1
|
Kenter AT, Rentmeester E, van Riet J, Boers R, Boers J, Ghazvini M, Xavier VJ, van Leenders GJLH, Verhagen PCMS, van Til ME, Eussen B, Losekoot M, de Klein A, Peters DJM, van IJcken WFJ, van de Werken HJG, Zietse R, Hoorn EJ, Jansen G, Gribnau JH. Cystic renal-epithelial derived induced pluripotent stem cells from polycystic kidney disease patients. Stem Cells Transl Med 2020; 9:478-490. [PMID: 32163234 PMCID: PMC7103626 DOI: 10.1002/sctm.18-0283] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 11/08/2019] [Indexed: 12/25/2022] Open
Abstract
Autosomal‐dominant polycystic kidney disease (ADPKD) is the most common inherited kidney disease, leading to kidney failure in most patients. In approximately 85% of cases, the disease is caused by mutations in PKD1. How dysregulation of PKD1 leads to cyst formation on a molecular level is unknown. Induced pluripotent stem cells (iPSCs) are a powerful tool for in vitro modeling of genetic disorders. Here, we established ADPKD patient‐specific iPSCs to study the function of PKD1 in kidney development and cyst formation in vitro. Somatic mutations are proposed to be the initiating event of cyst formation, and therefore, iPSCs were derived from cystic renal epithelial cells rather than fibroblasts. Mutation analysis of the ADPKD iPSCs revealed germline mutations in PKD1 but no additional somatic mutations in PKD1/PKD2. Although several somatic mutations in other genes implicated in ADPKD were identified in cystic renal epithelial cells, only few of these mutations were present in iPSCs, indicating a heterogeneous mutational landscape, and possibly in vitro cell selection before and during the reprogramming process. Whole‐genome DNA methylation analysis indicated that iPSCs derived from renal epithelial cells maintain a kidney‐specific DNA methylation memory. In addition, comparison of PKD1+/− and control iPSCs revealed differences in DNA methylation associated with the disease history. In conclusion, we generated and characterized iPSCs derived from cystic and healthy control renal epithelial cells, which can be used for in vitro modeling of kidney development in general and cystogenesis in particular.
Collapse
Affiliation(s)
- Annegien T Kenter
- Department of Developmental Biology, Erasmus Medical Center Rotterdam (EMC), Oncode Institute, Rotterdam, The Netherlands.,Department of Cell Biology, Erasmus Medical Center Rotterdam (EMC), Rotterdam, The Netherlands.,Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center Rotterdam (EMC), Rotterdam, The Netherlands
| | - Eveline Rentmeester
- Department of Developmental Biology, Erasmus Medical Center Rotterdam (EMC), Oncode Institute, Rotterdam, The Netherlands
| | - Job van Riet
- Cancer Computational Biology Center, Erasmus Medical Center Rotterdam (EMC), Rotterdam, The Netherlands
| | - Ruben Boers
- Department of Developmental Biology, Erasmus Medical Center Rotterdam (EMC), Oncode Institute, Rotterdam, The Netherlands
| | - Joachim Boers
- Department of Developmental Biology, Erasmus Medical Center Rotterdam (EMC), Oncode Institute, Rotterdam, The Netherlands.,Delft Diagnostic Laboratories (DDL), Rijswijk, The Netherlands
| | - Mehrnaz Ghazvini
- Department of Developmental Biology, Erasmus Medical Center Rotterdam (EMC), Oncode Institute, Rotterdam, The Netherlands
| | - Vanessa J Xavier
- Department of Developmental Biology, Erasmus Medical Center Rotterdam (EMC), Oncode Institute, Rotterdam, The Netherlands
| | | | - Paul C M S Verhagen
- Department of Urology, Erasmus Medical Center Rotterdam (EMC), Rotterdam, The Netherlands
| | - Marjan E van Til
- Department of Clinical Genetics, Erasmus Medical Center Rotterdam (EMC), Rotterdam, The Netherlands
| | - Bert Eussen
- Department of Clinical Genetics, Erasmus Medical Center Rotterdam (EMC), Rotterdam, The Netherlands
| | - Monique Losekoot
- Department of Clinical Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Annelies de Klein
- Department of Clinical Genetics, Erasmus Medical Center Rotterdam (EMC), Rotterdam, The Netherlands
| | - Dorien J M Peters
- Department of Human Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Wilfred F J van IJcken
- Erasmus Center for Biomics, Erasmus Medical Center Rotterdam (EMC), Rotterdam, The Netherlands
| | - Harmen J G van de Werken
- Cancer Computational Biology Center, Erasmus Medical Center Rotterdam (EMC), Rotterdam, The Netherlands
