1
|
Wu L, Bao F, Li L, Yin X, Hua Z. Bacterially mediated drug delivery and therapeutics: Strategies and advancements. Adv Drug Deliv Rev 2022; 187:114363. [PMID: 35649449 DOI: 10.1016/j.addr.2022.114363] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/13/2022] [Accepted: 05/25/2022] [Indexed: 12/12/2022]
Abstract
It was already clinically apparent 150 years ago that bacterial therapy could alleviate diseases. Recently, a burgeoning number of researchers have been using bacterial regimens filled with microbial therapeutic leads to diagnose and treat a wide range of disorders and diseases, including cancers, inflammatory diseases, metabolic disorders and viral infections. Some bacteria that were designed to have low toxicity and high efficiency in drug delivery have been used to treat diseases successfully, especially in tumor therapy in animal models or clinical trials, thanks to the progress of genetic engineering and synthetic bioengineering. Therefore, genetically engineered bacteria can serve as efficient drug delivery vehicles, carrying nucleic acids or genetic circuits that encode and regulate therapeutic payloads. In this review, we summarize the development and applications of this approach. Strategies for genetically modifying strains are described in detail, along with their objectives. We also describe some controlled strategies for drug delivery and release using these modified strains as carriers. Furthermore, we discuss treatment methods for various types of diseases using engineered bacteria. Tumors are discussed as the most representative example, and other diseases are also briefly described. Finally, we discuss the challenges and prospects of drug delivery systems based on these bacteria.
Collapse
|
2
|
Liang K, Liu Q, Li P, Luo H, Wang H, Kong Q. Genetically engineered Salmonella Typhimurium: Recent advances in cancer therapy. Cancer Lett 2019; 448:168-181. [PMID: 30753837 DOI: 10.1016/j.canlet.2019.01.037] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/27/2019] [Accepted: 01/30/2019] [Indexed: 12/13/2022]
Abstract
Bacteria have been investigated as anti-tumor therapeutic agents for more than a century, since Coley first observed successful curing of a patient with inoperable cancer by injection of streptococcal organisms. Previous studies have demonstrated that some obligate or facultative anaerobes can selectively accumulate and proliferate within tumors and suppress their growth. Developments in molecular biology as well as the complete genome sequencing of many bacterial species have increased the applicability of bacterial organisms for cancer treatment. In particular, the facultative anaerobe Salmonella Typhimurium has been widely studied and genetically engineered to improve its tumor-targeting ability as well as to reduce bacterial virulence. Moreover, the effectiveness of engineered attenuated S. Typhimurium strains employed as live delivery vectors of various anti-tumor therapeutic agents or combined with other therapies has been evaluated in a large number of animal experiments. The well-known S. Typhimurium mutant VNP20009 and its derivative strain TAPET-CD have even been applied in human clinical trials. However, Salmonella-mediated cancer therapies have not achieved the expected success, except in animal experiments. Many problems remain to be solved to exploit more promising strategies for combatting cancer with Salmonella bacteria. Here, we summarize the promising studies regarding cancer therapy mediated by Salmonella bacteria and highlight the main mechanisms of Salmonella anti-tumor activities.
Collapse
Affiliation(s)
- Kang Liang
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Qing Liu
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Pei Li
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Hongyan Luo
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Haoju Wang
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China
| | - Qingke Kong
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China; Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL, 32608, USA.
