiol Cell Physiol 2005; 290:C233-43. [PMID: 16207796 DOI: 10.1152/ajpcell.00231.2005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The role of nitric oxide (NO) in the occurrence of intracellular Ca2+ concentration ([Ca2+]i) oscillations in pituitary GH3 cells was evaluated by studying the effect of increasing or decreasing endogenous NO synthesis with L-arginine and nitro-L-arginine methyl ester (L-NAME), respectively. When NO synthesis was blocked with L-NAME (1 mM) [Ca2+]i, oscillations disappeared in 68% of spontaneously active cells, whereas 41% of the quiescent cells showed [Ca2+]i oscillations in response to the NO synthase (NOS) substrate L-arginine (10 mM). This effect was reproduced by the NO donors NOC-18 and S-nitroso-N-acetylpenicillamine (SNAP). NOC-18 was ineffective in the presence of the L-type voltage-dependent Ca2+ channels (VDCC) blocker nimodipine (1 microM) or in Ca2+-free medium. Conversely, its effect was preserved when Ca2+ release from intracellular Ca2+ stores was inhibited either with the ryanodine-receptor blocker ryanodine (500 microM) or with the inositol 1,4,5-trisphosphate receptor blocker xestospongin C (3 microM). These results suggest that NO induces the appearance of [Ca2+]i oscillations by determining Ca2+ influx. Patch-clamp experiments excluded that NO acted directly on VDCC but suggested that NO determined membrane depolarization because of the inhibition of voltage-gated K+ channels. NOC-18 and SNAP caused a decrease in the amplitude of slow-inactivating (IDR) and ether-à-go-go-related gene (ERG) hyperpolarization-evoked, deactivating K+ currents. Similar results were obtained when GH3 cells were treated with L-arginine. The present study suggests that in GH3 cells, endogenous NO plays a permissive role for the occurrence of spontaneous [Ca2+]i oscillations through an inhibitory effect on IDR and on IERG.
Collapse
Affiliation(s)
- Agnese Secondo
- Division of Pharmacology, Dept. of Neuroscience, School of Medicine, Federico II Univ. of Naples, via Sergio Pansini 5, 80131 Naples, Italy
| | | | | | | | | | | | | |
Collapse
|
9
|
Luque RM, Rodríguez-Pacheco F, Tena-Sempere M, Gracia-Navarro F, Malagón MM, Castaño JP. Differential contribution of nitric oxide and cGMP to the stimulatory effects of growth hormone-releasing hormone and low-concentration somatostatin on growth hormone release from somatotrophs. J Neuroendocrinol 2005; 17:577-82. [PMID: 16101896 DOI: 10.1111/j.1365-2826.2005.01345.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
There is increasing evidence that nitric oxide (NO) produced by NO synthase (NOS), and their signalling partners, guanylyl cyclase and cGMP, play a relevant role in growth hormone (GH) secretion from somatotrophs. We previously demonstrated that both GH-releasing hormone (GHRH; 10(-8) M) and low concentrations of somatostatin (10(-15) M) stimulate pig GH release in vitro, whereas a high somatostatin concentration (10(-7) M) inhibits GHRH-induced GH secretion. To ascertain the possible contribution of the NOS-NO and guanylyl cyclase-cGMP routes to these responses, cultures of pituitary cells from prepubertal female pigs were treated (30 min) with GHRH (10(-8) M) or somatostatin (10(-7) or 10(-15) M) in the absence or presence of activators or blockers of key steps of these signalling cascades, and GH release was measured. Two distinct activators of NO route, SNAP (5x10(-4) M) or L-AME (10(-3) M), similarly stimulated GH release when applied alone (with this effect being blocked by 10(-7) M somatostatin), but did not alter the stimulatory effect of GHRH or 10(-15) M somatostatin. Conversely, two NO pathway inhibitors, NAME (10(-5) M) or haemoglobin (20 microg/ml) similarly blocked GHRH- or 10(-15) M somatostatin-stimulated GH release. 8-Br-cGMP (10(-8) to 10(-4) M) strongly stimulated GH release, suggesting that cGMP may function as a subsequent step in the NO pathway in this system. Interestingly, 10(-7) M somatostatin did not inhibit the stimulatory effect of 8-Br-cGMP. Moreover, although 8-Br-cGMP did not modify the effect of GHRH, it enhanced GH release stimulated by 10(-15) M somatostatin. Accordingly, a specific guanylyl cyclase inhibitor, LY-83, 583 (10(-5) M) did not alter 10(-15) M somatostatin-induced GH release, whereas it blocked GHRH-induced GH secretion. These results demonstrate for the first time that the NOS/NO signalling pathway contributes critically to the stimulatory effects of both GHRH and low-concentration somatostatin on GH release, and that, conversely, the subsequent guanylyl cyclase/cGMP step only mediates GHRH- and not low-concentration somatostatin-induced GH secretion from somatotrophs.
