Zoubi SA, Mayhew TM, Sparrow RA. The small intestine in experimental diabetes: cellular adaptation in crypts and villi at different longitudinal sites.
Virchows Arch 1995;
426:501-7. [PMID:
7633660 DOI:
10.1007/bf00193174]
[Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Intestinal adaptation at the cellular level was examined in groups of streptozotocin-diabetic and age-matched control rats. Small intestines were removed and divided into four segments of roughly equal length. For each segment, epithelial volume, villous and microvillous surface areas and the mean volumes of epithelial cells in crypts and villi were estimated. From these data, we were able to estimate total numbers of epithelial cells in crypts and villi, assess adaptation at the level of the average cell and explore variation along the crypt-villus axis, between segments and between groups. Whilst the villus:crypt cell ratio did not change, diabetic animals contained about 80% more epithelial cells than control rats. The morphophenotype of villous epithelial cells (represented by nuclear volume, cell height, area and volume, and number and surface area of microvilli) was basically the same as that in controls. By contrast, crypt cells and their nuclei were 40-50% bigger in diabetic rats. Significant differences between segments were confined to the numbers and sizes of crypt cells and their nuclei. We conclude that experimental diabetes leads to both proliferative and hypertrophic responses within crypts. Crypt cells become fatter but not taller. Crypt hyperplasia is accompanied by an equiproportionate increase in villous epithelial cells, but these are of essentially normal morphophenotype.
Collapse