| |
Collapse
|
3
|
Ichim TE, Li S, Ma H, Yurova YV, Szymanski JS, Patel AN, Kesari S, Min WP, Wagner SC. Induction of tumor inhibitory anti-angiogenic response through immunization with interferon Gamma primed placental endothelial cells: ValloVax™. J Transl Med 2015; 13:90. [PMID: 25889119 PMCID: PMC4363400 DOI: 10.1186/s12967-015-0441-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 02/18/2015] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND While the concept of angiogenesis blockade as a therapeutic intervention for cancer has been repeatedly demonstrated, the full promise of this approach has yet to be realized. Specifically, drugs such as VEGF-blocking antibodies or kinase inhibitors suffer from the drawbacks of resistance development, as well as off-target toxicities. Previous studies have demonstrated feasibility of specifically inducing immunity towards tumor endothelium without consequences of systemic autoimmunity in both animal models and clinical settings. METHOD Placenta-derived endothelial cells were isolated and pretreated with interferon gamma to enhance immunogenicity. Syngeneic mice received subcutaneous administration of B16 melanoma, 4 T1 mammary carcinoma, and Lewis Lung Carcinoma (LLC), followed by administration of control saline, control placental endothelial cells, and interferon gamma primed endothelial cells (ValloVax™). Tumor volume was quantified. An LLC metastasis model was also established and treated under similar conditions. Furthermore, a safety analysis in non-tumor bearing mice bracketing the proposed clinical dose was conducted. RESULTS ValloVax™ immunization led to significant reduction of tumor growth and metastasis as compared to administration of non-treated placental endothelial cells. Mitotic inactivation by formalin fixation or irradiation preserved tumor inhibitory activity. Twenty-eight day evaluation of healthy male and female mice immunized with ValloVax™ resulted in no abnormalities or organ toxicities. CONCLUSION Given the established rationale behind the potential therapeutic benefit of inhibiting tumor angiogenesis as a treatment for cancer, immunization against a variety of endothelial cell antigens may produce the best clinical response, enhancing efficacy and reducing the likelihood of the development of treatment resistance. These data support the clinical evaluation of irradiated ValloVax™ as an anti-angiogenic cancer vaccine.
Collapse
Affiliation(s)
- Thomas E Ichim
- Batu Biologics Inc, San Diego, 9255 Towne Centre Drive, Suite 450, San Diego, CA, 92121, USA.
| | - Shuang Li
- Department of Endocrinology, The Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, China.
| | - Hong Ma
- Batu Biologics Inc, San Diego, 9255 Towne Centre Drive, Suite 450, San Diego, CA, 92121, USA.
| | - Yuliya V Yurova
- Nova Southeastern University, Fort Lauderdale, Florida, USA.
| | - Julia S Szymanski
- Batu Biologics Inc, San Diego, 9255 Towne Centre Drive, Suite 450, San Diego, CA, 92121, USA.
| | - Amit N Patel
- Department of Surgery, University of Utah, Salt Lake City, Utah.
| | - Santosh Kesari
- Department of Neurosciences, University of California San Diego, 9500 Gilman Dr., MSC 0752, La Jolla, San Diego, CA, 92093-0752, USA. .,Translational Neuro-Oncology Laboratories, Moores Cancer Center, University of California San Diego, 3855 Health Sciences Dr., MSC 0819, La Jolla, San Diego, CA, 92093-0819, USA.
| | - Wei-Ping Min
- Department of Immunology, University of Western Ontario, London, Ontario, Canada.
| | - Samuel C Wagner
- Batu Biologics Inc, San Diego, 9255 Towne Centre Drive, Suite 450, San Diego, CA, 92121, USA.
| |
Collapse
|
4
|
Salmonella as a biological "Trojan horse" for neoplasia: future possibilities including brain cancer. Med Hypotheses 2014; 83:343-5. [PMID: 24986645 DOI: 10.1016/j.mehy.2014.06.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 05/19/2014] [Accepted: 06/09/2014] [Indexed: 01/28/2023]
Abstract
This manuscript considers available evidence that a specific Salmonella strain could be used as an effective orally-administered option for cancer therapy involving the brain. It has been established that Salmonella preferentially colonizes neoplastic tissue and thrives as a facultative anaerobe in the intra-tumor environment. Although Salmonella accumulates in tumors by passive processes, it is still possible for lipopolysaccharide to cause sepsis and endotoxic shock during the migration of bacteria to the tumor site. An LPS-free version of a recently identified Salmonella isolate may have the capability to circumvent the blood brain barrier and provide a safer method of reaching brain tumors. This isolate merits further research as a "Trojan horse" for future oral biotherapy of brain cancer.