| | - Robert Zietse
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center Rotterdam (EMC), Rotterdam, The Netherlands
| | - Ewout J Hoorn
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center Rotterdam (EMC), Rotterdam, The Netherlands
| | - Gert Jansen
- Department of Cell Biology, Erasmus Medical Center Rotterdam (EMC), Rotterdam, The Netherlands
| | - Joost H Gribnau
- Department of Developmental Biology, Erasmus Medical Center Rotterdam (EMC), Oncode Institute, Rotterdam, The Netherlands
| |
Collapse
|
2
|
Husson H, Manavalan P, Akmaev VR, Russo RJ, Cook B, Richards B, Barberio D, Liu D, Cao X, Landes GM, Wang CJ, Roberts BL, Klinger KW, Grubman SA, Jefferson DM, Ibraghimov-Beskrovnaya O. New insights into ADPKD molecular pathways using combination of SAGE and microarray technologies. Genomics 2004; 84:497-510. [PMID: 15498457 DOI: 10.1016/j.ygeno.2004.03.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2003] [Accepted: 03/30/2004] [Indexed: 01/26/2023]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is caused by mutations in the PKD1 or PKD2 gene, but cellular mechanisms of cystogenesis remain unclear. In an attempt to display the array of cyst-specific molecules and to elucidate the disease pathway, we have performed comprehensive high-throughput expression analysis of normal and ADPKD epithelia in a two-step fashion. First, we generated expression profiles of normal and cystic epithelia derived from kidney and liver using serial analysis of gene expression (SAGE). We found 472 and 499 differentially expressed genes with fivefold difference in liver and kidney libraries, respectively. These genes encode growth factors, transcription factors, proteases, apoptotic factors, molecules involved in cell-extracellular matrix interactions, and ion channels. As a second step, we constructed a custom cDNA microarray using a subset of the differentially regulated genes identified by SAGE and interrogated ADPKD patient samples. Subsequently, a set of differentially expressed genes was refined to 26 up-regulated and 48 down-regulated genes with ap value of <0.01. This study may provide valuable insights into the pathophysiology of ADPKD and suggest potential therapeutic targets.
Collapse
Affiliation(s)
- Hervé Husson
- Functional Genomics, Genzyme Corporation, Framingham, MA 01701-9322, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Klingel R, Dippold W, Störkel S, Meyer zum Büschenfelde KH, Köhler H. Expression of differentiation antigens and growth-related genes in normal kidney, autosomal dominant polycystic kidney disease, and renal cell carcinoma. Am J Kidney Dis 1992; 19:22-30. [PMID: 1739078 DOI: 10.1016/s0272-6386(12)70198-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cellular differentiation and mRNA levels of genes involved in kidney growth were investigated in normal kidney cells, cyst-lining epithelial cells of polycystic kidney disease, and renal carcinoma cells (RCC). All cells comparatively studied exhibited an antigenic phenotype of proximal tubular cells as shown by the expression of a panel of brush border membrane enzymes and kidney-associated cell surface antigens. The epithelial developmental antigen Exo-1 was expressed in 50% to 80% of cyst-lining epithelia in polycystic kidney tissue and in 20% to 30% of polycystic kidney cells cultured in vitro. Normal kidney cells and RCC were negative under identical culture conditions. The expression of antigen Exo-1 is associated with hyperproliferation in an epithelial tissue compartment composed of cells which have not yet reached their terminal differentiation state. Increased amounts of mRNA of the growth factor receptor system of epidermal growth factor (EGF) receptor and its ligand transforming growth factor (TGF)-alpha were associated with the malignant phenotype of RCC. Increased expression of EGF receptor and TGF-alpha, although less prominent, were also observed in polycystic kidney cells compared with normal kidney cells. In conclusion, the expression of Exo-1 in cyst-lining epithelial cells of autosomal dominant polycystic kidney disease (ADPKD) and the altered regulation of TGF-alpha and EGF receptor in these cells contribute to the hypothesis that hyperproliferation is an underlying pathogenic mechanism of ADPKD.
Collapse
Affiliation(s)
- R Klingel
- First Department of Internal Medicine, University of Mainz, Germany
| | | | | | | | | |
Collapse
|