Tang W, Xie J, Shaikh ZA. Protection of renal tubular cells against the cytotoxicity of cadmium by glycine.
Toxicology 2006;
223:202-8. [PMID:
16682108 DOI:
10.1016/j.tox.2006.03.017]
[Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2005] [Revised: 03/21/2006] [Accepted: 03/26/2006] [Indexed: 10/24/2022]
Abstract
Glycine treatment is reported to protect against the nephrotoxicity of cadmium (Cd) in rats. The purpose of the present study was to explore the mechanism of this protection using a renal epithelial cell line, LLC-PK(1). The cells were incubated with 10-30 microM Cd in serum-free DMEM and cytotoxicity was evaluated by LDH leakage into the incubation medium. Under these conditions, 20 and 30 microM Cd concentrations were cytotoxic. As compared to the non-Cd-exposed cells, the LDH release was elevated more than six-fold in cells exposed to 30 microM Cd for 24h. Co-treatment with 5-50mM glycine was cytoprotective in a concentration-dependent manner. Prior treatment with 50 mM glycine for 16 h, or co-treatment for 24h, reduced LDH leakage due to 30 microM Cd exposure by 60 and 66%, respectively. Co-incubation with 50 mM alanine was also protective but only about half as effective as with glycine. During the first 4h, prior to the onset of any significant cell membrane damage, the Cd-exposed cells accumulated 0.55 microg Cd/mg protein. Glycine pre-treatment or co-treatment reduced Cd accumulation by about one-quarter or one-half, respectively. To delineate the mechanism of glycine's effect on Cd accumulation, the efflux of Cd was studied after a 30 min pulse exposure. The results suggested that pre-treatment reduced Cd accumulation by increasing its efflux from the cells. In contrast, co-treatment reduced Cd efflux, suggesting that the co-treatment lowered Cd accumulation by suppressing its uptake. When co-incubated, Cd and glycine formed a complex that was apparently responsible for the marked reduction in Cd uptake. It is concluded that, regardless of the mode of treatment, glycine is cytoprotective against Cd and that it may do so by lowering the intracellular Cd burden.
Collapse