Collapse
|
5
|
Abstract
Bacterial therapies possess many unique mechanisms for treating cancer that are unachievable with standard methods. Bacteria can specifically target tumours, actively penetrate tissue, are easily detected and can controllably induce cytotoxicity. Over the past decade, Salmonella, Clostridium and other genera have been shown to control tumour growth and promote survival in animal models. In this Innovation article I propose that synthetic biology techniques can be used to solve many of the key challenges that are associated with bacterial therapies, such as toxicity, stability and efficiency, and can be used to tune their beneficial features, allowing the engineering of 'perfect' cancer therapies.
Collapse
Affiliation(s)
- Neil S Forbes
- University of Massachusetts, Amherst, Department of Chemical Engineering, 159 Goessmann Laboratory, Amherst, Massachusetts 01003-9303, USA.
| |
Collapse
|
6
|
Zuo SG, Chen Y, Wu ZP, Liu X, Liu C, Zhou YC, Wu CL, Jin CG, Gu YL, Li J, Chen XQ, Li Y, Wei HP, Li LH, Wang XC. Orally administered DNA vaccine delivery by attenuated Salmonella typhimurium targeting fetal liver kinase 1 inhibits murine Lewis lung carcinoma growth and metastasis. Biol Pharm Bull 2010; 33:174-82. [PMID: 20118536 DOI: 10.1248/bpb.33.174] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The vascular endothelial growth factor (VEGF) receptor 2 (VEGFR-2), also called fetal liver kinase 1 (FLK1) in mice and kinase insert domain receptor (KDR) in humans, is an endothelial cell specific receptor tyrosine kinase that mediates lung cancer angiogenesis. We hypothesized that an active immunotherapy approach targeting FLK1 may inhibit lung cancer growth and metastasis. To test this hypothesis, we evaluated whether immune responses to FLK1 could be elicited in mice by immunization with an orally administered DNA vaccine encoding the extracellular domain (ECD) of FLK1 (pcDNA3.1-FLK1(ECD)) carried by attenuated Salmonella typhimurium. We found that the vaccine was effective at protective antitumor immunity in Lewis lung carcinoma models in mice by breaking immune tolerance to FLK1 self-antigen. Both FLK1-specific humoral and cellular immune responses against endothelial cells can be induced in mice by immunization with pcDNA3.1-FLK1(ECD). Immunization with pcDNA3.1-FLK1(ECD) resulted in tumor suppression and prolonged survival in mice challenged with Lewis lung carcinomas cells. Experimental pulmonary metastases were strongly inhibited in pcDNA3.1-FLK1(ECD) immunized mice challenged with Lewis lung carcinoma cells. Thus, we conclude that the plasmid DNA vaccine encoding the extracellular domain of FLK1 could be an important component of FLK1 DNA vaccine to prevent lung carcinoma recurrence and metastasis after surgery.
