1
|
Zavialov AE, Remizowa MV. Androecium homologies in eight-staminate maples: a developmental study. JOURNAL OF PLANT RESEARCH 2025:10.1007/s10265-025-01641-9. [PMID: 40281254 DOI: 10.1007/s10265-025-01641-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 04/10/2025] [Indexed: 04/29/2025]
Abstract
The genus Acer belongs to the family Sapindaceae, whose representatives are characterized by a pentamerous perianth but typically possess only eight stamens. Such an androecium is believed to have evolved through the loss of two stamens. However, there is still no consensus on the origin of eight-staminate androecium including the positions of the two lost stamens and the pathway of their reduction compared to other Sapindaceae. We examined the early stages of flower development in five maple species belonging to different sections - four species with eight stamens and one species with ten stamens - using scanning electron microscopy. Measurements were performed to analyze the relative positions of stamen primordia, their size, and the floral meristem surface area. In addition, the perianth and androecium vasculature was studied to reveal petal-stamen complexes. We found that in three of four 8-staminate species, three stamens are initiated from common petal-stamen primordia, and five arise from single primordia. In A. tegmentosum Maxim., four stamens appear from common primordia with petals, and four from single primordia. Despite developmental differences, stamen distribution within the flower and the angles between adjacent stamens indicate a similar androecium construction in all species. In most species with eight stamens, the differences between two andoecial whorls have vanished. In contrast, A. nikoense (Miq.) Maxim., with ten stamens, possesses two distinct stamen whorls, the antepetalous stamens are initiated from common primordia. In the 8-staminate androecia of the genus Acer, the same two stamens have been lost as in other Sapindaceae. Within genus Acer, there is a certain decrease in the relative size of the floral meristem, accompanied by an increase in the number of common petal-stamen primordia and increased heterogeneity of the androecium (in A. tegmentosum) or reduction of some floral organs.
Collapse
|
2
|
Pinion AK, Britz R, Kubicek KM, Siegel DS, Conway KW. The larval attachment organ of the bowfin Amia ocellicauda Richardson, 1836 (Amiiformes: Amiidae) and its phylogenetic significance. JOURNAL OF FISH BIOLOGY 2023; 103:1300-1311. [PMID: 37596740 DOI: 10.1111/jfb.15528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/13/2023] [Accepted: 08/16/2023] [Indexed: 08/20/2023]
Abstract
Larval attachment organs (LAOs) are unicellular or multicellular organs that enable the larvae of many actinopterygian fishes to adhere to a substrate before yolk-sac absorption and the free-swimming stage. Bowfins (Amiiformes) exhibit a sizable LAO on the snout, which was first described in the late 19th and early 20th centuries. In this study, we document the LAO of Amia ocellicauda (Richardson, 1836) using a combination of scanning electron microscopy (SEM) and light microscopy, and histochemistry. We examined material representing three stages with SEM ranging in size from 5.8 to 11.2 mm in notochord length and one stage histochemically. We compare the LAO of A. ocellicauda to that of the lepisosteid Atractosteus tropicus Gill, 1863 and show that although the LAOs of A. ocellicauda and A. tropicus are both super-organs, the two differ in the ultrastructure of the entire organ. A. ocellicauda possesses two distinct lobes, with the organs arranged on the periphery with none in the middle, whereas A. tropicus also possesses two lobes, but with the organs scattered evenly across the super-organ. The individual organs of A. ocellicauda possess adhesive cells set deep to support cells with the adhesive substance released through a pore, whereas A. tropicus possesses both support cells and adhesive cells sitting at a similar level, with the adhesive substance released directly onto the surface of the organ. We additionally provide a table summarizing vertebrate genera in which attachment organs have been documented and discuss the implications of our study for hypotheses of the homology of attachment organs in the Holostei.
Collapse
Affiliation(s)
- Amanda K Pinion
- Department of Ecology and Conservation Biology and Biodiversity Research and Teaching Collections, Texas A&M University, College Station, Texas, USA
| | - Ralf Britz
- Senckenberg Naturhistorische Sammlungen Dresden, Dresden, Germany
| | - Kole M Kubicek
- Department of Biology, Lamar University, Beaumont, Texas, USA
| | - Dustin S Siegel
- Department of Biology, Southeast Missouri State University, Cape Girardeau, Missouri, USA
| | - Kevin W Conway
- Department of Ecology and Conservation Biology and Biodiversity Research and Teaching Collections, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
3
|
Sattler R, Rutishauser R. Fundamentals of Plant Morphology and Plant Evo-Devo (Evolutionary Developmental Morphology). PLANTS (BASEL, SWITZERLAND) 2022; 12:118. [PMID: 36616247 PMCID: PMC9823526 DOI: 10.3390/plants12010118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Morphological concepts are used in plant evo-devo (evolutionary developmental biology) and other disciplines of plant biology, and therefore plant morphology is relevant to all of these disciplines. Many plant biologists still rely on classical morphology, according to which there are only three mutually exclusive organ categories in vascular plants such as flowering plants: root, stem (caulome), and leaf (phyllome). Continuum morphology recognizes a continuum between these organ categories. Instead of Aristotelian identity and either/or logic, it is based on fuzzy logic, according to which membership in a category is a matter of degree. Hence, an organ in flowering plants may be a root, stem, or leaf to some degree. Homology then also becomes a matter of degree. Process morphology supersedes structure/process dualism. Hence, structures do not have processes, they are processes, which means they are process combinations. These process combinations may change during ontogeny and phylogeny. Although classical morphology on the one hand and continuum and process morphology on the other use different kinds of logic, they can be considered complementary and thus together they present a more inclusive picture of the diversity of plant form than any one of the three alone. However, continuum and process morphology are more comprehensive than classical morphology. Insights gained from continuum and process morphology can inspire research in plant morphology and plant evo-devo, especially MorphoEvoDevo.
Collapse
Affiliation(s)
- Rolf Sattler
- Biology Department, McGill University, Montreal, QC H3G 0B1, Canada
| | - Rolf Rutishauser
- Department of Systematic and Evolutionary Botany, University of Zurich, CH-8008 Zurich, Switzerland
| |
Collapse
|
4
|
Morón-García O, Garzón-Martínez GA, Martínez-Martín MJP, Brook J, Corke FMK, Doonan JH, Camargo Rodríguez AV. Genetic architecture of variation in Arabidopsis thaliana rosettes. PLoS One 2022; 17:e0263985. [PMID: 35171969 PMCID: PMC8849614 DOI: 10.1371/journal.pone.0263985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 02/01/2022] [Indexed: 12/04/2022] Open
Abstract
Rosette morphology across Arabidopsis accessions exhibits considerable variation. Here we report a high-throughput phenotyping approach based on automatic image analysis to quantify rosette shape and dissect the underlying genetic architecture. Shape measurements of the rosettes in a core set of Recombinant Inbred Lines from an advanced mapping population (Multiparent Advanced Generation Inter-Cross or MAGIC) derived from inter-crossing 19 natural accessions. Image acquisition and analysis was scaled to extract geometric descriptors from time stamped images of growing rosettes. Shape analyses revealed heritable morphological variation at early juvenile stages and QTL mapping resulted in over 116 chromosomal regions associated with trait variation within the population. Many QTL linked to variation in shape were located near genes related to hormonal signalling and signal transduction pathways while others are involved in shade avoidance and transition to flowering. Our results suggest rosette shape arises from modular integration of sub-organ morphologies and can be considered a functional trait subjected to selective pressures of subsequent morphological traits. On an applied aspect, QTLs found will be candidates for further research on plant architecture.