Collapse
Affiliation(s)
- R M Luque
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain
| | | | | | | | | | | |
Collapse
|
10
|
Secondo A, Sirabella R, Formisano L, D'Alessio A, Castaldo P, Amoroso S, Ingleton P, Di Renzo G, Annunziato L. Involvement of PI3'-K, mitogen-activated protein kinase and protein kinase B in the up-regulation of the expression of nNOSalpha and nNOSbeta splicing variants induced by PRL-receptor activation in GH3 cells. J Neurochem 2003; 84:1367-77. [PMID: 12614337 DOI: 10.1046/j.1471-4159.2003.01626.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
It is well known that GH-PRL secreting GH3 cells express constitutive neuronal nitric oxide synthase (nNOS) and produce nitric oxide (NO*). In addition, these cells possess plasma membrane prolactin (PRL) receptors which can be responsible for an autocrine 'short-loop' feedback. The aim of the present study was to investigate whether the activation of PRL receptors modulates the expression of the different spliced forms of nNOS gene, and the transductional mechanisms involved in this action. In GH3 cells, both exon 2-containing nNOSalpha and exon 2-lacking nNOSbeta were time-dependently expressed, whereas the other two isoforms eNOS and iNOS were not. The antibodies directed against the residues 53-68 of the external domain common to both the long and short form of rat PRL receptors, and the selective D2 agonist cabergoline (1 nm) reduced both basal and exogenous PRL-induced expressions of nNOSalpha and nNOSbeta, but to a greater extent for the beta splicing form. In line with these results, oPRL (1 and 10 microm) added to the incubation medium increased to a greater extent the expression of nNOSbeta form than of the nNOSalpha. The receptor and non-receptor protein tyrosine kinase (PTK) inhibitors, genistein (10 microm), the Src-specific tyrosine kinase inhibitor PP2 (100 microm), the MAPK inhibitor PD 098059 (50 nm) and the two PI3'-K inhibitors, wortmannin (300 nm) and LY-294002 (25 microm) prevented both basal and exogenous PRL-induced expression of nNOSalpha and nNOSbeta isoforms. In addition, exogenous PRL induced a phosphorylation of protein kinase B (PKB) (Akt) that was prevented both by the two MAPK inhibitors PD 098059 and U 0126, and by the PI3'-K inhibitors wortmannin and LY-294002. Up-regulation of the expression of the two splicing forms of nNOS elicited by PRL-receptor activation was mirrored by the increased synthesis of NO*. In conclusion, PRL receptor activation up-regulated the expression of both nNOSalpha and nNOSbeta proteins via a PTK, PI3'-K, MAPK and PKB signalling transduction components. This action may represent the molecular mechanism by which PRL exerts the 'short-loop' feedback on its own secretion.
Collapse
Affiliation(s)
- Agnese Secondo
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples Federico II, Naples, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Lloyd RV, Jin L, Ruebel KH, Bayliss JM. Analysis of folliculostellate cells by laser capture microdissection and reverse transcription-polymerase chain reaction (LCM-RT/PCR). Methods Enzymol 2002; 356:248-55. [PMID: 12418203 DOI: 10.1016/s0076-6879(02)56938-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Affiliation(s)
- Ricardo V Lloyd
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | |
Collapse
|