Collapse
Affiliation(s)
- Shu Guang Zuo
- Tumor Institute of Yunnan Province, the Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), No. 519 Kunzhou Road, Kunming, Yunnan 650118, P. R. China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Eisenstark A, Kazmierczak RA, Dino A, Khreis R, Newman D, Schatten H. Development of Salmonella strains as cancer therapy agents and testing in tumor cell lines. Methods Mol Biol 2007; 394:323-354. [PMID: 18363243 DOI: 10.1007/978-1-59745-512-1_16] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Despite significant progress in the development of new drugs and radiation, deaths due to cancer remain high. Many novel therapies are in clinical trials and offer better solutions, but more innovative approaches are needed to eradicate the various subpopulations that exist in solid tumors. Since 1997, the use of bacteria for cancer therapy has gained increased attention. Salmonella Typhimurium strains have been shown to have a remarkably high affinity for tumor cells. The use of bacterial strains to target tumors is a relatively new research method that has not yet reached the point of clinical success. The first step in assessing the effectiveness of bacterial tumor therapy will require strain development and preclinical comparisons of candidate strains, which is the focus of this chapter. Several investigators have developed strains of Salmonella with reduced toxicity and capacity to deliver anti-tumor agents. Although methods for obtaining safe therapeutic strains have been relatively successful, there is still need for further genetic engineering before successful clinical use in human patients. As described by Forbes et al. in 2003, the main stumbling block is that, while bacteria preferentially embed within tumor cells, they fail to spread within the tumor and finish the eradication process. Further engineering might focus on creating Salmonella that remove motility limitations, including increased affinity toward tumor-generated chemotactic attractants and induction of matrix-degrading enzymes.
Collapse
Affiliation(s)
- Abraham Eisenstark
- Cancer Research Center and Division of Biological Sciences, University of Missouri, Columbia, USA
| | | | | | | | | | | |
Collapse
|
8
|
Kim B, Suvas S, Sarangi PP, Lee S, Reisfeld RA, Rouse BT. Vascular Endothelial Growth Factor Receptor 2-Based DNA Immunization Delays Development of Herpetic Stromal Keratitis by Antiangiogenic Effects. THE JOURNAL OF IMMUNOLOGY 2006; 177:4122-31. [PMID: 16951377 DOI: 10.4049/jimmunol.177.6.4122] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Stromal keratitis (SK) is an immunoinflammatory eye lesion caused by HSV-1 infection. One essential step in the pathogenesis is neovascularization of the normally avascular cornea, a process that involves the vascular endothelial growth factor (VEGF) family of proteins. In this report, we targeted the proliferating vascular endothelial cells expressing VEGFR-2 in the SK cornea by immunization with recombinant Salmonella typhimurium containing a plasmid encoding murine VEGFR-2. This form of DNA immunization resulted in diminished angiogenesis and delayed development of SK caused by HSV-1 infection and also reduced angiogenesis resulting from corneal implantation with rVEGF. CTL responses against endothelial cells expressing VEGFR-2 were evident in the VEGFR-2-immunized group and in vivo CD8+ T cell depletion resulted in the marked reduction of the antiangiogenic immune response. These results indicate a role for CD8+ T cells in the antiangiogenic effects. Our results may also imply that the anti-VEGFR-2 vaccination approach might prove useful to control pathological ocular angiogenesis and its consequences.
Collapse
MESH Headings
- Angiogenesis Inhibitors/administration & dosage
- Angiogenesis Inhibitors/genetics
- Angiogenesis Inhibitors/immunology
- Animals
- Cells, Cultured
- Cornea/blood supply
- Cornea/pathology
- Cornea/virology
- Female
- Genetic Vectors
- Herpesvirus 1, Human/immunology
- Keratitis, Herpetic/immunology
- Keratitis, Herpetic/prevention & control
- Keratitis, Herpetic/virology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Neovascularization, Pathologic/immunology
- Neovascularization, Pathologic/prevention & control
- Neovascularization, Pathologic/virology
- Salmonella typhimurium/genetics
- Salmonella typhimurium/immunology
- Stromal Cells/immunology
- Stromal Cells/pathology
- Stromal Cells/virology
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/immunology
- Vascular Endothelial Growth Factor Receptor-2/administration & dosage
- Vascular Endothelial Growth Factor Receptor-2/biosynthesis
- Vascular Endothelial Growth Factor Receptor-2/genetics
- Vascular Endothelial Growth Factor Receptor-2/immunology
Collapse
Affiliation(s)
- Bumseok Kim
- Department of Microbiology and Pathobiology, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA
| | | | | | | | | | | |
Collapse
|