Collapse
Affiliation(s)
- Odín Morón-García
- The National Plant Phenomics Centre, Institute of Biological, Rural and Environmental Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom
| | - Gina A. Garzón-Martínez
- The National Plant Phenomics Centre, Institute of Biological, Rural and Environmental Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom
| | - M. J. Pilar Martínez-Martín
- The National Plant Phenomics Centre, Institute of Biological, Rural and Environmental Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom
| | - Jason Brook
- The National Plant Phenomics Centre, Institute of Biological, Rural and Environmental Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom
| | - Fiona M. K. Corke
- The National Plant Phenomics Centre, Institute of Biological, Rural and Environmental Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom
| | - John H. Doonan
- The National Plant Phenomics Centre, Institute of Biological, Rural and Environmental Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom
- * E-mail: (AVCR); (JHD)
| | - Anyela V. Camargo Rodríguez
- The National Plant Phenomics Centre, Institute of Biological, Rural and Environmental Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom
- * E-mail: (AVCR); (JHD)
| |
Collapse
|
5
|
Cunha Neto IL, Pace MR, Hernández-Gutiérrez R, Angyalossy V. Linking the evolution of development of stem vascular system in Nyctaginaceae and its correlation to habit and species diversification. EvoDevo 2022; 13:4. [PMID: 35093184 PMCID: PMC8801151 DOI: 10.1186/s13227-021-00190-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/22/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Alternative patterns of secondary growth in stems of Nyctaginaceae is present in all growth habits of the family and have been known for a long time. However, the interpretation of types of cambial variants have been controversial, given that different authors have given them different developmental interpretations. The different growth habits coupled with an enormous stem anatomical diversity offers the unique opportunity to investigate the evolution of complex developments, to address how these anatomies shifted within habits, and how the acquisition of novel cambial variants and habit transitions impacted the diversification of the family. METHODS We integrated developmental data with a phylogenetic framework to investigate the diversity and evolution of stem anatomy in Nyctaginaceae using phylogenetic comparative methods, reconstructing ancestral states, and examining whether anatomical shifts correspond to species diversification rate shifts in the family. RESULTS Two types of cambial variants, interxylary phloem and successive cambia, were recorded in Nyctaginaceae, which result from four different ontogenies. These ontogenetic trajectories depart from two distinct primary vascular structures (regular or polycyclic eustele) yet, they contain shared developmental stages which generate stem morphologies with deconstructed boundaries of morphological categories (continuum morphology). Unlike our a priori hypotheses, interxylary phloem is reconstructed as the ancestral character for the family, with three ontogenies characterized as successive cambia evolving in few taxa. Cambial variants are not contingent on habits, and their transitions are independent from species diversification. CONCLUSIONS Our findings suggest that multiple developmental mechanisms, such as heterochrony and heterotopy, generate the transitions between interxylary phloem and successive cambia. Intermediate between these two extremes are present in Nyctaginaceae, suggesting a continuum morphology across the family as a generator of anatomical diversity.
Collapse
Affiliation(s)
- Israel L Cunha Neto
- Laboratório de Anatomia Vegetal, Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, São Paulo, SP, Brazil.
- School of Integrative Plant Sciences and L.H. Bailey Hortorium, Cornell University, Ithaca, NY, 14853, USA.
| | - Marcelo R Pace
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Zona Deportiva s/n, Ciudad Universitaria, 04510, Coyoacán, Mexico City, Mexico
| | - Rebeca Hernández-Gutiérrez
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Zona Deportiva s/n, Ciudad Universitaria, 04510, Coyoacán, Mexico City, Mexico
| | - Veronica Angyalossy
- Laboratório de Anatomia Vegetal, Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, São Paulo, SP, Brazil
| |
Collapse
|
6
|
Onyenedum JG, Pace MR. The role of ontogeny in wood diversity and evolution. AMERICAN JOURNAL OF BOTANY 2021; 108:2331-2355. [PMID: 34761812 DOI: 10.1002/ajb2.1801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
Evolutionary developmental biology (evo-devo) explores the link between developmental patterning and phenotypic change through evolutionary time. In this review, we highlight the scientific advancements in understanding xylem evolution afforded by the evo-devo approach, opportunities for further engagement, and future research directions for the field. We review evidence that (1) heterochrony-the change in rate and timing of developmental events, (2) homeosis-the ontogenetic replacement of features, (3) heterometry-the change in quantity of a feature, (4) exaptation-the co-opting and repurposing of an ancestral feature, (5) the interplay between developmental and capacity constraints, and (6) novelty-the emergence of a novel feature, have all contributed to generating the diversity of woods. We present opportunities for future research engagement, which combine wood ontogeny within the context of robust phylogenetic hypotheses, and molecular biology.
Collapse
Affiliation(s)
- Joyce G Onyenedum
- School of Integrative Plant Sciences and L. H. Bailey Hortorium, Cornell University, Ithaca, New York, 14853, USA
| | - Marcelo R Pace
- Department of Botany, Instituto de Biología, Universidad Nacional Autónoma de México, Tercer Circuito s/n de Ciudad Universitaria, Mexico City, 04510, Mexico
| |
Collapse
|
7
|
Barbière F, Ronez C, Ortiz PE, Pardiñas UFJ. Morphological similarity and dental homologies in two sigmodontine rodents (Mammalia, Cricetidae) from different tribes: A topological analysis to explore convergence. J Morphol 2021; 282:563-573. [PMID: 33547822 DOI: 10.1002/jmor.21331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 01/25/2021] [Accepted: 02/03/2021] [Indexed: 02/06/2023]
Abstract
We present a topological analysis of the third upper molars (M3) using the recently developed ICAMER nomenclatural system as a way to understand the dental morphological similarity in sigmodontine rodents, the most speciose subfamily of cricetids. The method is explored in Scapteromys aquaticus and Abrothrix olivacea, taxa belonging to two diverse tribes, Akodontini and Abrotrichini, respectively, which exhibit high similarity regarding several craniodental traits as well as external anatomy. Both species show morphologically similar M3 in adults characterized by cylindrification and the isolation of a large central fossette arising from the marginal fusion of the anterior and posterior lobes. The results indicate that, before the wear, these rodents have a strongly different topological pattern at the cuspal level, mostly involving production of the connection between the main cusps. The central fossette derives from the isolation of part of the metaflexus in Scapteromys, while in Abrothrix it originates from the hypoflexus. The topological analysis provides a new approach to sigmodontine systematics, including the ability to detect diagnostic characters of both tribes. More important, it constitutes a new step toward an integrative phylogeny of fossil and living cricetids.
Collapse
Affiliation(s)
| | - Christophe Ronez
- Instituto de Diversidad y Evolución Austral (IDEAus-CONICET), CONICET, Puerto Madryn, Chubut, Argentina
| | - Pablo E Ortiz
- Cátedra de Paleontología, Facultad de Ciencias Naturales e Instituto Miguel Lillo, San Miguel de Tucumán, Tucumán, Argentina.,Instituto Superior de Correlación Geológica (INSUGEO), CONICET, Yerba Buena, Tucumán, Argentina
| | - Ulyses F J Pardiñas
- Instituto de Diversidad y Evolución Austral (IDEAus-CONICET), CONICET, Puerto Madryn, Chubut, Argentina.,Instituto Nacional de Biodiversidad (INABIO), Quito, Pichincha, Ecuador
| |
Collapse
|
8
|
King B, Rücklin M. A Bayesian approach to dynamic homology of morphological characters and the ancestral phenotype of jawed vertebrates. eLife 2020; 9:e62374. [PMID: 33274719 PMCID: PMC7793628 DOI: 10.7554/elife.62374] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 12/03/2020] [Indexed: 12/22/2022] Open
Abstract
Phylogenetic analysis of morphological data proceeds from a fixed set of primary homology statements, the character-by-taxon matrix. However, there are cases where multiple conflicting homology statements can be justified from comparative anatomy. The upper jaw bones of placoderms have traditionally been considered homologous to the palatal vomer-dermopalatine series of osteichthyans. The discovery of 'maxillate' placoderms led to the alternative hypothesis that 'core' placoderm jaw bones are premaxillae and maxillae lacking external (facial) laminae. We introduce a BEAST2 package for simultaneous inference of homology and phylogeny, and find strong evidence for the latter hypothesis. Phenetic analysis of reconstructed ancestors suggests that maxillate placoderms are the most plesiomorphic known gnathostomes, and the shared cranial architecture of arthrodire placoderms, maxillate placoderms and osteichthyans is inherited. We suggest that the gnathostome ancestor possessed maxillae and premaxillae with facial and palatal laminae, and that these bones underwent divergent evolutionary trajectories in placoderms and osteichthyans.
Collapse
|
9
|
Abstract
Plants and animals are both important for studies in evolutionary developmental biology (EvoDevo). Plant morphology as a valuable discipline of EvoDevo is set for a paradigm shift. Process thinking and the continuum approach in plant morphology allow us to perceive and interpret growing plants as combinations of developmental processes rather than as assemblages of structural units (“organs”) such as roots, stems, leaves, and flowers. These dynamic philosophical perspectives were already favored by botanists and philosophers such as Agnes Arber (1879–1960) and Rolf Sattler (*1936). The acceptance of growing plants as dynamic continua inspires EvoDevo scientists such as developmental geneticists and evolutionary biologists to move towards a more holistic understanding of plants in time and space. This review will appeal to many young scientists in the plant development research fields. It covers a wide range of relevant publications from the past to present.
Collapse
|
10
|
Ochoterena H, Vrijdaghs A, Smets E, Claßen-Bockhoff R. The Search for Common Origin: Homology Revisited. Syst Biol 2019; 68:767-780. [PMID: 30796841 PMCID: PMC6701455 DOI: 10.1093/sysbio/syz013] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 02/11/2019] [Accepted: 02/14/2019] [Indexed: 11/17/2022] Open
Abstract
Understanding the evolution of biodiversity on Earth is a central aim in biology. Currently, various disciplines of science contribute to unravel evolution at all levels of life, from individual organisms to species and higher ranks, using different approaches and specific terminologies. The search for common origin, traditionally called homology, is a connecting paradigm of all studies related to evolution. However, it is not always sufficiently taken into account that defining homology depends on the hierarchical level studied (organism, population, and species), which can cause confusion. Therefore, we propose a framework to define homologies making use of existing terms, which refer to homology in different fields, but restricting them to an unambiguous meaning and a particular hierarchical level. We propose to use the overarching term "homology" only when "morphological homology," "vertical gene transfer," and "phylogenetic homology" are confirmed. Consequently, neither phylogenetic nor morphological homology is equal to homology. This article is intended for readers with different research backgrounds. We challenge their traditional approaches, inviting them to consider the proposed framework and offering them a new perspective for their own research.
Collapse
Affiliation(s)
- Helga Ochoterena
- Instituto de Biología, Universidad Nacional Autónoma de México, Apdo. Postal 70-233, CdMx 04510, Mexico
| | - Alexander Vrijdaghs
- Ecology, Evolution and Biodiversity Conservation, KU Leuven, Kasteelpark Arenberg 31, Box 2437, BE-3001 Leuven, Belgium
- Botanic Garden Meise, Nieuwelaan 38 BE-1860 Meise, Belgium
| | - Erik Smets
- Ecology, Evolution and Biodiversity Conservation, KU Leuven, Kasteelpark Arenberg 31, Box 2437, BE-3001 Leuven, Belgium
- Naturalis Biodiversity Center, PO Box 9517, 2300 RA, Leiden, The Netherlands
| | - Regine Claßen-Bockhoff
- Institute of Organismic and Molecular Evolution (iomE), Johannes Gutenberg-Universität Mainz, Saarstraße, 55099 Mainz, Germany
| |
Collapse
|
11
|
Ronse De Craene L. Understanding the role of floral development in the evolution of angiosperm flowers: clarifications from a historical and physico-dynamic perspective. JOURNAL OF PLANT RESEARCH 2018; 131:367-393. [PMID: 29589194 DOI: 10.1007/s10265-018-1021-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/14/2018] [Indexed: 05/26/2023]
Abstract
Flower morphology results from the interaction of an established genetic program, the influence of external forces induced by pollination systems, and physical forces acting before, during and after initiation. Floral ontogeny, as the process of development from a meristem to a fully developed flower, can be approached either from a historical perspective, as a "recapitulation of the phylogeny" mainly explained as a process of genetic mutations through time, or from a physico-dynamic perspective, where time, spatial pressures, and growth processes are determining factors in creating the floral morphospace. The first (historical) perspective clarifies how flower morphology is the result of development over time, where evolutionary changes are only possible using building blocks that are available at a certain stage in the developmental history. Flowers are regulated by genetically determined constraints and development clarifies specific transitions between different floral morphs. These constraints are the result of inherent mutations or are induced by the interaction of flowers with pollinators. The second (physico-dynamic) perspective explains how changes in the physical environment of apical meristems create shifts in ontogeny and this is reflected in the morphospace of flowers. Changes in morphology are mainly induced by shifts in space, caused by the time of initiation (heterochrony), pressure of organs, and alterations of the size of the floral meristem, and these operate independently or in parallel with genetic factors. A number of examples demonstrate this interaction and its importance in the establishment of different floral forms. Both perspectives are complementary and should be considered in the understanding of factors regulating floral development. It is suggested that floral evolution is the result of alternating bursts of physical constraints and genetic stabilization processes following each other in succession. Future research needs to combine these different perspectives in understanding the evolution of floral systems and their diversification.
Collapse
|
12
|
A Conserved Developmental Mechanism Builds Complex Visual Systems in Insects and Vertebrates. Curr Biol 2017; 26:R1001-R1009. [PMID: 27780043 DOI: 10.1016/j.cub.2016.08.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The visual systems of vertebrates and many other bilaterian clades consist of complex neural structures guiding a wide spectrum of behaviors. Homologies at the level of cell types and even discrete neural circuits have been proposed, but many questions of how the architecture of visual neuropils evolved among different phyla remain open. In this review we argue that the profound conservation of genetic and developmental steps generating the eye and its target neuropils in fish and fruit flies supports a homology between some core elements of bilaterian visual circuitries. Fish retina and tectum, and fly optic lobe, develop from a partitioned, unidirectionally proliferating neurectodermal domain that combines slowly dividing neuroepithelial stem cells and rapidly amplifying progenitors with shared genetic signatures to generate large numbers and different types of neurons in a temporally ordered way. This peculiar 'conveyor belt neurogenesis' could play an essential role in generating the topographically ordered circuitry of the visual system.
Collapse
|
13
|
Riley C, Cloutier R, Grogan ED. Similarity of morphological composition and developmental patterning in paired fins of the elephant shark. Sci Rep 2017; 7:9985. [PMID: 28855616 PMCID: PMC5577158 DOI: 10.1038/s41598-017-10538-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 08/10/2017] [Indexed: 11/25/2022] Open
Abstract
Jawed vertebrates, or gnathostomes, have two sets of paired appendages, pectoral and pelvic fins in fishes and fore- and hindlimbs in tetrapods. As for paired limbs, paired fins are purported serial homologues, and the advent of pelvic fins has been hypothesized to have resulted from a duplication of the developmental mechanisms present in the pectoral fins, but re-iterated at a posterior location. Developmental similarity of gene expression between pectoral and pelvic fins has been documented in chondrichthyans, but a detailed morphological description of the progression of paired fin development for this group is still lacking. We studied paired fin development in an ontogenetic series of a phylogenetically basal chondrichthyan, the elephant shark Callorhinchus milii. A strong similarity in the morphology and progression of chondrification between the pectoral and pelvic fins was found, which could be interpretated as further evidence of serial homology in paired fins, that could have arisen by duplication. Furthermore, this high degree of morphological and developmental similarity suggests the presence of morphological and developmental modules within paired fins, as observed in paired limbs. This is the first time morphological and developmental modules are described for the paired fins of chimaeras.
Collapse
Affiliation(s)
- Cyrena Riley
- Laboratoire de Paléontologie et Biologie évolutive, Université du Québec à Rimouski, Rimouski, Québec, G5L 3A1, Canada
| | - Richard Cloutier
- Laboratoire de Paléontologie et Biologie évolutive, Université du Québec à Rimouski, Rimouski, Québec, G5L 3A1, Canada.
| | - Eileen D Grogan
- Biology Department, Saint Joseph's University, Philadelphia, Pennsylvania, 19131, USA
| |
Collapse
|
14
|
Pantalacci S, Guéguen L, Petit C, Lambert A, Peterkovà R, Sémon M. Transcriptomic signatures shaped by cell proportions shed light on comparative developmental biology. Genome Biol 2017; 18:29. [PMID: 28202034 PMCID: PMC5312534 DOI: 10.1186/s13059-017-1157-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 01/19/2017] [Indexed: 11/10/2022] Open
Abstract
Background Comparative transcriptomics can answer many questions in developmental and evolutionary developmental biology. Most transcriptomic studies start by showing global patterns of variation in transcriptomes that differ between species or organs through developmental time. However, little is known about the kinds of expression differences that shape these patterns. Results We compared transcriptomes during the development of two morphologically distinct serial organs, the upper and lower first molars of the mouse. We found that these two types of teeth largely share the same gene expression dynamics but that three major transcriptomic signatures distinguish them, all of which are shaped by differences in the relative abundance of different cell types. First, lower/upper molar differences are maintained throughout morphogenesis and stem from differences in the relative abundance of mesenchyme and from constant differences in gene expression within tissues. Second, there are clear time-shift differences in the transcriptomes of the two molars related to cusp tissue abundance. Third, the transcriptomes differ most during early-mid crown morphogenesis, corresponding to exaggerated morphogenetic processes in the upper molar involving fewer mitotic cells but more migrating cells. From these findings, we formulate hypotheses about the mechanisms enabling the two molars to reach different phenotypes. We also successfully applied our approach to forelimb and hindlimb development. Conclusions Gene expression in a complex tissue reflects not only transcriptional regulation but also abundance of different cell types. This knowledge provides valuable insights into the cellular processes underpinning differences in organ development. Our approach should be applicable to most comparative developmental contexts. Electronic supplementary material The online version of this article (doi:10.1186/s13059-017-1157-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sophie Pantalacci
- UnivLyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, Laboratoire de Biologie et Modélisation de la Cellule, 15 parvis Descartes, F-69007, Lyon, France.
| | - Laurent Guéguen
- Laboratoire de Biométrie et Biologie Évolutive (LBBE), Université de Lyon, Université Lyon 1, CNRS, Villeurbanne, France
| | - Coraline Petit
- UnivLyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, Laboratoire de Biologie et Modélisation de la Cellule, 15 parvis Descartes, F-69007, Lyon, France
| | - Anne Lambert
- UnivLyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, Laboratoire de Biologie et Modélisation de la Cellule, 15 parvis Descartes, F-69007, Lyon, France
| | - Renata Peterkovà
- Department of Teratology, Institute of Experimental Medicine, Academy of Sciences AS CR, Videnska 1083, 142 20, Prague, Czech Republic
| | - Marie Sémon
- UnivLyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, Laboratoire de Biologie et Modélisation de la Cellule, 15 parvis Descartes, F-69007, Lyon, France.
| |
Collapse
|
15
|
Santos ME, Baldo L, Gu L, Boileau N, Musilova Z, Salzburger W. Comparative transcriptomics of anal fin pigmentation patterns in cichlid fishes. BMC Genomics 2016; 17:712. [PMID: 27600936 PMCID: PMC5012078 DOI: 10.1186/s12864-016-3046-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 08/27/2016] [Indexed: 11/10/2022] Open
Abstract
Background Understanding the genetic basis of novel traits is a central topic in evolutionary biology. Two novel pigmentation phenotypes, egg-spots and blotches, emerged during the rapid diversification of East African cichlid fishes. Egg-spots are circular pigmentation markings on the anal fins of hundreds of derived haplochromine cichlids species, whereas blotches are patches of conspicuous anal fin pigmentation with ill-defined boundaries that occur in few species that belong to basal cichlid lineages. Both traits play an important role in the breeding behavior of this group of fishes. Knowledge about the origin, homology and underlying genetics of these pigmentation traits is sparse. Results Here, we present a comparative transcriptomic and differential gene expression analysis of egg-spots and blotches. We first conducted an RNA sequencing experiment where we compared egg-spot tissue with the remaining portion of egg-spot-free fin tissue using six individuals of Astatotilapia burtoni. We identified 1229 differentially expressed genes between the two tissue types. We then showed that rates of evolution of these genes are higher than average estimated on whole transcriptome data. Using quantitative real-time PCR, we found that 29 out of a subset of 46 differentially expressed genes showed an analogous expression pattern in another haplochromine species’ egg-spots, Cynotilapia pulpican, strongly suggesting that these genes are involved in the egg-spot phenotype. Among these are the previously identified egg-spot gene fhl2a, two known patterning genes (hoxC12a and bmp3) as well as other pigmentation related genes such as asip. Finally, we analyzed the expression patterns of the same gene subset in two species that feature blotches instead of egg-spots, one haplochromine species (Pseudocrenilabrus philander) and one ectodine species (Callochromis macrops), revealing that the expression patterns in blotches and egg-spots are rather distinct. Conclusions We identified several candidate genes that will serve as an important and useful resource for future research on the emergence and diversification of cichlid fishes’ egg-spots. Only a limited degree of conservation of gene expression patterns was detected between the egg-spots of the derived haplochromines and blotches from ancestral haplochromines, as well as between the two types of blotches, suggesting an independent origin of these traits. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3046-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- M Emília Santos
- Zoological Institute, University of Basel, Vesalgasse 1, 4051, Basel, Switzerland. .,Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure, CNRS UMR 5242, 46 Allée d'Italie, 69364, Lyon, Cedex 07, France.
| | - Laura Baldo
- Ecology Department, University of Barcelona, Av. Diagonal, 643, 08028, Barcelona, Spain
| | - Langyu Gu
- Zoological Institute, University of Basel, Vesalgasse 1, 4051, Basel, Switzerland
| | - Nicolas Boileau
- Zoological Institute, University of Basel, Vesalgasse 1, 4051, Basel, Switzerland
| | - Zuzana Musilova
- Zoological Institute, University of Basel, Vesalgasse 1, 4051, Basel, Switzerland.,Department of Zoology, Faculty of Science, Charles University in Prague, Vinicna 7, 128 44, Prague, Czech Republic
| | - Walter Salzburger
- Zoological Institute, University of Basel, Vesalgasse 1, 4051, Basel, Switzerland.
| |
Collapse
|
16
|
Bateman RM, Rudall PJ, Bidartondo MI, Cozzolino S, Tranchida-Lombardo V, Carine MA, Moura M. Speciation via floral heterochrony and presumed mycorrhizal host switching of endemic butterfly orchids on the Azorean archipelago. AMERICAN JOURNAL OF BOTANY 2014; 101:979-1001. [PMID: 24907253 DOI: 10.3732/ajb.1300430] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
• Premise of the study: Most orchid species native to the Macaronesian islands reflect immigration from western Europe or North Africa followed by anagenesis. The only putative exception is the butterfly orchids (Platanthera) of the Azores, where three species apparently reflect at least one cladogenetic speciation event. This multidisciplinary study explores the origin, speciation, phenotypic, and genotypic cohesion of these Azorean species and their mainland relatives.• Methods: Plants of Platanthera from 30 localities spanning all nine Azorean islands were compared with those of four continental European relatives for 38 morphometric characters; substantial subsets were also analyzed for plastid microsatellites, and for nrITS of both the orchids and their mycorrhizae.• Key results: Although the three Azorean and four mainland species are all readily distinguished morphometrically using several floral characters, and hybridization appears rare, divergence in ITS and especially plastid sequences is small. Despite occupying similar laurisilva habitats, the Azorean species differ radically in the identities and diversity of their mycorrhizal partners; specialism apparently increases rarity.• Conclusions: Although morphological evidence suggests two invasions of the islands from NW Africa and/or SW Europe, ITS data imply only one. As the molecular data are unable to distinguish among the potential mainland ancestors, two scenarios of relationship are explored that imply different ancestors. Both scenarios require both anagenetic and cladogenetic speciation events, involving homoplastic shifts in overall flower size and (often substantial) changes in the relative dimensions of individual floral organs. Limited genotypic divergence among the three species compared with greater phenotypic divergence suggests comparatively recent speciation. Mycorrhizae may be the most critical factor dictating the respective ecological tolerances, and thus the relative frequencies, of these species. The recent IUCN Red-List amalgamation of Azorean Platanthera taxa into a single species urgently requires reappraisal, as P. micrantha is an excellent indicator species of seminatural laurisilva forest and P. azorica is arguably Europe's rarest orchid.
Collapse
Affiliation(s)
| | - Paula J Rudall
- Royal Botanic Gardens Kew, Richmond, Surrey, TW9 3AB, UK
| | - Martin I Bidartondo
- Royal Botanic Gardens Kew, Richmond, Surrey, TW9 3AB, UK Imperial College London, London, SW7 2AZ, UK
| | - Salvatore Cozzolino
- Department of Biology, University Federico II of Naples, Naples, I-80126, Italy
| | | | - Mark A Carine
- Department of Life Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| | - Mónica Moura
- CIBIO Research Center in Biodiversity and Genetic Resources-Azores, Department of Biology, University of the Azores, Rua Mae de Deus 58, Apartado 1422, 9501-801 Ponta Delgada, Portugal
| |
Collapse
|
17
|
Basso-Alves JP, Pereira RAS, Peng YQ, Teixeira SP. Different ontogenetic processes promote dicliny in Ficus L. (Moraceae). ACTA OECOLOGICA 2014. [DOI: 10.1016/j.actao.2013.02.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
18
|
Riegner MF. Ancestor of the new archetypal biology: Goethe's dynamic typology as a model for contemporary evolutionary developmental biology. STUDIES IN HISTORY AND PHILOSOPHY OF BIOLOGICAL AND BIOMEDICAL SCIENCES 2013; 44:735-744. [PMID: 23871754 DOI: 10.1016/j.shpsc.2013.05.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 05/17/2013] [Accepted: 05/24/2013] [Indexed: 06/02/2023]
Abstract
As understood historically, typological thinking has no place in evolutionary biology since its conceptual framework is viewed as incompatible with population thinking. In this article, I propose that what I describe as dynamic typological thinking has been confused with, and has been overshadowed by, a static form of typological thinking. This conflation results from an inability to grasp dynamic typological thinking due to the overlooked requirement to engage our cognitive activity in an unfamiliar way. Thus, analytical thinking alone is unsuited to comprehend the nature of dynamic typological thinking. Over 200 years ago, J. W. von Goethe, in his Metamorphosis of Plants (1790) and other writings, introduced a dynamic form of typological thinking that has been traditionally misunderstood and misrepresented. I describe in detail Goethe's phenomenological methodology and its contemporary value in understanding morphological patterns in living organisms. Furthermore, contrary to the implications of static typological thinking, dynamic typological thinking is perfectly compatible with evolutionary dynamics and, if rightly understood, can contribute significantly to the still emerging field of evolutionary developmental biology (evo-devo).
Collapse
Affiliation(s)
- Mark F Riegner
- Environmental Studies Program, Prescott College, Prescott, AZ 86301, USA.
| |
Collapse
|
19
|
Remizowa MV, Rudall PJ, Choob VV, Sokoloff DD. Racemose inflorescences of monocots: structural and morphogenetic interaction at the flower/inflorescence level. ANNALS OF BOTANY 2013; 112:1553-66. [PMID: 23172413 PMCID: PMC3828938 DOI: 10.1093/aob/mcs246] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 10/01/2012] [Indexed: 05/23/2023]
Abstract
BACKGROUND Understanding and modelling early events of floral meristem patterning and floral development requires consideration of positional information regarding the organs surrounding the floral meristem, such as the flower-subtending bracts (FSBs) and floral prophylls (bracteoles). In common with models of regulation of floral patterning, the simplest models of phyllotaxy consider only unbranched uniaxial systems. Racemose inflorescences and thyrses offer a useful model system for investigating morphogenetic interactions between organs belonging to different axes. SCOPE This review considers (1) racemose inflorescences of early-divergent and lilioid monocots and their possible relationship with other inflorescence types, (2) hypotheses on the morphogenetic significance of phyllomes surrounding developing flowers, (3) patterns of FSB reduction and (4) vascular patterns in the primary inflorescence axis and lateral pedicels. CONCLUSIONS Racemose (partial) inflorescences represent the plesiomorphic condition in monocots. The presence or absence of a terminal flower or flower-like structure is labile among early-divergent monocots. In some Alismatales, a few-flowered racemose inflorescence can be entirely transformed into a terminal 'flower'. The presence or absence and position of additional phyllomes on the lateral pedicels represent important taxonomic markers and key features in regulation of flower patterning. Racemose inflorescences with a single floral prophyll are closely related to thyrses. Floral patterning is either unidirectional or simultaneous in species that lack a floral prophyll or possess a single adaxial floral prophyll and usually spiral in the outer perianth whorl in species with a transversely oriented floral prophyll. Inhibitory fields of surrounding phyllomes are relevant but insufficient to explain these patterns; other important factors are meristem space economy and/or the inhibitory activity of the primary inflorescence axis. Two patterns of FSB reduction exist in basal monocots: (1) complete FSB suppression (cryptic flower-subtending bract) and (2) formation of a 'hybrid' organ by overlap of the developmental programmes of the FSB and the first abaxial organ formed on the floral pedicel. FSB reduction affects patterns of interaction between the conductive systems of the flower and the primary inflorescence axis.
Collapse
Affiliation(s)
| | | | - Vladimir V. Choob
- Biological Faculty, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Dmitry D. Sokoloff
- Biological Faculty, Lomonosov Moscow State University, 119234 Moscow, Russia
| |
Collapse
|
20
|
|
21
|
Moore DS. Importing the homology concept from biology into developmental psychology. Dev Psychobiol 2012; 55:13-21. [PMID: 22711075 DOI: 10.1002/dev.21015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 01/10/2012] [Indexed: 11/09/2022]
Abstract
To help introduce the idea of homology into developmental psychology, this article presents some of the concepts, distinctions, and guidelines biologists and philosophers of biology have devised to study homology. Some unresolved issues related to this idea are considered as well. Because homology reflects continuity across time, developmental scientists should find this concept to be useful in the study of psychological/behavioral development, just as biologists have found it essential in the study of the evolution and development of morphological and other characteristics.
Collapse
Affiliation(s)
- David S Moore
- Pitzer College & Claremont Graduate University, Claremont, CA 91711, USA.
| |
Collapse
|
22
|
Hall BK. Homology, homoplasy, novelty, and behavior. Dev Psychobiol 2012; 55:4-12. [PMID: 22711423 DOI: 10.1002/dev.21039] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 03/28/2012] [Indexed: 12/26/2022]
Abstract
Richard Owen coined the modern definition of homology in 1843. Owen's conception of homology was pre-evolutionary, nontransformative (homology maintained basic plans or archetypes), and applied to the fully formed structures of animals. I sketch out the transition to an evolutionary approach to homology in which all classes of similarity are interpreted against the single branching tree of life, and outline the evidence for the application of homology across all levels and features of the biological hierarchy, including behavior. Owen contrasted homology with analogy. While this is not incorrect it is a pre-evolutionary contrast. Lankester [Lankester [1870] Journal of Natural History, 6 (31), 34-43] proposed homoplasy as the class of homology applicable to features formed by independent evolution. Today we identify homology, convergence, parallelism, and novelties as patterns of evolutionary change. A central issue in homology [Owen [1843] Lectures on comparative anatomy and physiology of the invertebrate animals, delivered at the Royal College of Surgeons in 1843. London: Longman, Brown, Green & Longmans] has been whether homology of features-the "same" portion of the brain in different species, for example-depends upon those features sharing common developmental pathways. Owen did not require this criterion, although he observed that homologues often do share developmental pathways (and we now know, often share gene pathways). A similar situation has been explored in the study of behavior, especially whether behaviors must share a common structural, developmental, neural, or genetic basis to be classified as homologous. However, and importantly, development and genes evolve. As shown with both theory and examples, morphological and behavioral features of the phenotype can be homologized as structural or behavioral homologues, respectively, even when their developmental or genetic bases differ (are not homologous).
Collapse
Affiliation(s)
- Brian K Hall
- Department of Biology, Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
23
|
Płachno BJ, Swiątek P. Syncytia in plants: cell fusion in endosperm-placental syncytium formation in Utricularia (Lentibulariaceae). PROTOPLASMA 2011; 248:425-35. [PMID: 20567861 DOI: 10.1007/s00709-010-0173-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Accepted: 06/08/2010] [Indexed: 05/22/2023]
Abstract
The syncytium formed by Utricularia is extremely unusual and perhaps unique among angiosperm syncytia. All typical plant syncytia (articulated laticifers, amoeboid tapetum, the nucellar plasmodium of river weeds) are formed only by fusion of sporophytic cells which possess the same genetic material, unlike Utricularia in which the syncytium possesses nuclei from two different sources: cells of maternal sporophytic nutritive tissue and endosperm haustorium (both maternal and paternal genetic material). How is this kind of syncytium formed and organized and is it similar to other plant syncytial structures? We used light and electron microscopy to reconstruct the step-by-step development of the Utricularia syncytia. The syncytia of Utricularia developed through heterotypic cell fusion involving the digestion of the cell wall, and finally, heterokaryotic multinucleate structures were formed, which possessed different-sized nuclei that were not regularly arranged in the cytoplasm. We showed that these syncytia were characterized by hypertrophy of nuclei, abundant endoplasmic reticulum and organelles, and the occurrence of wall ingrowths. All these characters testify to high activity and may confirm the nutritive and transport functions of the syncytium for the developing embryo. In Utricularia, the formation of the syncytium provides an economical way to redistribute cell components and release nutrients from the digested cell walls, which can now be used for the embryo, and finally to create a large surface for the exchange of nutrients between the placenta and endosperm.
Collapse
Affiliation(s)
- Bartosz J Płachno
- Department of Plant Cytology and Embryology, Jagiellonian University, 52 Grodzka st, 31-044, Cracow, Poland.
| | | |
Collapse
|
24
|
Bourque L, Lacroix C. Lobe-generating centres in the simple leaves of Myriophyllum aquaticum: evidence for KN1-like activity. ANNALS OF BOTANY 2011; 107:639-651. [PMID: 21330333 PMCID: PMC3064546 DOI: 10.1093/aob/mcr014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 11/29/2010] [Accepted: 12/21/2010] [Indexed: 05/30/2023]
Abstract
BACKGROUND AND AIMS The mature morphology of most plants can usually be said to consist of three mutually exclusive organs: leaves, stems, and roots. The vast majority of mature morphologies may be easily grouped into one of these mutually exclusive categories. However, during very early stages of development and in many instances from inception, the division between organ categories becomes fuzzy due to the overlap in developmental processes that are shared between the aforementioned mutually exclusive categories. One such overlap has been described at the gene level where KNOXI homologues, transcription factors responsible for maintaining indeterminate cell fate, are expressed in the shoot apical meristem and during early stages of compound leaf development. This study characterizes the occurrence and spatial localization of mRNA of a KNOXI homologue, MaKN1, during the early stages of development in the simple leaves of Myriophyllum aquaticum, an aquatic angiosperm from the family Haloragaceae exhibiting pentamerous whorls of finely lobed leaves. METHODS A 300-bp KNOXI fragment was sequenced from M. aquaticum and used in an RNA localization study to determine the temporal and spatial expression of KNOXI during the early stages of leaf lobe development in M. aquaticum. The developmental sequence of leaves of M. aquaticum was also described using scanning electron microscopy. KEY RESULTS Lobe development of M. aquaticum occurs in two very distinct regions at the leaf base in an alternating fashion reminiscent of a distichous shoot system. It was discovered that MaKN1 expression is localized to both the shoot apical meristem and early stages of leaf primordia development (P1-P7). Initially, MaKN1 is expressed ubiquitously throughout primordia (P1-P3); however, as lobes develop, MaKN1 becomes localized to recently emerged lobe primordia, and disappears as lobes develop basipetally. CONCLUSIONS The pattern of gene expression is indicative of shared developmental processes during early development between shoots, compound leaves, highly lobed simple leaves and unifoliate simple leaves which lack KNOXI expression. These findings are supportive of Arber's less rigid 'partial shoot' theory, which conceptualizes compound leaves as having shoot-like elements.
Collapse
|
25
|
Płachno BJ. Female germ unit in Genlisea and Utricularia, with remarks about the evolution of the extra-ovular female gametophyte in members of Lentibulariaceae. PROTOPLASMA 2011; 248:391-404. [PMID: 20689973 PMCID: PMC3066386 DOI: 10.1007/s00709-010-0185-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Accepted: 07/14/2010] [Indexed: 05/22/2023]
Abstract
Lentibulariaceae is the largest family among carnivorous plants which displays not only an unusual morphology and anatomy but also the special evolution of its embryological characteristics. It has previously been reported by authors that Utricularia species lack a filiform apparatus in the synergids. The main purposes of this study were to determine whether a filiform apparatus occurs in the synergids of Utricularia and its sister genus Genlisea, and to compare the female germ unit in these genera. The present studies clearly show that synergids in both genera possess a filiform apparatus; however, it seems that Utricularia quelchii synergids have a simpler structure compared to Genlisea aurea and other typical angiosperms. The synergids are located at the terminal position in the embryo sacs of Pinguicula, Genlisea and were probably also located in that position in common Utricularia ancestor. This ancestral characteristic still occurs in some species from the Bivalvaria subgenus. An embryo sac, which grows out beyond the limit of the integument and has contact with nutritive tissue, appeared independently in different Utricularia lineages and as a consequence of this, the egg apparatus changes position from apical to lateral.
Collapse
Affiliation(s)
- Bartosz Jan Płachno
- Department of Plant Cytology and Embryology, Jagiellonian University, 52 Grodzka st., 31-044, Cracow, Poland.
| |
Collapse
|
26
|
Abstract
AbstractNeural reuse theories should interest developmental psychologists because these theories can potentially illuminate the developmental relations among psychological characteristics observed across the lifespan. Characteristics that develop by exploiting pre-existing neural circuits can be thought of as developmental homologues. And, understood in this way, the homology concept that has proven valuable for evolutionary biologists can be used productively to study psychological/behavioral development.
Collapse
|
27
|
Abstract
Over the past decade, it has been discovered that disparate aspects of morphology - often of distantly related groups of organisms - are regulated by the same genetic regulatory mechanisms. Those discoveries provide a new perspective on morphological evolutionary change. A conceptual framework for exploring these research findings is termed 'deep homology'. A comparative framework for morphological relations of homology is provided that distinguishes analogy, homoplasy, plesiomorphy and synapomorphy. Four examples - three from plants and one from animals - demonstrate that homologous developmental mechanisms can regulate a range of morphological relations including analogy, homoplasy and examples of uncertain homology. Deep homology is part of a much wider range of phenomena in which biological (genes, regulatory mechanisms, morphological traits) and phylogenetic levels of homology can both be disassociated. Therefore, to understand homology, precise, comparative, independent statements of both biological and phylogenetic levels of homology are necessary.
Collapse
|
28
|
Kirchoff BK, Lagomarsino LP, Newman WH, Bartlett ME, Specht CD. Early floral development of Heliconia latispatha (Heliconiaceae), a key taxon for understanding the evolution of flower development in the Zingiberales. AMERICAN JOURNAL OF BOTANY 2009; 96:580-593. [PMID: 21628214 DOI: 10.3732/ajb.0800305] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
We present new comparative data on early floral development of Heliconia latispatha, an ecologically and horticulturally important tropical plant within the order Zingiberales. Modification of the six members of two androecial whorls is characteristic of Zingiberales, with a reduction in number of fertile stamen from five or six in the banana families (Musaceae, Strelitziaceae, Lowiaceae, and Heliconiaceae) to one in Costaceae and Zingiberaceae and one-half in Marantaceae and Cannaceae. The remaining five infertile stamens in these later four families (the ginger families) are petaloid, and in Costaceae and Zingiberaceae fuse together to form a novel structure, the labellum. Within this developmental sequence, Heliconiaceae share with the ginger families the possession of an antisepalous staminode, a synapomorphy that has been used to place Heliconiaceae as sister to the ginger family clade. Here, we use epi-illumination light microscopy and reconstruction of serial sections to investigate the ontogeny of the Heliconia flower with emphasis on the ontogeny of the staminode. We compare floral development in Heliconia with that previously described for other species of Zingiberales. A comparison of floral structure and development across Zingiberales is presented to better understand the evolution of the flower in this charismatic group of tropical plants.
Collapse
Affiliation(s)
- Bruce K Kirchoff
- Department of Biology, P.O. Box 26170, University of North Carolina at Greensboro, Greensboro, North Carolina 27402-6170 USA
| | | | | | | | | |
Collapse
|
29
|
Manuel M. Early evolution of symmetry and polarity in metazoan body plans. C R Biol 2009; 332:184-209. [DOI: 10.1016/j.crvi.2008.07.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Accepted: 07/21/2008] [Indexed: 10/21/2022]
|
30
|
Ramírez MJ. Homology as a parsimony problem: a dynamic homology approach for morphological data. Cladistics 2007; 23:588-612. [PMID: 34905870 DOI: 10.1111/j.1096-0031.2007.00162.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The primary data used to reconstruct phylogenies comes organized in the conceptual grid of homology correspondences, and the construction of this theory-rich grid depends in part on knowledge of relationships. This situation is not satisfactory as a conceptual system, because the evidence is not clearly delimited from the results. I explore the testing of alternative hypotheses of morphological correspondences in a quantitative cladistic context. The varying homology assessments implied by classical criteria of homology (topological equivalence, or position and connections; composition of structures, or commonality in details of construction) can be expressed as regular characters in a cladistic analysis. Doing so provides adequate transformation costs for changes in schemas of correspondences. Correspondences imply evolutionary transformations, and multiple schemas of correspondences can be compared according to the evolutionary transformations that they imply. The method is used to test the correspondences in sclerites of the male copulatory organs of spiders of the subfamily Amaurobioidinae (Arachnida, Araneae, Anyphaenidae). The correspondences of three sclerites are tested, in a data set of 93 species having one, two or three sclerites, using a simultaneous analysis of all the morphological characters. Most parsimonious trees are identified together with the correspondences they imply. Once the correspondences are integrated in the phylogenetic analysis, it is easy to evaluate the robustness of trees or decay in optimality after changes in anatomical interpretations. A Bremer support for anatomical interpretations is proposed, calculated as the increase in tree length when the specific interpretation is not used.
Collapse
|
31
|
Padberg J, Franca JG, Cooke DF, Soares JGM, Rosa MGP, Fiorani M, Gattass R, Krubitzer L. Parallel evolution of cortical areas involved in skilled hand use. J Neurosci 2007; 27:10106-15. [PMID: 17881517 PMCID: PMC6672662 DOI: 10.1523/jneurosci.2632-07.2007] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Dexterous hands, used to manipulate food, tools, and other objects, are one of the hallmarks of primate evolution. However, the neural substrate of fine manual control necessary for these behaviors remains unclear. Here, we describe the functional organization of parietal cortical areas 2 and 5 in the cebus monkey. Whereas other New World monkeys can be quite dexterous, and possess a poorly developed area 5, cebus monkeys are the only New World primate known to use a precision grip, and thus have an extended repertoire of manual behaviors. Unlike other New World Monkeys, but much like the macaque monkey, cebus monkeys possess a proprioceptive cortical area 2 and a well developed area 5, which is associated with motor planning and the generation of internal body coordinates necessary for visually guided reaching, grasping, and manipulation. The similarity of these fields in cebus monkeys and distantly related macaque monkeys with similar manual abilities indicates that the range of cortical organizations that can emerge in primates is constrained, and those that emerge are the result of highly conserved developmental mechanisms that shape the boundaries and topographic organizations of cortical areas.
Collapse
Affiliation(s)
| | - João G. Franca
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, CEP 21941-902, Rio de Janeiro, Brazil, and
| | | | - Juliana G. M. Soares
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, CEP 21941-902, Rio de Janeiro, Brazil, and
| | - Marcello G. P. Rosa
- Department of Physiology, Monash University, Melbourne, Victoria 3800, Australia
| | - Mario Fiorani
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, CEP 21941-902, Rio de Janeiro, Brazil, and
| | - Ricardo Gattass
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, CEP 21941-902, Rio de Janeiro, Brazil, and
| | - Leah Krubitzer
- Center for Neuroscience
- Department of Psychology, University of California, Davis, California 95618
| |
Collapse
|
32
|
Kleisner K. The formation of the theory of homology in biological sciences. Acta Biotheor 2007; 55:317-40. [PMID: 17929173 DOI: 10.1007/s10441-007-9023-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2006] [Accepted: 09/07/2007] [Indexed: 11/26/2022]
Abstract
Homology is among the most important comparative concepts in biology. Today, the evolutionary reinterpretation of homology is usually conceived of as the most important event in the development of the concept. This paradigmatic turning point, however important for the historical explanation of life, is not of crucial importance for the development of the concept of homology itself. In the broadest sense, homology can be understood as sameness in reference to the universal guarantor so that in this sense the different concepts of homology show a certain kind of "metahomology". This holds in the old morphological conception, as well as in the evolutionary usage of homology. Depending on what is (or was) taken as a guarantor, different types of homology may be distinguished (as idealistic, historical, developmental etc.). This study represents a historical overview of the development of the homology concept followed by some clues on how to navigate the pluralistic terminology of modern approaches to homology.
Collapse
Affiliation(s)
- Karel Kleisner
- Department of History and Philosophy of Science, Charles University, Vinicná 7, Prague, 128 44, Czech Republic.
| |
Collapse
|
33
|
Cobbett A, Wilkinson M, Wills MA. Fossils impact as hard as living taxa in parsimony analyses of morphology. Syst Biol 2007; 56:753-66. [PMID: 17886145 DOI: 10.1080/10635150701627296] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Systematists disagree whether data from fossils should be included in parsimony analyses. In a handful of well-documented cases, the addition of fossil data radically overturns a hypothesis of relationships based on extant taxa alone. Fossils can break up long branches and preserve character combinations closer in time to deep splitting events. However, fossils usually require more interpretation than extant taxa, introducing greater potential for spurious codings. Moreover, because fossils often have more "missing" codings, they are frequently accused of increasing numbers of MPTs, frustrating resolution and reducing support. Despite the controversy, remarkably little is known about the effects of fossils more generally. Here we provide the first systematic study, investigating empirically the behavior of fossil and extant taxa in 45 published morphological data sets. First-order jackknifing is used to determine the effects that each terminal has on inferred relationships, on the number of MPTs, and on CI' and RI as measures of homoplasy. Bootstrap leaf stabilities provide a proxy for the contribution of individual taxa to the branch support in the rest of the tree. There is no significant difference in the impact of fossil versus extant taxa on relationships, numbers of MPTs, and CI' or RI. However, adding individual fossil taxa is more likely to reduce the total branch support of the tree than adding extant taxa. This must be weighed against the superior taxon sampling afforded by including judiciously coded fossils, providing data from otherwise unsampled regions of the tree. We therefore recommend that investigators should include fossils, in the absence of compelling and case specific reasons for their exclusion.
Collapse
Affiliation(s)
- Andrea Cobbett
- Department of Biology and Biochemistry, The University of Bath, Claverton Down, Bath, UK
| | | | | |
Collapse
|
34
|
Brazhnik O, Jones JF. Anatomy of data integration. J Biomed Inform 2007; 40:252-69. [PMID: 17071142 PMCID: PMC2094006 DOI: 10.1016/j.jbi.2006.09.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2005] [Revised: 09/11/2006] [Accepted: 09/19/2006] [Indexed: 01/23/2023]
Abstract
Producing reliable information is the ultimate goal of data processing. The ocean of data created with the advances of science and technologies calls for integration of data coming from heterogeneous sources that are diverse in their purposes, business rules, underlying models and enabling technologies. Reference models, Semantic Web, standards, ontology, and other technologies enable fast and efficient merging of heterogeneous data, while the reliability of produced information is largely defined by how well the data represent the reality. In this paper, we initiate a framework for assessing the informational value of data that includes data dimensions; aligning data quality with business practices; identifying authoritative sources and integration keys; merging models; uniting updates of varying frequency and overlapping or gapped data sets.
Collapse
Affiliation(s)
- Olga Brazhnik
- Center for Information Technology, National Institutes of Health, 10401 Fernwood Road, Room 3NW03, Bethesda, MD 20817, USA.
| | | |
Collapse
|
35
|
Grob V, Moline P, Pfeifer E, Novelo AR, Rutishauser R. Developmental morphology of branching flowers in Nymphaea prolifera. JOURNAL OF PLANT RESEARCH 2006; 119:561-70. [PMID: 17021936 DOI: 10.1007/s10265-006-0021-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2006] [Accepted: 05/29/2006] [Indexed: 05/12/2023]
Abstract
Nymphaea and Nuphar (Nymphaeaceae) share an extra-axillary mode of floral inception in the shoot apical meristem (SAM). Some leaf sites along the ontogenetic spiral are occupied by floral primordia lacking a subtending bract. This pattern of flower initiation in leaf sites is repeated inside branching flowers of Nymphaea prolifera (Central and South America). Instead of fertile flowers this species usually produces sterile tuberiferous flowers that act as vegetative propagules. N. prolifera changes the meristem identity from reproductive to vegetative or vice versa repeatedly. Each branching flower first produces some perianth-like leaves, then it switches back to the vegetative meristem identity of the SAM with the formation of foliage leaves and another set of branching flowers. This process is repeated up to three times giving rise to more than 100 vegetative propagules. The developmental morphology of the branching flowers of N. prolifera is described using both microtome sections and scanning electron microscopy.
Collapse
Affiliation(s)
- Valentin Grob
- Institut für Systematische Botanik, Universität Zürich, Zollikerstrasse 107, Zurich, Switzerland
| | | | | | | | | |
Collapse
|
36
|
Sokoloff D, Rudall PJ, Remizowa M. Flower-like terminal structures in racemose inflorescences: a tool in morphogenetic and evolutionary research. JOURNAL OF EXPERIMENTAL BOTANY 2006; 57:3517-30. [PMID: 17005921 DOI: 10.1093/jxb/erl126] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Terminal flower-like structures (TFLS) occur in many angiosperms that possess indeterminate inflorescences such as spikes, racemes, or spadices. We describe and review TFLS in early-divergent angiosperms, especially the magnoliid order Piperales and the monocot order Alismatales, in which floral interpretation is controversial. Essentially similar TFLS occur in a wide range of taxa. Among magnoliids, they occur in some Piperales (Saururaceae and a few Piperaceae), but are absent from Chloranthaceae. Among monocots, they occur in some early-divergent families such as Acoraceae, Aponogetonaceae, Juncaginaceae, Potamogetonaceae, and Ruppiaceae. Similar TFLS with obscure organ identity are recorded in mutants of Arabidopsis. TFLS can often be interpreted as pseudanthia (close aggregations of reduced flowers), but in some cases the entire terminal pseudanthium is very similar to a true flower. In some cases, elaborated TFLS could therefore have given rise to what are normally termed 'true' (i.e. euanthial) flowers. Data presented here on terminal pseudanthia in Potamogeton and Ruppia support a pseudanthial evolutionary origin of reproductive units in the alismatid families Zannichelliaceae and Cymodoceaceae. Furthermore, in some alismatid species, either the entire inflorescence apex or an individual primordium at or near the inflorescence tip can be transformed into a filamentous or tubular (or intermediate) structure. A tubular structure enclosing stamens and carpels is described in Piper. This indicates that pseudanthium formation can provoke morphological novelties, perhaps due to new patterns of overlap between expression zones of regulatory genes and/or new spatial constraints.
Collapse
Affiliation(s)
- Dmitry Sokoloff
- Higher Plants Department, Biological Faculty, Moscow State University, 119992, Moscow, Russia
| | | | | |
Collapse
|
37
|
Theissen G. The proper place of hopeful monsters in evolutionary biology. Theory Biosci 2005; 124:349-69. [PMID: 17046365 DOI: 10.1016/j.thbio.2005.11.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2005] [Accepted: 11/13/2005] [Indexed: 11/25/2022]
Abstract
Hopeful monsters are organisms with a profound mutant phenotype that have the potential to establish a new evolutionary lineage. The Synthetic Theory of evolutionary biology has rejected the evolutionary relevance of hopeful monsters, but could not fully explain the mechanism and mode of macroevolution. On the other hand, several lines of evidence suggest that hopeful monsters played an important role during the origin of key innovations and novel body plans by saltational rather than gradual evolution. Homeotic mutants are identified as an especially promising class of hopeful monsters. Examples for animal and plant lineages that may have originated as hopeful monsters are given. Nevertheless, a brief review of the history of the concept of hopeful monsters reveals that it needs refinements and empirical tests if it is to be a useful addition to evolutionary biology. While evolutionary biology is traditionally zoocentric, hopeful monsters might be more relevant for plant than for animal evolution. Even though during recent years developmental genetics has provided detailed knowledge about how hopeful monsters can originate in the first place, we know almost nothing about their performance in natural populations and thus the ultimate difference between hopeful and hopeless. Studying the fitness of candidate hopeful monsters (suitable mutants with profound phenotype) in natural habitats thus remains a considerable challenge for the future.
Collapse
Affiliation(s)
- Günter Theissen
- Friedrich-Schiller-Universität Jena, Lehrstuhl für Genetik, Philosophenweg 12, D-07743 Jena, Germany.
| |
Collapse
|